干预供肝CIITA与MyD88基因表达抑制大鼠肝移植排斥反应的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分纳米载体HGPAEs的制备及检测
     目的:制备纳米载体组氮酸接枝聚(β-氨基酯)(HGPAEs)并观察其体内应用的安全性与有效性。方法:制备纳米载体组氨酸接枝聚(β-氨基酯)(HGPAEs),并对其进行性能测试;设置生理盐水组、纳米载体组和纳米载体质粒组,经门静脉注射体内转染大鼠肝脏,采取转染后第一天和第三天肝脏标本和静脉血,应用全波长酶标仪检测方法评价体内肝脏转染效果,并检测大鼠肝肾功能变化。结果:成功制备了纳米载体组氨酸接枝聚(β-氨基酯)(HGPAEs),经验证其具有作为基因载体的必备条件;第一天和第三天纳米载体质粒组的增强型绿荧光蛋白荧光强度均显著强于生理盐水对照组和纳米载体组(P<0.01),纳米载体质粒组第三天荧光强度强于第一天(P<0.01);转染术后第一天,与正常值比较,各组ALT、AST均显著升高(P<0.01),但各组间比较无明显差异(P>0.05),转染术后第三天,各组生化指标均趋于正常。结论:纳米载体组氨酸接枝聚(β-氨基酯)制备简便,是一种安全高效的基因载体;以纳米载体为介导经门静脉注射的方法可使shRNA质粒在体内肝脏获得高效转染。
     第二部分纳米载体介导沉默基因CⅡTA和MyD88表达的体内研究
     目的:观察RNA干扰对免疫识别相关基因CⅡTA、MHC-Ⅱ和MyD88表达的抑制效果。方法:设置生理盐水对照组、纳米载体组、纳米载体pHK-shRNA组和纳米载体pC Ⅱ TA-shRNA组、纳米载体pMyD88-shRNA组、纳米载体pCⅡTA-pMyD88-shRNA组三个干预组,通过门静脉注射方法体内转染大鼠肝脏,转染后第三天取肝脏,以荧光定量PCR(?)western blot分别检测肝脏转染后CⅡTA、MHC-Ⅱ和MyD88基因mRNA和蛋白水平的表达变化。结果:荧光实时定量PCR和western blot检测显示纳米载体pC Ⅱ TA-shRNA组和纳米载体pCⅡTA-pMyD88-shRNA组CⅡTA和MHC Ⅱ基因mRNA和蛋白表达均较生理盐水组、纳米载体组和纳米载体pHK-shRNA组显著降低(P<0.01);纳米载体pMyD88-shRNA组和纳米载体pC Ⅱ TA-pMyD88-shRNA组MyD88基因]mnRNA和蛋白表达较生理盐水组、纳米载体组和纳米载体pHK-shRNA组也有显著降低(P<0.01);而纳米载体组、纳米载体pHK-shRNA组与生理盐水组之间CⅡTA、MHCⅡ和MyD88基因无论mRNA还是蛋白表达均无显著性差异(P>0.05)。结论:以纳米载体(HGPAEs)为介导经门静脉注射的方法,应用针对CⅡTA和MyD88的shRNA质粒转染大鼠肝脏,可显著抑制肝脏CⅡTA、MHC-Ⅱ和MyD88基因表达。
     第三部分干预供体移植物抑制大鼠肝移植排斥反应的研究
     目的:观察抑制供体肝脏CⅡTA和MyD88基因的表达对高应答大鼠原位肝移植模型移植排斥反应的影响,探讨其抗排斥机制。方法:建立高应答大鼠原位肝移植模型;设置生理盐水组、纳米载体组、pHK-shRNA纳米载体组、纳米载体pC Ⅱ TA-shRNA组、纳米载体pMyD88-shRNA组和纳米载体pCⅡTA-pMyD88-shRNA组,各组采用经门静脉注射的方法干预供体大鼠肝脏,干预后3天取肝脏进行肝移植,每组各12只大鼠,于移植术后第5天随机选取6只大鼠取静脉血和移植肝脏,病理切片确定排斥反应分级,分别采用荧光定量PCR和western blot检测肝中CⅡTA、MHC-Ⅱ和MyD88基因在mRNA和蛋白水平的表达变化,流式细胞术检测血中CD4/CD8细胞比例,ELISA去检测血清IL-2和IFN-γ浓度,并检测肝功能,其余6只用于观察存活期。结果:稳定建立高应答大鼠原位肝移植模型;与生理盐水组、纳米载体组和纳米载体pHK-shRNA组.相比,纳米载体pCⅡTA-shRNA组、纳米载体pMyD88-shRNA组和纳米载体pC Ⅱ TA-pMyD88-shRNA组大鼠存活时间明显延长(中位生存期16天、14天和21天vs10天、9天和8天,P<0.01),排斥反应病理分级明显降低(PPart I The preparation and test of nanometer vector HGPAEs
     Objective:To prepare the nanometer vector HGPAEs and observe its safety and efficiency in vivo. Methods:The nanometer vector HGPAEs was prepared and tested. Normal saline group, nanometer group and nanometer vector pHK-shRNA control group were established for comparison and direct portal vein injection was performed to transfect liver. Liver specimens and blood were taken on the first day and the third day after transfection. Spectrofluorometer was used to detect the green fluorescent protein (EGFP) intensity and biochemical indicators like ALT, AST, TBIL. Crea and Urea were also detected. Results:The nanometer vector HGPAEs was successfully prepared and it was proved to be a nice vector for gene transfection. The EGFP intensity in liver of nanometer vector pHK-shRNA control group was significantly higher than normal saline group and nanometer vector control group both on the two experimental time points (P<0.01),and it showed that the intensity on the third day was higher than that on the first day in the plasmid group(P<0.01). Compared with normal value, the ALT and AST of all the three groups significantly increased on the first day after transfection (P<0.01). while there were no significant difference among the three groups themselves (P>0.05), and all those biochemical indicators became normal on the third day after transfection (P>0.05). Conclusions.-The nanometer vector HGPAEs was easy to be prepared and it was a promising gene transfer vector because it was effective and safe. Highly efficient liver transfection can be achieved through direct portal vein injection of the nanometer vector and plasmid DNA.
