IL-15基因治疗小鼠结肠癌的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物医学在近几十年来取得了长足的进步,但是,许多恶性肿瘤的治疗和预后仍然很不乐观。近年来基因治疗成为肿瘤治疗的重要组成部分,尤其是细胞因子相关研究,它们已经越来越受到重视。肿瘤基因治疗研究已经取得了很多成果,但是,包括基因治疗载体的安全性和有效性等很多问题,仍有待进一步研究。
     我们在以前的研究中成功构建了具有双启动子的IL-15基因表达质粒载体pHi2-IL15-CMV-tat (L1),并通过转信号肽获得可以高效表达IL-15基因的质粒载体pHi2-spIL15-CMV-tat (L3),并且成功构建了具有CEA特异性IL-15表达载体pHi2-IL15-CEA-tat (L2)、pHi2-spIL15-CEA-tat (L4)。
     本研究将上述构建的质粒载体和另外一种绿荧光蛋白表达载体pHi2-EGFP-CMV-tat(L6)通过电转导法,分别转染CEA阳性结肠癌细胞系SW480和CEA阴性乳腺癌细胞系MCF-7,采用倒置荧光显微镜通过细胞绿荧光表达水平评估细胞转染情况;流式细胞术(FCM)分析肿瘤细胞的转染效率;以及酶联免疫吸附法(ELISA)检测细胞转染后上清液中IL-15的浓度,分析IL-15基因表达情况。结果表明:利用pHi2-EGFP-CMV-tat(L6)电转染SW480细胞和MCF-7细胞,倒置荧光显微镜可以观察到绿荧光蛋白表达,流式细胞术分析肿瘤细胞的转染效率在10%-30%。质粒L1,L2,L3,L4转染细胞后,上清液中可见IL-15的表达;质粒pHi2-sp IL15-CMV-tat (L3)和pHi2-spIL15-CEA-tat (L4)的IL-15的表达水平高于pHi2-IL15-CMV-tat (L1)和pHi2-IL15-CEA-tat (L2),差异具有显著性(P<0.01);转染SW480细胞后, CEA启动子正调控的质粒L2、L4与相对应的CMV启动子正调控质粒L1、L3之间的IL-15表达水平未见显著性差异(P>0.05);转染MCF-7细胞后, L1与L2、L3与L4之间的IL-15表达水平可见显著性差异(P<0.05),质粒L1的IL-15的表达水平高于L2,L3的IL-15的表达水平高于L4。
     体内试验表明携带EGFP的质粒L6右下腹腔注射小鼠,48hr后置于体外活体成像仪中,可以看到腹膜上有明显的荧光。小鼠腹腔注射小鼠源结肠肿瘤细胞CT-26建立腹腔成瘤的荷瘤小鼠模型,定期注射L3、L4质粒观察其对荷瘤小鼠的腹水生成情况和生存期影响。结果发现注射质粒载体L3、L4的小鼠生存期高于单纯注射PBS和空载的对照组。
     以EGFP的表达质粒载体L6进行体内电转染实验,小鼠皮下注射CT-26细胞建立皮下成瘤模型,瘤内注射质粒后,予以电转染,体外活体成像示有荧光反应,然后取瘤体组织作冰冻切片,荧光显微镜观察。结果发现针道附近可见绿色荧光蛋白表达。进一步以高效表达的质粒载体L3进行治疗试验,结果表明质粒载体L3的小鼠瘤体生长速度明显慢于对照组。
     上述结果表明电转染方法能在体外和体内有效的将IL-15表达质粒导入肿瘤细胞,同时,腹腔注射质粒也能够使腹膜有效表达目的基因。腹腔注射IL-15表达质粒能在一定程度上抑制腹膜移植瘤的生成与发展。电转染IL-15表达质粒能抑制皮下移植的小鼠结肠癌的生长。本研究为IL-15为基础的肿瘤免疫基因治疗的临床应用提供了实验依据。
Although great progress has been made in the biomedical field in recent decades, the treatment and prognosis of malignant tumors is still far from optimistic. Gene therapy has become an important component of cancer treatment in recent years, especially the cytokine-based immunogene therapy. Many achievements have been made in gene therapy of cancer; however, problems still exist, such as the safety of gene transfer vector and the efficacy of transfection which need further improved. We had constructed the plasmid vector pHi2-IL15-CMV-tat (L1) with dual-promoter amplified expressing of human IL-15. The IL-15 signal sequence was replaced by IL-2 signal sequence, resulting plasmid pHi2-spIL15-CMV-tat (L3). The CEA promoter was cloned into plasmid L1、L3 and replaced CMV promoter to construct plasmid pHi2-IL15-CEA-tat (L2)、pHi2-spIL15-CEA-tat (L4). Current study will further evaluate these vectors in vitro and in vivo.
