高速三体船砰击强度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速三体船的砰击强度研究是非常复杂和具有实际意义的课题。在国家863计划项目——高速三体船关键技术研究支持下,本文采用数值仿真试验研究相结合的方法研究了高速三体船砰击强度问题,主要研究内容和结论如下:
     1、对国内外已有的结构入水砰击的基本理论进行消化、吸收和总结,重点介绍了楔形体入水砰击基本理论、数值计算方法和水弹性理论,平底结构入水的空气垫理论,考虑空气垫效应平底结构砰击压力峰值计算方法,三维钝体结构入水的线性理论及其“反问题”方法,分析总结了各理论的适用范围和存在的不足之处。
     2、对高速三体船砰击强度中运用的数值仿真方法的基本理论和关键技术进行了研究,明确了仿真中使用的流体材料和结构材料物理参数和力学行为,确定了使用无反射边界条件消除边界对砰击区域的影响,采用刚性墙对称边界条件减小运算量;研究了仿真计算模型的网格尺寸和精度控制的问题,得出了高速三体船结构入水砰击仿真计算较优的网格划分尺度,有效的解决了LS-DYNA通用软件在高速三体船砰击强度研究上的应用问题。
     3、在采用LS-DYNA仿真计算平板结构入水砰击问题已有试验对比的基础上,证明用LS-DYNA仿真计算结构入水砰击问题的正确性和有效性。在此基础上,采用有限元流固耦合方法研究了高速三体船连接桥结构的入水砰击问题,得到了一些有意义的结论:(a)主船体溅射的浪花导致主船体和辅船体间空气的逃逸,削弱空气垫的缓冲作用,连接桥的砰击压力峰值比作为平板处理时的值大。(b)在系列仿真研究的基础上,回归了高速三体船入水砰击连接桥砰击压力峰值的公式,砰击压力峰值基本上入水速度的平方成正比;空气垫、飞溅等非线性因素对连接桥砰击压力的影响随着砰击速度的增加成二次指数递减;砰击速度较低时影响随着速度的增加迅速减小,砰击速度较高时基本没有影响。(c)连接桥压力峰值在连接桥距主船体舷侧0.7b的距离形成最大值,在连接桥距主船体舷侧0.3b处形成次大值。(d)连接桥所受的砰击压力持续时间速度成一次指数递减;在砰击速度较低时,压力峰值持续的时间随着砰击速度的增加迅速递减;在砰击速度较高时,压力峰值持续的时间递减速度十分缓慢。(e)空气层在高速三体船连接桥入水砰击中减小了压力峰值,起到缓冲垫作用,随着砰击速度的增加,空气层对压力峰值的影响减小;随着高速三体船结构质量增加,连接桥砰击压力峰值迅速增大,当结构质量超过一定的临界结构质量值时,砰击压力峰值基本保持不变;随着连接桥宽度的增加,连接桥压力峰值基本成线性增加;当高速三体船主船体舭部升高角度较小时,砰击压力峰值并不是很大,当角度到达第一临界角度时,连接桥的砰击压力峰值迅速增大,当角度到达第二临界角度时,随着角度的增大,砰击压力峰值增加速度减缓,在此基础上提出了砰击压力临界舭升高角的概念。
     4、采用数值仿真方法研究了高速三体船主船体砰击问题,得到一些有意义的结论:(a)在系列仿真研究的基础上,回归了高速三体船入水砰击主船体砰击压力峰值的公式,发现砰击压力峰值基本上入水速度的平方成正比;空气垫、飞溅等因素对主船体砰击压力峰值的影响随着砰击速度的增加成二次指数递减;主船体砰击压力峰值在距主船体纵中剖面3/8B的距离处形成最大值;主船体砰击压力持续时间速度成一次指数递减。(b)空气层在高速三体船主船体砰击中起到缓冲垫作用,有利于减小主船体砰击压力峰值;空气层对主船体砰击压力峰值的影响随着砰击速度的增加而减小,并且在低速时影响要比高速时显著;高速三体船结构质量和连接桥宽度对主船体砰击压力峰值的影响较小;随着高速三体船主船体舭部升高角度的增加,主船体的砰击压力峰值逐渐减小,并且庄生仑博士试验结果具有相同的变化趋势。
     5、介绍了在水动力学冲击领域内试验研究一系列成果:庄生仑对平底结构和楔形体砰击的系列试验研究、MARINTEK实验室对楔形体和船艏外飘砰击的试验研究、楔形体入水冲击国际性比较研究、SWATH双体船入水砰击试验研究和VISBY隐身舰实船试验研究。在此基础上,试验研究了高速三体船砰击强度,自行设计了试验装置和试验模型,完成了试验装置和模型的加工,调试了整个试验系统,进行了高速三体船模型系列砰击试验。试验记录了高速三体船发生砰击时的完整过程,测试了高速三体船模型在不同高度下落入水砰击过程中主船体和连接桥受到的砰击压力峰值及分布、加速度响应值和变形响应值,并把压力峰值入水速度值进行回归分析,提出了主船体和连接桥的砰击压力峰值预报公式,从公式中分析得知,压力峰值入水砰击速度的平方成正比,空气垫、飞溅等非线性因素的影响随着速度的增加成二次指数递减趋势,验证了仿真研究高速三体船砰击强度相关规律的正确性。试验也证实了只有当高速三体船的相对速度超过砰击临界速度时才可能发生砰击
     6、将试验取得的加速度响应值和变形响应值三维仿真计算进行比较分析,验证了仿真方法计算高速三体船砰击强度的可行性和准确性,分析了两种方法误差的原因,指出了仿真方法的不足之处并提出改进方法,为仿真方法在高速三体船砰击强度问题上的进一步研究提供了参考。在此基础上计算分析了高速三体船发生砰击结构的动力响应及相关规律。
The study on slamming of high-speed trimaran is a very complicated and significative topic,it has boon supported by 863 program of China(Name:Key technique research of high-speed trimaran,No.2006AA11Z227).In this thesis, the topic has been studied with methods of simulation and experimentation,and the following efforts have been made and the conclusions are presented:
     1、Some existing water entry theories were introduced,including the theory of two-dimensional water entry of wedge bodies,the numerical method of two-dimensional water entry of wedge bodies,the air cushion theory of flat bottom structures and the inverse method of three-dimensional blunt bodies and so on.Finally,the shortage of these theories were analyzed.
     2、Some studies on the key techniques of LS-DYNA software simulation on the slamming of high-speed trimaran have been carried out,the solutions of non-reflection boundary condition,the symmetry boundary condition and fluid initial condition at simulation have boon brought forward.And also the mesh size and precision control has been studied in order to get optimal model scale of simulation calculation.
     3、The water entry of flat bottom structures has been simulated with LS-DYNA software.The results have been compared with the existent experimental study,and it has approved correctness and validity of simulation calculation on slamming by the LS-DYNA soft ware.Accordingly,the slamming of the trimaran cross-deck structure has been simulated.Some conclusions have been obtained:
     (a)The air between hulls was brought out by wave splashed by main hull, the effect of air cushion was weakened.So,the peak value of pressure on the cross-deck was increased comparing with flat bottom slamming.
     (b)The formula of peak value of slamming pressure on the cross-deck has been regressed.The peak value is directly proportional to quadratic in velocity of water entry.The effect of air cushion on the peak value decays in the form of second order exponential with increasing of velocity.When the velocity is lower,the effect decreases rapidly with increasing of velocity;when the velocity is higher,the effect changes inconspicuously.
     (c)The maximum peak value of slamming pressure on cross-deck locates 0.7b from the broadside of the main hull and the secondly locates 0.3b.
     (d)The continuance of slamming pressure peak value decays in the form of first order exponential with increasing of velocity.When the velocity is lower, the continuance decreases with increasing of velocity;when the velocity is higher,the continuance changes inconspicuously.
     (e)The air cushion can decrease the peak value of slamming pressure on cross-deck,the effect of air cushion on peak value decreases with increasing of velocity.The effect of trimaran mass on the peak value increases with increasing of mass.When the mass arrives at the threshold value,the peak value is kept inconspicuously.The peak value is directly proportional to cross-deck width,and increases with increasing deadrise angle.When the deadrise angle arrives at the first threshold value,the peak value increases rapidly.When the angle arrives at the second threshold value,the peak value is kept inconspicuously.