     Part Ⅱ In vivo study of inhibiting genes CⅡTA and MyD88with the help of nanometer vector
     Objective:To observe the inhibition effects of RNAi on immune recognition genes CIITA, MHC-Ⅱand MyD88. Methods:Totally6groups, including normal saline control group, nanometer vector control group, nanometer vector pHK-shRNA control group and nanometer vector pC Ⅱ TA-shRNA group, nanometer vector pMyD88-shRNA group and nanometer vector pC Ⅱ TA-pMyD88-shRNA group, received liver transfection through portal vein injection. Real time PCR and western blot were performed to detect the expression of C ⅡTA, MHC-Ⅱ and MyD88in liver3days after transfection. Results:Realtime PCR and western blot showed that, compared with normal saline control group, nanometer vector control group and nanometer vector pHK-shRNA control group, the expression of C Ⅱ TA and MHC-Ⅱ were obviously inhibited both in nanometer vector pC Ⅱ TA-shRNA group and nanometer vector pC Ⅱ TA-pMyD88-shRNA group(P<0.01), and the expression of MyD88was also significantly inhibited in both nanometer vector pMyD88-shRNA group and nanometer vector pCⅡTA-pMyD88-shRNA group(P<0.01), while there was no obvious expression difference of C Ⅱ TA, MHC-Ⅱ and MyD88among the three control groups (P>0.05)). Conclusions:Highly efficient liver transfection can be achieved through direct portal vein injection of the nanometer vector and plasmid DNA. The expression of C Ⅱ TA, MHC-Ⅱ and MyD88in rat liver can be obviously inhibited by plasmids containing shRNAs targeting C Ⅱ TA and MyD88.
     Part Ⅲ The study of reducing transplantation rejection of rat liver by interferencing donor liver
     Objective:To observe the effect of inhibiting the expression of CⅡ TA and MyD88of graft on transplantation rejection in high responder model of rat orthotopic liver transplantation and investigate its anti-rejection mechanism. Methods:The high responder model of rat orthotopic liver transplantation was established. There were7groups:normal saline control group, nanometer vector control group, nanometer vector pHK-shRNA control group, nanometer vector pC Ⅱ TA-shRNA group, nanometer vector pMyD88-shRNA group, nanometer vector pC Ⅱ TA-pMyD88-shRNA group and CsA treating group. The donors in the first6groups received portal vein injection of normal saline or nanometer vector or nanometer vector and shRNA plasmid3days before transplantation.6recipients in each group were randomly chosen and sacrificed for their liver and blood as specimen5days after transplantation and the remaining6recipients were monitored for survival. The data of pathological rejection grading were collected by pathological examination, real-time PCR and western blot were used to test the mRNA and protein expression of CⅡTA, MHC-Ⅱ and MyD88in graft respectively, Flow Cytometry was used to test the ratio of CD4/CD8in blood, ELISA was used to observe the concentration of IL-2and IFN-y in serum, and liver function was also detected. Results:The high responder model of rat orthotopic liver transplantation was stably established. Compared to normal saline control group, nanometer vector control group and nanometer pHK-shRNA control group, the survival time of nanometer vector pC Ⅱ TA-shRNA group, nanometer vector pMyD88-shRNA group and nanometer vector pC Ⅱ TA-pMyD88-shRNA group extended significantly (median survival time16days,14days and21days vs1Odays,9days and8days, P<0.01), pathological rejection grading significantly depressed(P<0.01), the expressions of CⅡTA, MHC-Ⅱ and MyD88decreased significantly both on mRNA and protein level(P<0.01), the ratio of CD4/CD8in blood decreased obviously, the concentration of IL-2and IFN-γ in serum as well as liver function decreased significantly(P<0.01). Conclusion:High responder model of rat orthotopic liver transplantation is an ideal animal modelfor the study of liver transplantation rejection. Acute rejection reaction can be significantly relieved and survival time is extended by pretreatment of graft with portal vein injection of nanometer and shRNA plasmid targeting C Ⅱ TA and MyD88genes, which shows new way for both transplantation rejection research and clinical therapy.