     Plasmid vectors expressing IL-15 or encoding enhanced green fluorescence protein (EGFP) were transfected by electroporation into SW480, a CEA-positive human colon cancer cell line, and MCF-7, a CEA-negative human breast cancer cell line. The transfection efficiency was determined by fluorescence microscope and flow cytometry. IL-15 expression was detected by ELISA. In in vivo study, plasmid L6 was injected into the peritoneum of BALB/c mice and transfected into the subcutaneously growing CT-26 tumor to evaluate the transfection efficacy by in vivo imaging techniques. BALB/c mice were inoculated with CT-26 cells by peritoneal injection, and the plasmid vectors L3, L4 were transfected by intraperitoneal injection after tumor inoculation. Empty plasmid and PBS were used as control. Weight change and life span of the mice were. In addition, the therapeutic effects of L3 were studied through electroporation to control the growth of subcutaneously inoculated CT-26 tumor.
     Results showed that green fluorescent protein (GFP) could be detected in the transfected cells 24 hours after transfection. The percentage of transfection was 10%-30%. The IL-15 expression in culture supernatant of L3 and L4 transfectant was significantly higher than that of L1 and L2 (P<0.05). In transfected SW480 cells, there is no significant deference for IL-15 expression between the CEA promoter positively controlled plasmids L2, L4 and the CMV promoter positively controlled plasmids L1, L3 respectively (P>0.05). In transfected MCF-7 cells, CEA promoter positively controlled plasmids L2, L4 gave rise to lower IL-15 expression than the CMV promoter positively controlled plasmids L1, L3, respectively (P<0.01). GFP expression was observed after intraperitoneal injection of plasmid L6 and electroporation into the subcutaneously inoculated CT-26 tumor. Comparing to the control group, and repeated injection of plasmid L3 (pHi2-spIL15-CMV-tat) and L4 (pHi2-spIL15-CEA-tat) DNA were able to inhibit tumor growth, and prolong the life of tumor-bearing mice. In addition, in vivo transfection of plasmid L3 through electroporation slowed the subcutaneously inoculated CT-26 growth.
     In conclusions, electroporation can efficiently transfer IL-15 expression plasmids into tumor cells in vitro and in vivo, in addition, intraperitoneal injection results in efficient transgene expression by epithelial cells in the peritoneum. IL-15 expression plasmid can decrease the growth of inoculated tumor cells after intrapertoneal injection. In addition, electroporation of IL-15 expression plasmid can inhibit the growth of subcutaneously inoculated mice CT-16 tumor. Therefore, this study provides evidence for the clinical application of IL-15 base gene therapy.
引文
[1]陈建国,项永兵,陈可欣.启东、上海、天津恶性肿瘤发病率趋势比较研究[J].中国肿瘤,2006,15(10):640-645.
    [2]Nabel G J, Chang A, Nabel E G. Immunotherapy of malignancy by in vivo gene transfer into tumors.[J]. Hum Gene Ther,1992,3(4):399-410.
    [3]Foa R, Cignetti A, Riera L, et al. Cytokine gene therapy in oncology.[J]. Folia Biol (Praha),1994,40(1-2):37-48.
    [4]Tagawa M. Cytokine therapy for cancer.[J]. Curr Pharm Des,2000,6(6):681-699.
    [5]杨亚利,邓洪新,魏于全.肿瘤免疫基因治疗进展[J].国外医学:生理病理科学与临床分册,2005,25(2):98-101.
    [6]高艳虹,李定国.基因治疗靶向方法的研究进展[J].中华内科杂志,2006,45(5):432-434.