     4、The slamming of the trimaran main hull has been simulated with LS-DYNA software.Some conclusions have been obtained:
     (a)The formula of the peak value on the main hull has been regressed.As a result,the peak value is directly proportional to quadratic in velocity of water entry.The effect of air cushion on the peak value decays in the form of second order exponential with increasing of velocity.The maximum peak value locates 3/8B from the midship of main hull.The continuance of peak value decays in the form of first order exponential with increasing of velocity.
     (b)The air cushion can decrease the peak value of pressure on the main hull,the effect of air cushion on peak value decreases with increasing of velocity.The effect of trimaran mass and cross-deck width on the peak value is lessness.The slamming peak value increases with increasing of deadrise angle.
     5、Experimental achivements in hydrodynamics impact were introduced, including Chuang's slamming experimentations of flat bottom structure and wedge body,MARINTEK's slamming experimentations of wedge body and bow flare,international comparative studies on slamming of wedge body, slamming experimentation of SWATH and VISBY's experimentation with real situation.In this thesis,test equipment and trimaran model were designed and carried out.Slamming experimentation of high-speed trimaran has been processed.Salmming phenomenon of the high-speed trimaran was recorded. The peak value of slamming pressure,the responses of acceleration and deformation were obtained with different velocity.The formula of the peak value on the main hull and cross-deck has been regressed.The peak values is directly proportional to quadratic in velocity of water entry.The effect of air cushion on the peak value decays in the form of second order exponential with increasing of velocity.These have proved correctness of rules about slamming simulation of the high-speed trimaran.
     6、The veracity and creditability of simulation method has proved with comparing experimental conclusion with 3-D slamming simulation.The errors between experimental method and simulation method have been analyzed,and the slamming responses of the high-speed trimaran have been simulated.
引文
[1].Mizine I,Amromin E.Large high speed trimaran-concept optimization[A].Fifth International Conference on Fast Sea Transportation[C].Seattle,Washington:[s.n.],1999.
    [2].Dr AR,Dr RWG Bucknall.Marin eengineering the trimaran hullform opportunities and constraints[J].
    [3].Lu X S.Report of comm.itee V.8 weight critical structures Proc ISSc,1994.
    [4].Kaplan P.Structural loads on advanced marine vechicles including effects of slamming FAST91,Trondhein,Norway,1991:781-795.
    [5].Dn V.rules for the classifyion of high speed and light craft,1991.
    [6].Trans lmar E,1996,110(3):181-193.
    [7].Pattison D R,Zhang J W.Thetrimaran ships[J].TransRINA,1995,137:143-153.
    [8].Andrews D J,Zhang J W.Trimaran ships the configuration for the frigate of the future[J].Naval Engineers Journal,1995,107(3):77-93.
    [9].李培勇,裘泳铭,顾敏童等.多体船型完整稳性计算.上海交通大学学报,2002.36(11):1560-1563.
    [10].刘淮.国外多体舰艇发展现状.船舶工业技术经济信息.2004.1:38-41.
    [11].SNAME Transactions[C].1997-2001.
    [12].Proceedings of the Fast Ferry International Conference.2001-2003.
    [13].Proceedings of RINA Conference[C].2000-2004.
    [14].卢晓平,郦云,董祖舜.高速三体船研究综述.海军工程大学学报,2005.17(2):45-52.
    [15].Juan Antonio Moret,Nigel Gee.The IZAR High Deadweight,Fast Ro-Pax Ship an Economic Solution to the Carriage of Heavy Trucks and Cars at 40 Konts[R].
    [16].李培勇等.高速三体船型概念设计研究.上海交通大学学报,2004.38(11):1885-1888.
    [17].李培勇等.三体船横摇运动研究.中国造船,2003(1):24-30.
    [18].李培勇等.超细长三体船耐波性试验研究.海洋工程,2002(4):1-4.
    [19].李培勇等.三体船阻力试验研究.中国造船,2002(4):6-12.
    [20].李培勇等.超细长三体船阻力计算研究.船舶工程.2002(2):10-13.
    [21].李培勇.多体船型的性能及概念设计研究:[博士学位论文].上海:r上海交通大学,2002.
    [22].LI Pei-yong,Qiu Yong-ming,Gu Min-tong.Study of trimaran wavemaking resistance with numerical calculation and experiments.Journal of Hydrodynamics.2002(2):r 99-105.
    [23].苏健等.高性能杂交三体船的概貌及其特点.武汉造船,2001(3):r4-6.
