深海采矿作业过程扬矿管线系统空间构形与动态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陆地上矿物资源的逐渐枯竭成为进行强有力海洋采矿研究的重要动机。在复杂海洋环境因素影响下将深海多金属结核连续、高效地采集并输送到海面采矿船上,同时要求开采系统具有高度可靠性和商业应用价值,是目前深海采矿面临的主要研究课题之一。管道提升式深海采矿系统是目前被国际广泛认可的典型深海多金属结核开采系统。自20世纪70年代,国际上各研究机构对这种采矿系统开展了大量的研究与海洋试验。中国深海多金属结核开采1000m海试系统亦采用集矿机与管道提升相结合的采矿方式,其扬矿系统是由扬矿硬管、扬矿泵、中间仓、柔性软管等多体组合的复杂长管线系统。
     在海洋采矿作业过程中,扬矿管线系统既受到包括海洋环境载荷在内的各种复杂外部载荷作用,又受到海面采矿船和海底集矿机作业运动的影响,因此无论是在布放回收还是在拖航作业过程中,其运动学和动力学特性都十分复杂。作者结合国家深海技术发展项目相关课题,采用有限元法对深海采矿扬矿管线系统作业过程进行数值模拟,研究管线空间构形和动态特性。主要研究内容如下:
     1.多体组合的深海采矿扬矿管线系统各部分主体结构之间力学耦合,根据中国深海采矿1000m海试系统总体方案和作业规划,针对扬矿系统各部分的结构特点、联接方式和作业条件,研究多体组合的扬矿管线系统在复杂外部载荷和作业联动作用下的力学建模。柔性复合软管作为扬矿管线系统的重要组成部分,其建模方法对整体扬矿系统作业联动分析的计算效率和精度影响很大。针对柔性复合软管抗拉刚度大,抗弯刚度小的宏观特性,提出了基于空间管梁有限元模型的单元耦合建模方法,建立了包括扬矿硬管、柔性软管、中间仓及扬矿泵等多体组合的扬矿管线系统有限元模型,为整体扬矿管线系统布放回收和拖航作业过程动力学分析提供了一种较精确的力学分析模型。
     2.扬矿管线有限元模型的外部载荷包括重力、浮力、海洋液动力、内外流体压力、内部流体运动产生的摩擦力、泵工作产生的轴向力和扭矩、软管的集中吊挂浮力等,在整体作业联动过程分析中,还包括采矿船和集矿机的运动载荷,以及布放回收作业中管线的运动载荷。扬矿管在海洋中受到波浪和海流联合作用的液动力载荷是扬矿管线主要的环境载荷,在海洋工程结构中属小直径管柱的流体动力问题。作者基于Morison公式研究了波浪与海流联合作用下扬矿管液动力载荷计算方法,同时给出了在大型低噪声循环水槽中进行的1000m海试系统中带附管扬矿管的流体动力系数试验方法和测定结果。
     3.在变形过程中伴随有大位移和有限旋转的空间管梁结构的几何非线性有限元分析方法有全拉格朗日法(TL),更新拉格朗日法(UL)和随体旋转法(CR)等。研究分析了拉格朗日法与随体旋转法各自的特点,给出了Rankin等推导的随体旋转法求解原理,并选用该方法求解扬矿管线的几何非线性问题。
     4.基于多体组合的扬矿管线有限元模型,采用静态分析方法对软管的空间构形进行研究,为扬矿管线系统布放回收和拖航作业过程动态分析提供基本参数。在软管空间构形的影响因素中,软管集中吊挂浮力配置方式对其水下空间构形的影响很大。在综合考虑软管空间构形、软管下端对集矿机作用力、软管下端偏转角度等多种因素基础上,研究了较优的软管集中吊挂浮力配置方案,包括浮力大小、配置比例、浮力体吊挂位置等。
     5.在布放回收作业过程中扬矿管线系统的结构形态和力学特性发生着快速变化,开展了扬矿管线布放回收过程数值模拟的探索性研究。针对布放过程中集矿机着底后管线系统的动态特性分析,建立了相应的有限元初始化模型,并对不同运动参数下布放作业中的管线形态和动态特性进行瞬态动力学分析。研究发现:较低的管线布放速度可以明显改善系统的动态特性;某些布放方式可能导致软管产生堆积缠绕现象,对此论文提出了相应的避免措施;管线回收作业的数值模拟过程基本上是布放作业过程模拟的逆过程,其动力学特性亦具有可比性。
     6.对多种运动参数下的扬矿管线作业联动特性和3种典型连续轨迹的拖航作业模式进行了动力学分析,实现了扬矿管线系统在稳态载荷、瞬态载荷和简谐载荷组合作用下时程变化的位移、作用力及应力的求解。研究表明:拖航速度越高,扬矿硬管偏转角度和中间仓的横向偏移越大,软管马鞍型形态畸变程度也相应增大;在低于0.5m/s速度下拖航,中间仓的拖曳轨迹与采矿船运动轨迹基本一致,系统的跟随性较好。
     7.由于海试系统的软管布放长度会根据实际水深适当调整,且中间仓距海底高度随海底地形变化,因此以中间仓为中心,建立了集矿机动态安全域。将软管布放长度和中间仓距海底高度在其变化值范围内离散化,并根据有限元分析结果,建立了集矿机动态安全域参数实时查询表,可供作业监控系统实时调用。
     8.为了验证扬矿管线建模方法的正确性,采用一个与1000m海试扬矿管线系统特征相似的拖曳水池实验模型,根据相同的管线建模方法建立了实验系统的有限元模型。选择有代表性的有流试验和无流试验两种实验测试结果与计算结果作比较,应力计算结果与实验测量结果相吻合。
     上述研究结果为深海多金属结核1000m海试开采系统的设计及其作业规化提供了基本参数和理论依据,同时研究方法为类似海洋工程长管线作业系统的研究提供了思路。
The gradual exhausting of mineral resources in land store becomes an important motive which promotes more and more powerful research on ocean mining. It is main research topic of the deep ocean mining that efficiently collecting and transporting system of poly-metallic nodule from the sea floor to surface mining vessel is needed under complicated influence of the ocean environment, in the meantime which has high reliability and commercial applied value. The collector-pipe mining system as a typical commercial mining system for deep ocean poly-metallic nodule is extensively accepted by the nations currently. From the 70's in 20 centuries, many technology research and ocean experiments on such mining system had been carried out by many international research organizations or some nations. Collector-pipe lift mining system is also adopted in Chinese 1000m sea trial project of mining system for deep ocean poly-metallic nodule, which is a long multibody pipeline system consists of lifting steel pipe, pump, buffer station, flexible hose, etc.