    [7]Grabstein K H, Eisenman J, Shanebeck K, et al. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. [J]. Science,1994,264(5161):965-968.
    [8]Roychowdhury S, Jr May K F, Tzou K S, et al. Failed adoptive immunotherapy with tumor-specific T cells:reversal with low-dose interleukin 15 but not low-dose interleukin 2.[J]. Cancer Res,2004,64(21):8062-8067.
    [9]Meazza R, Lollini P L, Nanni P, et al. Gene transfer of a secretable form of IL-15 in murine adenocarcinoma cells:effects on tumorigenicity, metastatic potential and immune response.[J]. Int J Cancer,2000,87(4):574-581.
    [10]Araki A, Hazama S, Yoshimura K, et al. Tumor secreting high levels of IL-15 induces specific immunity to low immunogenic colon adenocarcinoma via CD8+T cells.[J]. Int J Mol Med,2004,14(4):571-576.
    [11]Teague R M, Sather B D, Sacks J A, et al. Interleukin-15 rescues tolerant CD8+T cells for use in adoptive immunotherapy of established tumors.[J]. Nat Med,2006,12(3):335-341.
    [12]孙安源,孙汭,田志刚.白细胞介素15与天然免疫[J].上海免疫学杂志,2001(02).
    [13]Kobayashi H, Dubois S, Sato N, et al. Role of trans-cellular IL-15 presentation in the activation of NK cell-mediated killing, which leads to enhanced tumor immunosurveillance.[J]. Blood,2005,105(2):721-727.
    [14]Luo P, He X, Tsang T C, et al. A novel inducible amplifier expression vector for high and controlled gene expression.[J]. Int J Mol Med.2004,13(2):319-325.
    [15]Bamford R N, Defilippis A P, Azimi N, et al. The 5'untranslated region, signal peptide, and the coding sequence of the carboxyl terminus of IL-15 participate in its multifaceted translational control.[J]. J Immunol,1998,160(9):4418-4426.
    [16]Morse M A, Nair S K, Mosca P J, et al. Immunotherapy with autologous, human dendritic cells transfected with carcinoembryonic antigen mRNA.[J]. Cancer Invest,2003,21(3):341-349.
    [17]Sagawa T, Takahashi M, Sato T, et al. Prolonged survival of mice with multiple liver metastases of human colon cancer by intravenous administration of replicable E1B-55K-deleted adenovirus with E1A expressed by CEA promoter.[J]. Mol Ther,2004,10(6):1043-1050.
    [18]王天宝,汪建平,董文广,et al. CEA启动子启动双自杀基因CD/TK重组AdEasy XL腺病毒构建[J].中华实验外科杂志,2005,22(10):1180-1182.
    [19]Nyati M K, Sreekumar A, Li S, et al. High and selective expression of yeast cytosine deaminase under a carcinoembryonic antigen promoter-enhancer.[J]. Cancer Res,2002,62(8):2337-2342.
    [20]Cohen A M, Minsky B D, Schilsky R L, et al. Cancer. Principles, and Practice of Oncology.5th ed.:Lippincott-Raven;[J].1997:1144-1197.
    [21]Willett C G, Tepper J E, Cohen A M, et al. Failure patterns following curative resection of colonic carcinoma.[J]. Ann Surg,1984,200(6):685-690.
    [22]Cohen A M, Tremiterra S, Candela F, et al. Prognosis of node-positive colon cancer.[J]. Cancer,1991,67(7):1859-1861.
    [23]Ries L A, Miller B A, Hankey B F, et al. SEER cancer statistics review 1973-1991:Tables and Graphs. [J]. NIH Publication No.94-2789. Bethesda, MD, National Cancer Institute, National Institutes of Health,1994. ,1994.
    [24]钱其军,吴孟超,岑信棠.肿瘤生物治疗的新策略——基因-病毒治疗[J].第二军医大学学报,2002(05).
    [25]Somia N, Verma I M. Gene therapy:trials and tribulations.[J]. Nat Rev Genet,2000,1(2):91-99.
    [26]Vile R G, Russell S J, Lemoine N R. Cancer gene therapy:hard lessons and new courses.[J]. Gene Ther,2000,7(1):2-8.