引文
[1]Ting J P, Trowsdale J, Genetic Control of Mhc Class Ii Expression, Cell,2002, 109 Suppl:S21-33.
    [2]Reith W, Boss J M, New Dimensions of Ciita, Nat Immunol,2008,9 (7):713-4.
    [3]Krawczyk M, Seguin-Estevez Q, Leimgruber Eet al., Identification of Ciita Regulated Genetic Module Dedicated for Antigen Presentation, PLoS Genet,2008,4 (4):e1000058.
    [4]刘刚,何向辉,赵娜等,质粒介导的Rnai技术对大鼠CⅱTa和Mhcⅱ基因表达抑制的检测,中华微生物学和免疫学杂志,2009, (4):375-9
    [5]刘刚,逯宁,朱理玮,Mhc-ⅱ类分子反式激活因子基因沉默对大鼠肝移植急性排斥反应的抑制作用,中华实验外科杂志,2009,(9):1147-9
    [6]Goldstein D R, Tesar B M, Akira Set al., Critical Role of the Toll-Like Receptor Signal Adaptor Protein Myd88 in Acute Allograft Rejection, J Clin Invest,2003,111 (10):1571-8.
    [7]Tesar B M, Zhang J, Li Qet al., Th1 Immune Responses to Fully Mhc Mismatched Allografts are Diminished in the Absence of Myd88, a Toll-Like Receptor Signal Adaptor Protein, Am J Transplant,2004,4 (9):1429-39.
    [8]Walker W E, Nasr I W, Camirand Get al., Absence of Innate Myd88 Signaling Promotes Inducible Allograft Acceptance, J Immunol,2006,177 (8):5307-16.
    [9]Mccaffrey A P, Meuse L, Pham T Tet al., Rna Interference in Adult Mice, Nature,2002,418 (6893):38-9.
    [10]Weber W, Fussenegger M, Pharmacologic Transgene Control Systems for Gene Therapy, J Gene Med,2006,8 (5):535-56.
    [11]张垲,余冰菲,陈瑞川等,荧光定量检测细胞绿色荧光蛋白技术的建立与应用,厦门大学学报:自然科学版,2008,47(A02):264-7
    [12]Rauschhuber C, Mueck-Haeusl M, Zhang Wet al., Rnai Suppressor P19 Can be Broadly Exploited for Enhanced Adenovirus Replication and Microrna Knockdown Experiments, Sci Rep,2013,3:1363.
    [13]Ogasawara A, Simizu S, Ito Aet al., Inhibition of No-Induced Beta-Cell Death by Novel Nf-Kappab Inhibitor (-)-Dhmeq Via Activation of Nrf2-are Pathway, Biochem Biophys Res Commun,2013,433 (2):181-7.
    [14]Chen W. Zhang H, Wang Jet al.. Lentiviral-Mediated Gene Silencing of Notch-4 Inhibits in Vitro Proliferation and Perineural Invasion of Acc-M Cells, Oncol Rep.2013,29(5):1797-804.
    [15]Fisher K H, Brown S, Zeidler M P, Designing Rnai Screens to Identify Jak/Stat Pathway Components, Methods Mol Biol,2013,967:81-97.
    [16]Cristiano R J, Targeted, Non-Viral Gene Delivery for Cancer Gene Therapy, Front Biosci,1998,3:Dl 161-70.
    [17]Weber W, Fussenegger M, Pharmacologic Transgene Control Systems for Gene Therapy, J Gene Med,2006,8 (5):535-56.
    [18]Xu C, Sui M, Tang Jet al.,高分了科学(英文版),2011,29(3):274-87.
    [19]Nakanishi H, Higuchi Y, Kawakami Set al., [Development and Therapeutic Application of Transposon-Based Vectors], Yakugaku Zasshi,2009,129 (12): 1433-43.
    [20]汤谷平,陆晓,非病毒基因载体的研究进展,浙江大学学报(医学版),2009,38(1):1-6
    [21]张建华,高秉仁,令斌等,纳米基因载体的研究进展,微创医学,2007,2(2):125-7
    [22]Shim M S, Kwon Y J, Stimuli-Responsive Polymers and Nanomaterials for Gene Delivery and Imaging Applications, Adv Drug Deliv Rev,2012,64 (11): 1046-59.
    [23]Lynn D M, Anderson D G, Putnam Det al.. Accelerated Discovery of Synthetic Transfection Vectors:Parallel Synthesis and Screening of a Degradable Polymer Library, J Am Chem Soc,2001,123 (33):8155-6.