    [24].宋国华.双体船的总体性能设计.船舶.1988(1):r32-48.
    [25].宋国华.双体船的总体性能设计(续1).船舶.1988(2):r39-45.
    [26].卢晨,肖熙.高速五体船结构设计的几个关键问题.船舶,2004(5):r21-26.
    [27].Coppola T.The design of trimaran ships:general review and practical structural analysis[A].PRADS[C].ShangHai:Elsevior Science Ltd,2001.
    [28].Buckley W H and Stavovy A B.Progress in the development of structural load criteria for extreme waves.In SSC/SNAME Loads Response Symposium,1981,S4-14:75-88.
    [29].陈震.海洋结构物入水砰击载荷响应研究:[博士学位论文].上海:上海交通大学,2005.
    [30].Sames P C,Kapsenberg G K,Carrignan P.Prediction of bow door loads in extreme wave conditions[A].International Conference of Design and Operation for Abnorma lConditions Ⅱ[C],Royal Institution of Naval Architects,London,UK,2001.
    [31].Kvalsvold J,Svensen T,Hovem L.Bow impact loads on Ro-Ro vessels[C].Royal Institution of Naval Architects,1996.
    [32].陶智祥,戴仰山.外张砰击载荷.中国造船,1991(3):43-51.
    [33].Ochi,M.K.Prediction of occurrence and severity of ship slamming at sea.Fifth Symposium on naval hydrodynamics.Office of naval research ACR.1964:112.
    [34].Hamoudi,B.Varynai et al.Significant load and green water on deck of offshore unite/vessels.Ocean Engineering.1998(8):715-732.
    [35].He.W.,Dai,et al.Statistical evaluation of green water occurrence.Selected paper of the Chinese.SNAME,1996(11).
    [36].船舶入级规范和规则.劳氏船级社上海代表处.2005.
    [37].钢制海船入级规范.挪威船级社.2005.
    [38].Rules for building and classing steel vessels.American bureau of shipping & affiliated companies.2005.
    [39].船体结构强度直接计算指南.中国船级社.2001.
    [40].F.Cheng,C.Mayoss,T.Blanchard.The development of Trimaran Rules.Lloyd's Register,2006.
    [41].Von Karman T.The Impact on Seaplane Floats During Landing[R].NACA,Tech,Note321,SITDL,TR1854,1929.
    [42].Wagner H.Landing of SeaPlanes[R].NACA.Tech.Memo622.SITDL.TR2101,193.
    [43].Dobrovol' skaya,Z.N.On some problems of similarity flow of fluid with a free surface.J.Fluid Mech,1969.36:805-829.
    [44].A.G.Mackie,The water entry problem.Quaterly journal of mechanics and applied mathematics,1969.22(1):1-17.
    [45].Martin Greehow,Wedge entry into initially calm water.Applied ocean research,1987.9(4):214-223.
    [46].陈学农,何友声.平头物体三维带空泡入水的数值模拟,力学学报.1996.22(2):129-138.
    [47].O.M.Faltinsen,Maurizio Landrini.Examples on hydrodynamic challenges of conventional and high-speed vessels.Int.Symp.Nav.Arch and Ocean Eng.Shanghai Jiao Tong University,2003.
    [48].R.Cointe,Two-dimensional water-solid impact.Journal of offshore mechanics and arctic engineering,1989.111:109-114.
    [49].J.M.Oliver.Water entry and related problems:[PHD Thesis],Oxford University,2002.
    [50].J.H.G.Verhagen.The impact of a flat plate on a water surface.Journal of ship research.1967.11(3):211-223.
    [51].Yamamoto,Y.Ohtsubo,H.Okada,et al.Cnshioning action for horizontal water impact of a flat plate.J.Soc.Naval Arch.of Japan.1983:235-242.
    [52].郑际嘉,岳亚丁.刚性圆板自由落体在水面上的冲击压力.水动力学研究进展[A],1992,7(2):219-226.
    [53].Y.M.Scolan,A.A.Korobkin.Three-dimensional theory of water impact.Part 1.Inverse Wagner problem.Journal of Fluid Mechanics.2001,440:293-326.
    [54].R.Zhao,O.M.Faltinson.Water entry of two-dimensional bodies.Journal of Fluid Mechanics.1993.246:593-612.