    [27]Grabstein K H, Eisenman J, Shanebeck K, et al. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor.[J]. Science,1994,264(5161):965-968.
    [28]Burton J D, Bamford R N, Peters C, et al. A lymphokine, provisionally designated interleukin T and produced by a human adult T-cell leukemia line, stimulates T-cell proliferation and the induction of lymphokine-activated killer cells.[J]. Proc Natl Acad Sci U S A,1994,91(11):4935-4939.
    [29]Anderson D M, Johnson L, Glaccum M B, et al. Chromosomal assignment and genomic structure of 1115.[J]. Genomics,1995,25(3):701-706.
    [30]Meazza R, Verdiani S, Biassoni R, et al. Identification of a novel interleukin-15 (IL-15) transcript isoform generated by alternative splicing in human small cell lung cancer cell lines.[J]. Oncogene,1996,12(10):2187-2192.
    [31]Tagaya Y, Kurys G, Thies T A, et al. Generation of secretable and nonsecretable interleukin 15 isoforms through alternate usage of signal peptides.[J]. Proc Natl Acad Sci U S A,1997,94(26):14444-14449.
    [32]Musso T, Calosso L, Zucca M, et al. Human monocytes constitutively express membrane-bound, biologically active, and interferon-gamma-upregulated interleukin-15.[J]. Blood,1999,93(10):3531-3539.
    [33]Giri J G, Ahdieh M, Eisenman J, et al. Utilization of the beta and gamma chains of the IL-2 receptor by the novel cytokineIL-15.[J]. EMBO J,1994,13(12):2822-2830.
    [34]Giri J G, Kumaki S, Ahdieh M, et al. Identification and cloning of a novel IL-15 binding protein that is structurally related to the alpha chain of the IL-2 receptor.[J]. EMBO J,1995,14(15):3654-3663.
    [35]Lodolce J P, Boone D L, Chai S, et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation.[J]. Immunity,1998,9(5):669-676.
    [36]Hollon T. Researchers and regulators reflect on first gene therapy death.[J]. Nat Med,2000,6(1):6.
    [37]Schroder A R, Shinn P, Chen H, et al. HIV-1 integration in the human genome favors active genes and local hotspots.[J]. Cell,2002,110(4):521-529.
    [38]Li Z, Dullmann J, Schiedlmeier B, et al. Murine leukemia induced by retroviral gene marking.[J]. Science,2002,296(5567):497.
    [39]Glover D J, Lipps H J, Jans D A. Towards safe, non-viral therapeutic gene expression in humans.[J]. Nat Rev Genet,2005,6(4):299-310.
    [40]Zhou R, Norton J E, Zhang N, et al. Electroporation-mediated transfer of plasmids to the lung results in reduced TLR9 signaling and inflammation.[J]. Gene Ther,2007,14(9):775-780.
    [41]Chou P C, Chuang T F, Jan T R, et al. Effects of immunotherapy of IL-6 and IL-15 plasmids on transmissible venereal tumor in beagles.[J]. Vet Immunol Immunopathol,2009.
    [42]den Van Drunen L H S, Luxembourg A, Ellefsen B, et al. Electroporation-based DNA transfer enhances gene expression and immune responses to DNA vaccines in cattle.[J]. Vaccine,2008,26(43):5503-5509.
    [43]Diab A, Cohen A D, Alpdogan O, et al. IL-15:targeting CD8+T cells for immunotherapy.[J]. Cytotherapy,2005,7(1):23-35.
    [44]Budagian V, Bulanova E, Paus R, et al. IL-15/IL-15 receptor biology:a guided tour through an expanding universe.[J]. Cytokine Growth Factor Rev,2006,17(4):259-280.
    [45]Mrozek E, Anderson P. Caligiuri M A. Role of interleukin-15 in the development of human CD56+natural killer cells from CD34+hematopoietic progenitor cells.[J]. Blood,1996,87(7):2632-2640.
    [46]Kennedy M K, Glaccum M, Brown S N, et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice.[J]. J Exp Med,2000,191(5):771-780.