    [24]Akinc A, Anderson D G, Lynn D Met al., Synthesis of Poly(Beta-Amino Ester)S Optimized for Highly Effective Gene Delivery, Bioconjug Chem,2003,14 (5):979-88.
    [25]Anderson D G, Akinc A, Hossain Net al., Structure/Property Studies of Polymeric Gene Delivery Using a Library of Poly(Beta-Amino Esters), Mol Ther, 2005,11 (3):426-34.
    [26]Akinc A, Langer R. Measuring the Ph Environment of Dna Delivered Using Nonviral Vectors:Implications for Lysosomal Trafficking, Biotechnol Bioeng,2002, 78 (5):503-8.
    [27]Benns J M, Choi J S. Mahato R let al., Ph-Sensitive Cationic Polymer Gene Delivery Vehicle:N-Ac-Poly(L-Histidine)-Graft-Poly(L-Lysine) Comb Shaped Polymer. Bioconjug Chem,2000.11 (5):637-45.
    [28]Kim T H, Ihm J E, Choi Y Jet al., Efficient Gene Delivery by Urocanic Acid-Modified Chitosan, J Control Release,2003,93 (3):389-402.
    [29]Liu F, Song Y, Liu D, Hydrodynamics-Based Transfection in Animals by Systemic Administration of Plasmid Dna, Gene Ther,1999,6 (7):1258-66.
    [30]刘亮明,罗杰,张吉翔等,裸质粒流体力学注射法-基因治疗研究的利器,世界华人消化杂志,2006,14(28):2780-4
    [31]Andrianaivo F. Lecocq M. Wattiaux-De C Set al., Hydrodynamics-Based Transfection of the Liver:Entrance Into Hepatocytes of Dna that Causes Expression Takes Place Very Early After Injection. J Gene Med,2004,6 (8):877-83.
    [32]Kobayashi N, Nishikawa M, Hirata Ket al.. Hydrodynamics-Based Procedure Involves Transient Hyperpermeability in the Hepatic Cellular Membrane:Implication of a Nonspecific Process in Efficient Intracellular Gene Delivery, J Gene Med,2004, 6 (5):584-92.
    [33]Kobayashi N, Hirata K. Chen Set al.. Hepatic Delivery of Particulates in the Submicron Range by a Hydrodynamics-Based Procedure:Implications for Pariculate Gene Delivery Systems, J Gene Med,2004,6 (4):455-63.
    [34]Kobayashi N, Nishikawa M, Takakura Y, The Hydrodynamics-Based Procedure for Controlling the Pharmacokinetics of Gene Medicines at Whole Body, Organ and Cellular Levels, Adv Drug Deliv Rev,2005,57 (5):713-31.
    [35]陈锋,何生松,吴梅梅等,不同转染方式对Gfp表达质粒在小鼠肝脏的表达影响,山东大学学报:医学版,2010,(1):17-20
    [36]Maruyama H, Higuchi N, Nishikawa Yet al., High-Level Expression of Naked Dna Delivered to Rat Liver Via Tail Vein Injection, J Gene Med,2002,4 (3):333-41.
    [37]Tsuyama Y, Kitajima M, Miyano-Kurosaki Net al., Anti-Tumor Effects of Naked Plasmid Dna Using a Hydrodynamics-Based Procedure, Nucleic Acids Symp Ser (Oxf),2004, (48):239-40.
    [38]Budker V, Budker T, Zhang Get al., Hypothesis:Naked Plasmid Dna is Taken Up by Cells in Vivo by a Receptor-Mediated Process, J Gene Med,2000,2 (2): 76-88.
    [39]Shashidharamurthy R, Machiah D, Bozeman E Net al., Hydrodynamic Delivery of Plasmid Dna Encoding Human Fcgammar-Ig Dimers Blocks Immune-Complex Mediated Inflammation in Mice, Gene Ther,2012,19 (9):877-85.
    [40]Yang P L, Althage A, Chung Jet al., Hydrodynamic Injection of Viral Dna:A Mouse Model of Acute Hepatitis B Virus Infection, Proc Natl Acad Sci U S A,2002, 99(21):13825-30.
    [41]Herrero M J, Monleon D, Morales J Met al., Analysis of Metabolic and Gene Expression Changes After Hydrodynamic Dna Injection Into Mouse Liver, Biol Pharm Bull,2011,34 (1):167-72.
    [42]Kobayashi N, Kuramoto T, Yamaoka Ket al., Hepatic Uptake and Gene Expression Mechanisms Following Intravenous Administration of Plasmid Dna by Conventional and Hydrodynamics-Based Procedures, J Pharmacol Exp Ther,2001, 297 (3):853-60.
    [43]Fukuyama N, Tanaka E, Tabata Yet al., Intravenous Injection of Phagocytes Transfected Ex Vivo with Fgf4 Dna/Biodegradable Gelatin Complex Promotes Angiogenesis in a Rat Myocardial Ischemia/Reperfusion Injury Model, Basic Res Cardiol,2007,102 (3):209-16.