    [55].钱勤,黄玉盈,王石刚等.任意的拉格朗日欧拉边界元-有限元混合法分析物体撞水响应.固体力学学报.1994.15(1).
    [56].Aquelet N.,Souli M.Fluid-structure coupling in a water-wedge impact problem[J].American Society of Mechanical Engineers,Pressure Vessels and Piping Division (Publication)PVP,v 485,n PART 2,Emerging Technology in Fluids,Structures,and Fluid-Structure Interactions 2004,2004:91-99.
    [57].Aquelet N.,Souli M.Damping effect in fluid-structure interaction:Application to slamming problem[J].American Society of Mechanical Engineers,Pressure Vessels and Piping Division(Publication)PVP,v 460,Emerging Technology in Fluids,Structures,and Fluid-Structure Interactions-2003,2003:233-242.
    [58].Constantinescu Adrian(ATM),Bertram Volker,Fuiorea Ion,Neme Alain.Wedge-shaped shell structure impacting a water surface[J].Source:American Society of Mechanical Engineers,Pressure Vessels and Piping Division(Publication)PVP,v 4,Proceedings of the ASME Pressure Vessels and Piping Conference 2005-Fluid-Structure Interaction,PVP 2005,2005:55-62.
    [59].倪樵,李其申,黄玉盈.平底物体撞水响应分析.华中科技大学学报,2001,29(4).
    [60].金伏生.入水冲击问题变分原理及其它.应用数学和力学.1992,13(6).
    [61].Sano Atsushi,Okada Hiroo,Ikebuchi Tetsuro,Masaoka Koji.A numerical study on hydrodynamic pressure and structural response of stiffened plates under water body collision considering fluid-structure interaction[J].Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering-OMAE,2002,2:599-606.
    [62].张涛.加筋板非线性动态响应、屈曲及分叉:[博士学位论文].武汉:华中科技大学,2003.
    [63].张涛,刘土光,熊有伦,张维衡.流固冲击下加筋板的非线性动态屈曲[J].应用数学和力学,2004,(07),755-762.
    [64].张涛,刘土光,周晶晶,刘敬喜.受面内冲击载荷下加筋板的非线性动态屈曲[J].固体力学学报,2003,(04),391-398.
    [65].张涛,刘土光,赵耀,刘敬喜.加筋板弹性大挠度的冲击响应分析[J].爆炸冲击,2002,(04),301-307.
    [66].彭英,杨平.面内流固冲击载荷下加筋板的动力响应[J].中国舰船研究,2006,(04),16-20.
    [67].唐友刚,董艳秋.Hamilton法计算肥大船砰击响应.天津大学学报,1994.27(3):370-374.
    [68].陆鑫森,叶伟,俞国新等.现代高速船结构设计问题.上海交通大学学报,1996.30(10):129-135.
    [69].王刚.高速船舶结构设计中流体冲击载荷的数值计算.船舶,1998(5):26-31.
    [70].卢炽华,何友声,王刚.船体砰击问题的非线性边界元分析.水动力学进展研究,1999.14(2):169-176.
    [71].Kamlesh S.Varyani,Rama M,et al.Motions and slamming impact on catamaran.Ocean Engineering 2000.27:729-747.
    [72].张志民.船首底部砰击强度的可靠性分析:[博士学位论文].哈尔滨:哈尔滨工程大学,2001.
    [73].张志民,戴仰山.底部砰击压力的长期极值分布,哈尔滨工程大学学报,2002.23(1):37-42.
    [74].王辉,朱云祥,顾学康,沈进威.Ro-Ro船首门砰击载荷设计值的确定.船舶力学,2003(2),46-56.
    [75].胡嘉骏,蔡新钢,船舶表面点砰击压力的预报方法,船舶力学,2005,9(1):63-71.
    [76].Yang Ping,Li Weihua,BrianHayman.Recent research of high speed vessels structural response to accidental load.Journal of Wuhan University of Technolog.2002.26(3):414-419.
    [77].Rhoads,JL.Structural Loading of Cross Deck Connections for Trimaran Vessels[J].California Univ.,Berkeley.Dept.of Materials Science and Engineering.2004,6:176.
    [78].Grande,Kristoffer,Xia.Jinzhu.Prediction of slamming occurrence on catamaran cross structures[J].Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering-OMAE,2002,4:525-533.