    [47]Tsang T C, Brailey J L, Vasanwala F H, et al. Construction of new amplifier expression vectors for high levels of IL-2 gene expression.[J]. Int J Mol Med,2000,5(3):295-300.
    [48]唐秋莎,张东生.肿瘤基因治疗的靶向性研究进展[J].东南大学学报(医学版),2005(03).
    [49]贾林涛,王成济,杨安钢.肿瘤基因治疗的靶向性策略[J].中国癌症杂志,2003(02).
    [50]Kuroki M, Kuroki M, Shibaguchi H, et al. Tumor-targeting of viral vectors for cancer gene therapy by using antibodies or their genes against tumor-associated antigens.[J]. Anticancer Res,2004,24(5C):3373-3377.
    [51]Hammarstrom S. The carcinoembryonic antigen (CEA) family:structures, suggested functions and expression in normal and malignant tissues.[J]. Semin Cancer Biol,1999,9(2):67-81.
    [52]Chen M J, Chung-Faye G A, Searle P F, et al. Gene therapy for colorectal cancer:therapeutic potential.[J].BioDrugs,2001,15(6):357-367.
    [53]Nyati M K, Sreekumar A, Li S, et al. High and selective expression of yeast cytosine deaminase under a carcinoembryonic antigen promoter-enhancer.[J]. Cancer Res,2002,62(8):2337-2342.
    [54]Li Y, Chen Y, Dilley J, et al. Carcinoembryonic antigen-producing cell-specific oncolytic adenovirus, OV798, for colorectal cancer therapy.[J]. Mol Cancer Ther,2003,2(10):1003-1009.
    [55]Park M Y, Kim H S, Woo S J, et al. Efficient antitumor immunity in a murine colorectal cancer model induced by CEA RNA-electroporated B cells.[J]. Eur J Immunol,2008,38(8):2106-2117.
    [56]Somiari S, Glasspool-Malone J, Drabick J J, et al. Theory and in vivo application of electroporative gene delivery.[J]. Mol Ther,2000,2(3):178-187.
    [57]Golzio M, Teissie J, Rols M P. Direct visualization at the single-cell level of electrically mediated gene delivery.[J]. Proc Natl Acad Sci U S A,2002,99(3):1292-1297.
    [58]De Bree R, Tijink B M, Van Groeningen C J, et al. Electroporation therapy in soft tissue sarcoma: a potentially effective novel treatment.[J]. Sarcoma,2006,2006:85234.
    [59]Widera G, Austin M, Rabussay D, et al. Increased DNA vaccine delivery and immunogenicity by electroporation in vivo.[J]. J Immunol,2000,164(9):4635-4640.
    [60]Drabick J J, Glasspool-Malone J, King A, et al. Cutaneous transfection and immune responses to intradermal nucleic acid vaccination are significantly enhanced by in vivo electropermeabilization.[J]. Mol Ther,2001,3(2):249-255.
    [61]Murray D, Hreno A, Dutton J, et al. Prognosis in colon cancer:a pathologic reassessment.[J]. Arch Surg,1975,110(8):908-913.
    [62]Suzuki K, Nakazato H, Matsui H, et al. NK cell-mediated anti-tumor immune response to human prostate cancer cell, PC-3:immunogene therapy using a highly secretable form of interleukin-15 gene transfer.[J]. J Leukoc Biol,2001,69(4):531-537.
    [63]Fehniger T A, Cooper M A, Caligiuri M A. Interleukin-2 and interleukin-15:immunotherapy for cancer.[J]. Cytokine Growth Factor Rev,2002,13(2):169-183.
    [64]Vera M, Razquin N, Prieto J, et al. Intratumoral injection of dendritic cells transduced by an SV40-based vector expressing interleukin-15 induces curative immunity mediated by CD8+T lymphocytes and NK cells.[J]. Mol Ther,2005,12(5):950-959.
    [65]刘亮明,罗杰,张吉翔,et al.裸质粒流体力学注射法-基因治疗研究的利器[J].世界华人消化杂志,2006(28).
    [66]Cemazar M, Golzio M, Sersa G, et al. Control by pulse parameters of DNA electrotransfer into solid tumors in mice.[J]. Gene Ther,2009.