    [44]Lecocq M, Andrianaivo F, Warnier M Tet al., Uptake by Mouse Liver and Intracellular Fate of Plasmid Dna After a Rapid Tail Vein Injection of a Small Or a Large Volume, J Gene Med,2003,5 (2):142-56.
    [45]Ishida T, Li W, Liu Zet al., Stimulatory Effect of Polyethylene Glycol (Peg) On Gene Expression in Mouse Liver Following Hydrodynamics-Based Transfection, J Gene Med,2006,8 (3):324-34.
    [46]Suzuki T, Kawamoto M, Murai Aet al., Identification of the Regulatory Region of the L-Type Pyruvate Kinase Gene in Mouse Liver by Hydrodynamics-Based Gene Transfection, J Nutr,2006,136 (1):16-20.
    [47]He X W, Yu X, Liu Tet al., Vector-Based Rna Interference Against Vascular Endothelial Growth Factor-C Inhibits Tumor Lymphangiogenesis and Growth of Colorectal Cancer in Vivo in Mice, Chin Med J (Engl),2008,121 (5):439-44.
    [48]Li X, Liu S, Wang Det al., Adenoviral Delivered Egfp-Intron Splicing System for Multiple Gene Rnai, Biotechnol Lett,2011,33 (9):1723-8.
    [49]Chen D, Zhang R, Shen Wet al., Rps 12-Specific Shrna Inhibits the Proliferation, Migration of Bgc823 Gastric Cancer Cells with S100a4 as a Downstream Effector, Int J Oncol,2013,42 (5):1763-9.
    [50]Zhang G, Budker V, Williams Pet al., Surgical Procedures for Intravascular Delivery of Plasmid Dna to Organs, Methods Enzymol,2002,346:125-33.
    [51]Cui F D, Kishida T, Ohashi Set al., Highly Efficient Gene Transfer Into Murine Liver Achieved by Intravenous Administration of Naked Epstein-Barr Virus (Ebv)-Based Plasmid Vectors, Gene Ther,2001,8 (19):1508-13.
    [52]Kanemura H, Iimuro Y, Takeuchi Met al., Hepatocyte Growth Factor Gene Transfer with Naked Plasmid Dna Ameliorates Dimethylnitrosamine-Induced Liver Fibrosis in Rats, Hepatol Res,2008,38 (9):930-9.
    [53]Yoshino H, Hashizume K, Kobayashi E, Naked Plasmid Dna Transfer to the Porcine Liver Using Rapid Injection with Large Volume, Gene Ther,2006,13 (24): 1696-702.
    [54]Miao C H, Ohashi K, Patijn G Aet al., Inclusion of the Hepatic Locus Control Region, an Intron, and Untranslated Region Increases and Stabilizes Hepatic Factor Ix Gene Expression in Vivo but Not in Vitro, Mol Ther,2000,1 (6):522-32.
    [55]Croyle M A, Le HT, Linse K Det al., Pegylated Helper-Dependent Adenoviral Vectors:Highly Efficient Vectors with an Enhanced Safety Profile, Gene Ther,2005, 12 (7):579-87.
    [56]Krieg A M, Now I Know My Cpgs, Trends Microbiol,2001,9 (6):249-52.
    [57]Krieg A M, Davis H L, Enhancing Vaccines with Immune Stimulatory Cpg Dna, Curr Opin Mol Ther,2001,3 (1):15-24.
    [58]纪冬,辛绍杰,实时荧光定量Pcr的发展和数据分析,生物技术通讯,2009,20(4):598-600
    [59]Livak K J, Schmittgen T D, Analysis of Relative Gene Expression Data Using Real-Time Quantitative Pcr and the 2(-Delta Delta C(T)) Method, Methods,2001,25 (4):402-8.
    [60]Bustin S A, Quantification of Mrna Using Real-Time Reverse Transcription Pcr (Rt-Pcr):Trends and Problems, J Mol Endocrinol,2002.29 (1):23-39.
    [61]Crockett A O, Wittwer C T. Fluorescein-Labeled Oligonucleotides for Real-Time Per:Using the Inherent Quenching of Deoxyguanosine Nucleotides, Anal Biochem,2001,290 (1):89-97.
    [62]Fang X, Li J J, Perlette Jet al., Molecular Beacons:Novel Fluorescent Probes. Anal Chem,2000,72 (23):747A-753A.
    [63]Drozina G, Kohoutek J, Jabrane-Ferrat Net al., Expression of Mhc Ii Genes, Curr Top Microbiol Immunol,2005,290:147-70.
    [64]Raval A, Weissman J D, Howcroft T Ket al., The Gtp-Binding Domain of Class Ii Transactivator Regulates its Nuclear Export, J Immunol,2003,170 (2):922-30.
    [65]Tooze R M, Stephenson S, Doody G M, Repression of Ifn-Gamma Induction of Class Ii Transactivator:A Role for Prdm1/Blimp-1 in Regulation of Cytokine Signaling, J Immunol,2006,177 (7):4584-93.