    [79].Zarnick,EE.Prediction of SWATH Cross-Structure Slamming Pressures[J].David W.Taylor Naval Ship Research and Development Center,Bethesda,MD.Ship Hydromechanics Dept.Sep 1987.23p.Report:DTNSRDC/SHD-1174-02.
    [80].Gatiganti,RM,Varyani,KS,Gerigk,M.Numerical prediction of slamming loads acting on catamaran sections[J].PROCEEDINGS OF THE NINTH(1999)INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE,1999,4:434-439.
    [81].Thomas,GA,Davis,MR,Holloway,DS,et al.Slamming response of a large high-speed wave-piercer catamaran[J].MAR TECHNOL SNAME N 2003,40(2):126-140.
    [82].Tanizawa Katsuji,Ogawa Yoshitaka,Minami Makiko,Yamada Yasuhira.Water surface impact loads acts on bulbous bow of ships[J].Proceedings of the ASME/JSME Joint Fluids Engineering Conference,v 2 D,Proceedings of the 4th ASME/JSME Joint Fluids Engineering Conference:2003,2:3009-3018.
    [83].任淑霞.船舶结砰击响应控制方法研究:[硕士学位论文].武汉:武汉理工大学,2003.
    [84].陈震,肖熙.基于神经网络的平底结构砰击压力预报.海洋工程,2005.23(2):26-33.
    [85].陈震,肖熙.空气垫在平底结构入水砰击中作用的仿真分析.上海交通大学学报.2005.39(5):670-674.
    [86].陈震,肖熙.平底结构砰击压力的分布.中国造船,2005.46(12):97-104.
    [87].朱加刚.船底结构砰击时的水弹性分析:[硕士学位论文].哈尔滨:哈尔滨工程大 学,2006.
    [88].夏斌.弹性平底结构入水冲击压力及船舶总体强度研究分析:[硕士学位论文].上海:上海交通大学,2005.
    [89].Bereznitski,A.3D model for bottom slamming[J].Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering-OMAE,2001,1:315-322.
    [90].Samuelides M.,Servis D.P.Bow door slamming of Ro/Ro ferries[J].Marine Structures,2002,15(3):285-307.
    [91].Simone C,Brady TF.Wave Impact Analysis and Results Obtained from a Segmented Model of the High-Speed Sealift Trimaran Model 5594[J].Naval Surface Warfare Center Carderock Div.,Bethesda,MD.Survivability Structures and Materials Directorate.Jun 2004.55p.Report:NSWCCD-65-TR-2003/05.
    [92].邱强.船舶波浪与砰击载荷的理性预报方法.船舶力学,2002.6(1):18-27.
    [93].黄文波,张圣坤.基于波浪和砰击诱导应力幅值相关性的随机组合.上海交通大学学报.2003.37(7):969-973.
    [94].黄文波,张圣坤.基于族效应的波浪和砰击诱导应力的随机组合.上海交通大学学报.2003.37(8):1155-1120.
    [95].张世联,王能扬,肖熙.砰击载荷作用下板结构动力响应的参数分析.上海交通大学学报,2001.35(4):562-565.
    [96].岳建军.冲击载荷作用下圆柱壳型结构的动力响应分析仿真模拟:[硕士学位论文].武汉:华中科技大学,2004.
    [97].刘桂香.船舶表面入水点砰击压力的预报方法.南通航运职业技术学院学报,2004.3(4):36-39.
    [98].A.Carcaterra,E.Ciappi,A.Iafrati.E.F.Campana.shock spectral analysis of elastic syste impacting on the water surface.Journal of Sound and Vbration,2000.229(3):579-605.
    [99].朱克强,郑道昌,周江华,刘桂云,包雄关.船舶结构的波浪载荷响应分析.宁波大学学报,2004.17(4):454-460.
    [100].徐向东,张效慈,吴有生.船舶砰击动力屈曲.中国造船,1997(2):43-49.
    [101].黄震球.船舶强度研究中的几个问题.武汉造船,1999(3):1-5.
    [102].邢殿录,马骏,.船体砰击响应的一种预报方法.大连理工大学学报,1998.38(4).
    [103].洪亮,徐秉汉,张伟.地效翼船结构设计方法的探索.船舶力学,2003.7(5):45-52.