    [I]Hollon T. Researchers and regulators reflect on first gene therapy death.[J]. Nat Med,2000,6(1):6.
    [2]Schroder A R, Shinn P, Chen H, et al. HIV-1 integration in the human genome favors active genes and local hotspots.[J]. CelI,2002,110(4):521-529.
    [3]Li Z, Dullmann J, Schiedlmeier B, et al. Murine leukemia induced by retroviral gene marking.[J]. Science,2002,296(5567):497.
    [4]Somiari S, Glasspool-Malone J, Drabick J J, et al. Theory and in vivo application of electroporative gene delivery.[J]. Mol Ther,2000,2(3):178-187.
    [5]Golzio M, Teissie J, Rols M P. Direct visualization at the single-cell level of electrically mediated gene delivery.[J]. Proc Natl Acad Sci U S A,2002,99(3):1292-1297.
    [6]Widera G, Austin M, Rabussay D, et al. Increased DNA vaccine delivery and immunogenicity by electroporation in vivo.[J]. J Immunol,2000,164(9):4635-4640.
    [7]Drabick J J, Glasspool-Malone J, King A, et al. Cutaneous transfection and immune responses to intradermal nucleic acid vaccination are significantly enhanced by in vivo electropermeabilization.[J]. Mol Ther.2001,3(2):249-255.
    [8]Zhang L, Nolan E, Kreitschitz S, et al. Enhanced delivery of naked DNA to the skin by non-invasive in vivo electroporation.[J]. Biochim Biophys Acta,2002,1572(1):1-9.
    [9]Bureau M F, Gehl J, Deleuze V, et al. Importance of association between permeabilization and electrophoretic forces for intramuscular DNA electrotransfer.[J]. Biochim Biophys Acta,2000,1474(3):353-359.
    [10]Maruyama H, Ataka K, Higuchi N, et al. Skin-targeted gene transfer using in vivo electroporation.[J]. Gene Ther,2001,8(23):1808-1812.
    [11]Dujardin N, Van Der Smissen P, Preat V. Topical gene transfer into rat skin using electroporation.[J]. Pharm Res,2001,18(1):61-66.
    [12]Chesnoy S, Huang L. Enhanced cutaneous gene delivery following intradermal injection of naked DNA in a high ionic strength solution.[J]. Mol Ther,2002,5(1):57-62.
    [13]Hanna E, Zhang X, Woodlis J. et al. Intramuscular electroporation delivery of IL-12 gene for treatment of squamous cell carcinoma located at distant site.[J]. Cancer Gene Ther,2001,8(3):151-157.
    [14]Li S, Zhang X, Xia X, et al. Intramuscular electroporation delivery of IFN-alpha gene therapy for inhibition of tumor growth located at a distant site.[J]. Gene Ther,2001,8(5):400-407.
    [15]Liu F, Huang L. Electric gene transfer to the liver following systemic administration of plasmid DNA.[J]. Gene Ther,2002,9(16):1116-1119.
    [16]Durieux A C, Bonnefoy R, Busso T, et al. In vivo gene electrotransfer into skeletal muscle:effects of plasmid DNA on the occurrence and extent of muscle damage.[J]. J Gene Med,2004,6(7):809-816.
    [17]Kuriyama S, Mitoro A, Tsujinoue H, et al. Particle-mediated gene transfer into murine livers using a newly developed gene gun.[J]. Gene Ther,2000,7(13):1132-1136.
    [18]Amabile P G, Waugh J M, Lewis T N, et al. High-efficiency endovascular gene delivery via therapeutic ultrasound.[J]. J Am Coll Cardiol,2001,37(7):1975-1980.
    [19]Lawrie A, Brisken A F, Francis S E, et al. Microbubble-enhanced ultrasound for vascular gene delivery.[J]. Gene Ther,2000,7(23):2023-2027.
    [20]Song J, Chappell J C, Qi M, et al. Influence of injection site, microvascular pressure and ultrasound variables on microbubble-mediated delivery of microspheres to muscle. [J]. J Am Coll Cardiol,2002,39(4):726-731.
    [21]Endoh M, Koibuchi N, Sato M, et al. Fetal gene transfer by intrauterine injection with microbubble-enhanced ultrasound.[J]. Mol Ther,2002,5(5 Pt l):501-508.