    [66]Hegde N R, Chevalier M S, Johnson D C, Viral Inhibition of Mhc Class Ii Antigen Presentation, Trends Immunol,2003,24 (5):278-85.
    [67]Morris A C, Beresford G W, Mooney M Ret al.. Kinetics of a Gamma Interferon Response:Expression and Assembly of Ciita Promoter Iv and Inhibition by Methylation, Mol Cell Biol,2002,22 (13):4781-91.
    [68]Harton J A, Ting J P, Class Ii Transactivator:Mastering the Art of Major Histocompatibility Complex Expression, Mol Cell Biol,2000,20 (17):6185-94.
    [69]Piskurich J F, Gilbert C A, Ashley B Det al., Expression of the Mhc Class Ii Transactivator (Ciita) Type Iv Promoter in B Lymphocytes and Regulation by Ifn-Gamma, Mol Immunol,2006,43 (6):519-28.
    [70]Kim T W, Choi Y M, Seo J Net al., Delayed Allograft Rejection by the Suppression of Class Ii Transactivator, Exp Mol Med,2006,38 (3):210-6.
    [71]Reith W, Leibundgut-Landmann S, Waldburger J M, Regulation of Mhc Class Ii Gene Expression by the Class Ii Transactivator, Nat Rev Immunol,2005,5 (10): 793-806.
    [72]Kowalczyk E, Siednienko J, Matuszyk J, Regulation of Toll-Like Receptors-Dependent Inflammatory Response, Postepy Hig Med Dosw (Online), 2013,67(0):201-13.
    [73]Royet J, Infectious Non-Self Recognition in Invertebrates:Lessons From Drosophila and Other Insect Models, Mol Immunol,2004,41 (11):1063-75.
    [74]Tang D, Gao Y, Wang Ret al., Characterization, Genomic Organization, and Expression Profiles of Myd88, a Key Adaptor Molecule in the Tlr Signaling Pathways in Miiuy Croaker (Miichthys Miiuy), Fish Physiol Biochem,2012,38 (6): 1667-77.
    [75]Hayashi F, Smith K D, Ozinsky Aet al., The Innate Immune Response to Bacterial Flagellin is Mediated by Toll-Like Receptor 5, Nature,2001,410 (6832): 1099-103.
    [76]Sandor F, Buc M, Toll-Like Receptors. Ii. Distribution and Pathways Involved in Tlr Signalling, Folia Biol (Praha),2005,51 (6):188-97.
    [77]Tanaka T, Legat A, Adam Eet al., Dic14-Amidine Cationic Liposomes Stimulate Myeloid Dendritic Cells through Toll-Like Receptor 4, Eur J Immunol, 2008,38(5):1351-7.
    [78]Warner N, Nunez G, Myd88:A Critical Adaptor Protein in Innate Immunity Signal Transduction, J Immunol,2013,190 (1):3-4.
    [79]Ropert C, Franklin B S, Gazzinelli R T, Role of Tlrs/Myd88 in Host Resistance and Pathogenesis During Protozoan Infection:Lessons From Malaria, Semin Immunopathol,2008,30 (1):41-51.
    [80]Kamada N, Calne R Y, Orthotopic Liver Transplantation in the Rat. Technique Using Cuff for Portal Vein Anastomosis and Biliary Drainage, Transplantation,1979, 28 (1):47-50.
    [81]Engemann R, Ulrichs K, Thiede Aet al., Value of a Physiological Liver Transplant Model in Rats. Induction of Specific Graft Tolerance in a Fully Allogeneic Strain Combination, Transplantation,1982,33 (5):566-8.
    [82]Lee S, Charters A C, Chandler J Get al., A Technique for Orthotopic Liver Transplantation in the Rat, Transplantation,1973,16 (6):664-9.
    [83]Chan F K, Zhang Y, Shaffer E A, Bile Secretory Function of the Arterialized Versus Nonarterialized Rat Liver Allograft, Transplantation,1996,62 (11):1657-63.
    [84]Reck T, Steinbauer F, Steinbauer Met al., Impact of Arterialization On Hepatic Oxygen Supply, Tissue Energy Phosphates, and Outcome After Liver Transplantation in the Rat, Transplantation,1996,62 (5):582-7.
    [85]Kamada N, Calne R Y, A Surgical Experience with Five Hundred Thirty Liver Transplants in the Rat, Surgery,1983,93 (1 Pt 1):64-9.
    [86]田伟军,梁晓宇,朱理玮等,动脉化双袖套法大鼠原位肝移植模型制作天津医科大学学报,2006,12(2):174-7
    [87]Miyata M, [Orthotopic Liver Transplantation in the Rat Using Cuff Techniques for Anastomoses of Three Hepatic Vessels], Nihon Geka Gakkai Zasshi,1983,84 (10):1051-60.