    [104].顾学康,沈进威.非线性波浪载荷作用下的船体结构疲劳损伤.船舶力学,2000.4(5):22-36.
    [105].彭诚洋.船舶结构在流-固冲击作用下的动力屈曲:[硕士学位论文].哈尔滨:哈尔 滨工程大学,2005.
    [106].鲍彤.散货船船艏底部结构砰击加强的设计研究:[硕士学位论文].哈尔滨:哈尔滨工程大学,2001.
    [107].罗宁.三维结构撞水的流固耦合动力响应分析:[硕士学位论文].武汉:华中科技大学,2005.
    [108].徐丽.Investigation Of Slamming Loads For Fpso In Ship Model Tank:[硕士学位论文].大连:大连理工大学,2003.
    [109].Xiaoming Mei,Yuming Liu,Dick K.P.Yue.On the water impact of general two-dimensional sections.Applied Ocean Research 1999.21:1-15.
    [110].N.Aquelet,M.Souli,L.Olovsson.Euler-Lagrange coupling with damping effects:Application to slamming problems.Comput.Methods Appl.Mech.Engrg.2006.195:110-132.
    [111].Ge CH,Faltinsen OM,Moan T.Global hydroelastic response of catamarans due to wetdeck slamming.JOURNAL OF SHIP RESEARCH 2005,49(1):24-42.
    [112].Heggelund SE,Moan T.Analysis of global load effects in catamarans.Journal Of Ship Research.2002,46(2):81-91.
    [113].Varyani KS,Gatiganti RM,Gerigk M.Motions and slamming impact on catamaran.OCEAN ENGINEERING,2000.27(7):729-747.
    [114].孙海虹,吴秀恒.舰船主体结构流体冲击响应主动控制方法和分析.中国造船,1999(3):82-92.
    [115].陈国龙,聂武,温保华.舰艇减纵摇附体的抗砰击强度分析.哈尔滨工程大学学报,2003.24(1):17-23.
    [116].张征波.内河高速船的新型船体结构形式-双向加筋板船体结构.船舶工程,2004.26(1):22-26.
    [117].Benjamin A.Tutt.The use of LS-DYNA to simulate the water landing characteristics of space vehicles,In:8th international LS-DYNA user conference.2004:4-1-4-13.
    [118].Anthony P.Tayler.Developments in the application of LS-DYNA to fluid structure interaction(FSI)problems in recovery system design and analysis.In:7th international LS-DYNA user conference.2002:10-17-10-26.
    [119].Sheng-Lun Chuang.Experiment on slamming of wedge-shaped bodies.Journal of Ship Research.1967.11(3):190-198.
    [120].Sheng-Lun Chuang.Theoretical investigations on slamming of cone-shpaed bodies.Journal of Ship Research.1969.12:276-283.
    [121].A.Carcaterra,E.Ciappi.Prediction of the compressible stage slamming force on rigid and elastic systems impacting on the water surface.Nonlinear Dynamics,2000.21:193-220.
    [122].A.Carcaterra,E.Ciappi.Hydrodynamic shock of elastic structures impacting on the water:theory and experiments.Journal of Sound and Vibration,2004.271:411-439.
    [123].孙辉.二维楔形体结构自由冲击入水的流固耦合研究:[硕士论文].上海:上海交通大学,2001.
    [124].孙辉,卢炽华,何友声.二维楔形体冲击入水时的流同耦合响应的实验研究.水动力学研究进展.2003,18(1).
    [125].张志荣,洪方文,张军等.入水初期流场的测量方法.水动力学研究进展,2001.16(3).
    [126].Sheng-Lun Chuang.Experiment on flat-bottom slamming.Journal of Ship Research.1966.10(1):10-27.
    [127].Grant Lewison,W.M.Maclean.On the cushioning of water impact by entrapped air.1968,6:116-130.
    [128].黄震球,张文海.减小平底体砰击的试验研究.华中工学院学报,1986.14(5).
    [129].李国钧,黄震球.平底物体对水面的斜向冲击.华中理工大学学报.1995.23(1).
    [130].Engle Allen,Lewis Richard.A comparison of hydrodynamic impacts prediction methods with two dimensional drop test data[J].Marine Structures,2003,16(2):175-182.