    [22]Sundaram J, Mellein B R, Mitragotri S. An experimental and theoretical analysis of ultrasound-induced permeabilization of cell membranes.[J]. Biophys J,2003,84(5):3087-3101.
    [23]Zhang G, Gao X, Song Y K, et al. Hydroporation as the mechanism of hydrodynamic delivery.[J]. Gene Ther,2004,11(8):675-682.
    [24]Budker V, Budker T, Zhang G, et al. Hypothesis:naked plasmid DNA is taken up by cells in vivo by a receptor-mediated process.[J]. J Gene Med,2000,2(2):76-88.
    [25]Siess D C, Vedder C T, Merkens L S, et al. A human gene coding for a membrane-associated nucleic acid-binding protein.[J]. J Biol Chem,2000,275(43):33655-33662.
    [26]Budker V G, Subbotin V M, Budker T, et al. Mechanism of plasmid delivery by hydrodynamic tail vein injection. Ⅱ. Morphological studies.[J]. J Gene Med,2006,8(7):874-888.
    [27]Kobayashi N, Nishikawa M, Hirata K, et al. Hydrodynamics-based procedure involves transient hyperpermeability in the hepatic cellular membrane:implication of a nonspecific process in efficient intracellular gene delivery.[J]. J Gene Med.2004,6(5):584-592.
    [28]Liu F, Huang L. Noninvasive gene delivery to the liver by mechanical massage.[J]. Hepatology,2002,35(6):1314-1319.
    [29]Sebestyen M G, Budker V G, Budker T, et al. Mechanism of plasmid delivery by hydrodynamic tail vein injection. I. Hepatocyte uptake of various molecules.[J]. J Gene Med,2006,8(7):852-873.
    [30]Crespo A, Peydro A, Dasi F, et al. Hydrodynamic liver gene transfer mechanism involves transient sinusoidal blood stasis and massive hepatocyte endocytic vesicles.[J]. Gene Ther,2005,12(11):927-935.
    [31]Liu F, Nishikawa M, Clemens P R, et al. Transfer of full-length Dmd to the diaphragm muscle of Dmd(mdx/mdx) mice through systemic administration of plasmid DNA.[J]. Mol Ther,2001,4(1):45-51.
    [32]Dauty E, Remy J S, Blessing T, et al. Dimerizable cationic detergents with a low cmc condense plasmid DNA into nanometric particles and transfect cells in culture.[J]. J Am Chem Soc,2001,123(38):9227-9234.
    [33]Mckenzie D L, Kwok K Y, Rice K G. A potent new class of reductively activated peptide gene delivery agents.[J]. J Biol Chem,2000,275(14):9970-9977.
    [34]Wightman L, Kircheis R, Rossler V, et al. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo.[J]. J Gene Med,2001,3(4):362-372.
    [35]Koh J J, Ko K S, Lee M, et al. Degradable polymeric carrier for the delivery of IL-10 plasmid DNA to prevent autoimmune insulitis of NOD mice.[J]. Gene Ther,2000,7(24):2099-2104.
    [36]Maheshwari A, Mahato R I, Mcgregor J, et al. Soluble biodegradable polymer-based cytokine gene delivery for cancer treatment.[J]. Mol Ther,2000,2(2):121-130.
    [37]Rittner K, Benavente A, Bompard-Sorlet A, et al. New basic membrane-destabilizing peptides for plasmid-based gene delivery in vitro and in vivo.[J]. Mol Ther,2002,5(2):104-114.
    [38]Dobson J. Gene therapy progress and prospects:magnetic nanoparticle-based gene delivery.[J]. Gene Ther,2006,13(4):283-287.
    [39]Yew N S, Zhao H, Wu 1 H, et al. Reduced inflammatory response to plasmid DNA vectors by elimination and inhibition of immunostimulatory CpG motifs.[J]. Mol Ther,2000,1(3):255-262.
    [40]Hofman C R, Dileo J P, Li Z, et al. Efficient in vivo gene transfer by PCR amplified fragment with reduced inflammatory activity.[J]. Gene Ther,2001,8(1):71-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700