    [88]姜明山,韩德恩,不同品系大鼠之间原位肝移植的实验观察,中华实验外科杂志,2004,21(4):428-9
    [89]Kamada N, The Immunology of Experimental Liver Transplantation in the Rat, Immunology,1985,55 (3):369-89.
    [90]李铸,李立,冉江华等,Da至Lewis大鼠肝移植急性排斥反应模型的建立:技术改良分析,中国组织工程研究与临床康复,2011,15(7):1179-85
    [91]林彦,唐小玲,王洪等,近交系Da大鼠遗传学质量,中国比较医学杂志,2009,19(5):59-61,封3
    [92]浦立勇,姚爱华,吕凌等,Da与Lewis大鼠品系组合建立大鼠肝移植排斥与耐受模型,中华肝胆外科杂志,2008,14(6):407-10
    [93]王海霞,李永明,郭守利,Da大鼠的繁殖性能及部分生物学特性参数的测定,中国比较医学杂志,2007,17(12):710-3
    [94]苏树炎,霍枫,大鼠自体肝移植中三种不同肝脏灌注方法的比较,肝胆胰外科杂志,2008,20(4):248-50,253
    [95]陈旭明,李立,王谦等,对Da-Lewis大鼠肝移植模型建立的探讨,广东医学,2010,31(1):47-9
    [96]夏仁品,卢实春,赖威等,针对Ox40小于扰Rna供体转染抗大鼠肝移植排斥反应,中华实验外科杂志,2008,25(7):860-2
    [97]Qin L, Guan H G, Zhou X Jet al., Blockade of 4-1Bb/4-1Bb Ligand Interactions Prevents Acute Rejection in Rat Liver Transplantation, Chin Med J (Engl),2010,123 (2):212-5.
    [98]Xie J, Wang Y, Bao Jet al., Immune Tolerance Induced by Relb Short-Hairpin Rna Interference Dendritic Cells in Liver Transplantation, J Surg Res,2013,180 (1): 169-75.
    [99]Goodman E, Fiedor P, Fein Set al., Low-Dose Ultraviolet B Pretreatment of Human Islets Reduces Graft Immunogenicity through the Induction of Antigen-Presenting Cell Apoptosis without Adversely Affecting Insulin Secretion, Transplant Proc,1995,27 (1):1347-8.
    [100]Lechler R, Ng W F, Steinman R M, Dendritic Cells in Transplantation-Friend Or Foe? Immunity,2001,14 (4):357-68.
    [101]Ierino F L, Mulley W, Dodge Net al., Dendritic Cells Expressing Soluble Ctla4Ig Prolong Antigen-Specific Skin Graft Survival, Immunol Cell Biol,2010,88 (8):846-50.
    [102]王健东,杜隽铭,李济宇等,Ho-1诱导剂体外灌注对大鼠移植肝脏保护作用的研究,器官移植,2010,1(2):103-6,111
    [103]Amersi F, Buelow R, Kato Het al., Upregulation of Heme Oxygenase-1 Protects Genetically Fat Zucker Rat Livers From Ischemia/Reperfusion Injury, J Clin Invest, 1999,104(11):1631-9.
    [104]Kotsch K, Ulrich F, Reutzel-Selke Aet al., Methylprednisolone Therapy in Deceased Donors Reduces Inflammation in the Donor Liver and Improves Outcome After Liver Transplantation:A Prospective Randomized Controlled Trial, Ann Surg, 2008,248(6):1042-50.
    [105]Neuberger J, Adams D H, What is the Significance of Acute Liver Allograft Rejection? J Hepatol,1998,29 (1):143-50.
    [106]Mazariegos G V, Reyes J, Marino let al., Risks and Benefits of Weaning Immunosuppression in Liver Transplant Recipients:Long-Term Follow-Up, Transplant Proc,1997,29 (1-2):1174-7.
    [1]Shirwan H, Barwari L, Khan N S, Predominant Expression of T Helper 2 Cytokines and Altered Expression of T Helper 1 Cytokines in Long-Term Allograft Survival Induced by Intrathymic Immune Modulation with Donor Class I Major Histocompatibility Complex Peptides, Transplantation,1998,66 (12):1802-9.
    [2]Chen Y, Chen J, Liu Zet al., Relationship Between Thl/Th2 Cytokines and Immune Tolerance in Liver Transplantation in Rats, Transplant Proc,2008,40 (8): 2691-5.
    [3]Lin S Z, Chen K J, Tong H Fet al., Emodin Attenuates Acute Rejection of Liver Allografts by Inhibiting Hepatocellular Apoptosis and Modulating the Thl/Th2 Balance in Rats, Clin Exp Pharmacol Physiol,2010,37 (8):790-4.
    [4]Tong H, Chen K, Chen Het al., Emodin Prolongs Recipient Survival Time After Orthotopic Liver Transplantation in Rats by Polarizing the Thl/Th2 Paradigm to Th2, Anat Rec (Hoboken),2011,294 (3):445-52.