    [131].Ochi M K,Motter L E.Prediction of slamming characteristics and hull responses for ship design.SNAME,1973.
    [132].Ochi M D,Bonilla-Norat J.Pressure-velocity relationship in impact of a ship model dropped onto the water surface and in slamming in waves.AD-709071,June 1970.
    [133].Zhao R,Falinsen O,Aarsnes J.Water entry of arbitrary two-dimensional sections with and without flow separation.Proe.21st Symp.on Naval Hydrodynamics,1996.
    [134].毛筱菲.双体船连接桥波浪载荷的试验研究.船海工程,2003(6):10-12.
    [135].Michael R,Davis,James R.Computation of wet deck bow slam loads for catamaran arched cross sections.Ocean Engineering 2007.34:2265-C2276.
    [136].Anders Rosen,Karl Garme,Jakob Kuttenkeuler.Full-Scale Design Evaluation of the Visby Class Corvette.Ninth International Conference on Fast Sea Transportation,2007,shanghai:583-588.
    [137].Wagner H.Uber stoss-und gleitvorgange und der obeHlache von flussigkeiten.ZAMM,1932,band 12,heft 4:193-215.
    [138].Bispliaghoff R L,Doherty C S Some studies of the impact of vee wedges on a water surface.Journal of the Franklin Institute,1952,Vol.253:547-561.
    [139].Fabula A G.Ellipse-fitting approximation of two-dimensional normal symmetric impact of rigid bodies in water.Fifth Midwestern Conference on Fluid Mechanics,University of Michigan Press,Ann Arbor,Mieh,1957.
    [140].Chu Wen-Hwa,Abramson H N.Hydrodynamic theories of ship slamming-review and extension.J.S.R,Mar,1961:9-15.
    [141].Daidola J C,Mishkevich V.Hydrodynamic impact loading on displacement ship hulls-an assessment of the state of art.Ship Structure Committee SR-1342,April,1995.
    [142].#12
    [143].Newman J N.The numerical towing tank-fact or fiction Schiffstechnik,H.4,1989,Vol.36.
    [144].DASS PROJECT,SLAM2D Version 1.0-User's Manual,MARINTEK SINTEF GROUP,Aug.1996.
    [145].卢炽华,何友声.二维弹性结构入水冲击过程中的流固耦合效应.力学学报,2000,第32卷第2期.
    [146].Lu c H,He Y S,Wu G X.Coupled analysis of nonlinear interaction between fluid and structure during impact.Journal of Fluids and Structures 2000,14:127-146.
    [147].Chuang S L Investigation of impact of rigid and elastic bodies with water.AD702727,Feb.1970.
    [148].赵海鸥.LS-DYNA动力分析指南.北京:兵器工业出版社,2003.
    [149].李裕春,时党勇,赵远.ANSYS10.0/LS-DYNA基础理论工程实践.北京:中国水利水电出版社,2006.
    [150].Meyerhoff W K.Added masses of thin rectangular plates calculated from potential theory,J.S.R.
    [151].14~(th)ISSC Technical Committee I.2.PP.104-105,2000.
    [152].Takemoto H.Some Consideration on Water Impact Pressure.Journal of the Society of Naval Architects of Japan,156,1984:314-322.
    [153].Gong S.W.,Lam K.Y.Transient response of stiffened composite plates subjected to low velocity impact[J].Composites Part B:Engineering,1999,30(5):473-484.
    [154].Stavovy A B.Chuang S L Analytical determination of slamming pressures for high-speed vehicles in waves.JSR,Vol.20,No.4,Dec.1976.
    [155].戴仰山,沈进威,宋竞正.船舶波浪载荷.北京:国防工业出版社,2007.114-157.
    [156].尚晓红,苏建宁等.ANSYS/LS-DYNA动力分析方法工程实例.北京:中国水利水电出版社,2006.
    [157].Bereznitski A.Slamming:The role of hydroelasticity[J].Int.Ship build Progr,2001,48(4):333-351.
    [158].Li W P,Liu G R,Chan E S.Elasticity effectson the water impact of an elastic flat-bottom box[J].Journal of Hydrodynamics 2002,Ser.B2:64-70.
    [159].Ivan Stenius.Finite element modeling of hydroelasticity in hull-water impacts[Master pare].Sweden:KTH Engineering Sciences,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700