    [5]Xie X, Ye Y, Zhou Let al., Kupffer Cells Promote Acute Rejection Via Induction of Th17 Differentiation in Rat Liver Allografts, Transplant Proc,2010,42 (9): 3784-92.
    [6]Xie X J, Ye Y F, Zhou Let al., Th17 Promotes Acute Rejection Following Liver Transplantation in Rats, J Zhejiang Univ Sci B,2010,11 (11):819-27.
    [7]Fabrega E, Lopez-Hoyos M, San S Det al., Changes in the Serum Levels of Interleukin-17/Interleukin-23 During Acute Rejection in Liver Transplantation, Liver Transpl,2009,15 (6):629-33.
    [8]Colvin R B, Hirohashi T, Farris A Bet al., Emerging Role of B Cells in Chronic Allograft Dysfunction, Kidney Int Suppl,2010, (119):S13-7.
    [9]Stegall M D, Raghavaiah S, Gloor J M, The (Re)Emergence of B Cells in Organ Transplantation, Curr Opin Organ Transplant,2010,15 (4):451-5.
    [10]Redfield R R, Rodriguez E, Parsons Ret al., Essential Role for B Cells in Transplantation Tolerance, Curr Opin Immunol,2011,23 (5):685-91.
    [11]Mosquera R J, Vazquez M E, Diagnostic Criteria of Antibody-Mediated Rejection in Kidney Transplants, Nefrologia,2011,31 (4):382-91.
    [12]Sakashita H, Haga H, Ashihara Eet al., Significance of C4D Staining in Abo-Identical/Compatible Liver Transplantation, Mod Pathol,2007,20 (6):676-84.
    [13]Wan R, Ying W, Zeng Let al.. Antibody-Mediated Response in Rat Liver Chronic Rejection, Transplant Proc,2011,43 (5):1976-9.
    [14]Ali S, Ormsby A, Shah Vet al., Significance of Complement Split Product C4D in Abo-Compatible Liver Allograft:Diagnosing Utility in Acute Antibody Mediated Rejection, Transpl Immunol,2012,26 (1):62-9.
    [15]Tapirdamaz O, Pravica V, Metselaar H Jet al., Polymorphisms in the T Cell Regulatory Gene Cytotoxic T Lymphocyte Antigen 4 Influence the Rate of Acute Rejection After Liver Transplantation, Gut,2006,55 (6):863-8.
    [16]Demirkiran A, Kok A, Kwekkeboom Jet al., Low Circulating Regulatory T-Cell Levels After Acute Rejection in Liver Transplantation, Liver Transpl,2006,12 (2): 277-84.
    [17]He Q, Fan H, Li J Qet al., Decreased Circulating Cd4+Cd25Highfoxp3+T Cells During Acute Rejection in Liver Transplant Patients, Transplant Proc.2011.43 (5): 1696-700.
    [18]李立,张升宁,再江华等,受体来源未成熟树突状细胞诱导大鼠肝移植免疫低反应性的实验研究,中国普外基础与临床杂志,2009,16(1):32-8
    [19]Kiyomoto T, Ito T. Uchikoshi Fet al.. The Potent Role of Graft-Derived Nkr-Pl+Tcralphabeta+ T (Nkt) Cells in the Spontaneous Acceptance of Rat Liver Allografts, Transplantation,2005,80 (12):1749-55.
    [20]Toyofuku A, Yasunami Y, Nabeyama Ket al., Natural Killer T-Cells Participate in Rejection of Islet Allografts in the Liver of Mice, Diabetes,2006,55 (1):34-9.
    [21]Liu X C, Zhai A, Li J Qet al., Interleukin-23 Promotes Natural Killer T-Cell Production of I1-17 During Rat Liver Transplantation, Transplant Proc,2011,43 (5): 1962-6.
    [22]Shi M, Liu Z W, Wang F S, Immunomodulatory Properties and Therapeutic Application of Mesenchymal Stem Cells, Clin Exp Immunol,2011,164 (1):1-8.
    [23]任为国,施明,刘振文等,间充质干细胞免疫调节特性与临床应用的研究进展,细胞与分子免疫学杂志,2011,27(10):1151-3
    [24]Bartholomew A, Sturgeon C, Siatskas Met al., Mesenchymal Stem Cells Suppress Lymphocyte Proliferation in Vitro and Prolong Skin Graft Survival in Vivo, Exp Hematol,2002,30 (1):42-8.
    [25]Hong Z F, Huang X J, Yin Z Yet al., Immunosuppressive Function of Bone Marrow Mesenchymal Stem Cells On Acute Rejection of Liver Allografts in Rats, Transplant Proc,2009,41 (1):403-9.
    [26]Wan C D, Cheng R, Wang H Bet al., Immunomodulatory Effects of Mesenchymal Stem Cells Derived From Adipose Tissues in a Rat Orthotopic Liver Transplantation Model, Hepatobiliary Pancreat Dis Int,2008,7 (1):29-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700