     During the ocean mining process, lifting pipeline system bears complex coupled external loads such as hydrodynamic loads of ocean environment, and is also affected by the motions of surface mining vessel and submarine collector. Therefore, the kinematic and dynamic responses of lifting pipeline system are very complex not only in the launch and retrieval operation process but also in towing mining process. Numerical simulation on space configuration and dynamic characteristic of lifting pipeline system in linkage operations for deep ocean mining was carried out by geometric nonlinear finite element method (FEM) in this thesis, as a part of national project of deep ocean technology research & development. The main contents are as follows:
     1. There are couple effects of mechanics on each part of the multibody lifting pipeline in deep ocean mining. According to total system design and operating plan of lifting pipe system for 1000m sea trial project, the modeling methods of multibody lifting pipeline system were studied in this thesis, based on the structure characteristic, connection modes, operation condition. Especially, the flexible hose is an important part of lifting pipeline; its modeling method influences the calculation efficiency and precision of integral pipeline analysis of deep ocean mining process greatly. A modeling method of element couple was put forward based on space beam model of finite element model to simulate the macrostructure characteristic of flexible hose, which tensile rigidity was large and bending stiffness was small relatively. The integral system model of multibody pipeline system was established, which consists of lifting steel pipe, flexible hose, buffer station, pump, etc. A kind of mechanics model of the integral lifting pipeline was achieved for the dynamic analysis of the launch, retrieval and towing process in deep ocean mining.
     2. In FEM model of lifting pipeline, the following external loads are considered: gravity, buoyancy, hydrodynamic forces, internal and external fluid pressures, torsional moment and axial force induced by pump working, friction induced by interal flow, concentrated suspension buoyancy on the flexible hose, etc. For the dynamic analysis of working motion of lifting pipeline, the motion loads of collector and ship, and the pipeline's motion loads during the launch and retrieval operation, are also considered. The pipeline's hydrodynamic force induced by ocean wave and current is the main environment loads of lifting pipeline. It belongs to the hydrodynamic problem of pipe or cylinder with small diameter in ocean engineering. The calculation method of pipeline's hydrodynamic force was described based on the Morison's equation in this thesis. To evaluate the drag coefficients of lifting pipe with some adjunctive pipes used in 1000m sea trial, the hydrodynamic experiments had been done in the large low-noise circulation tank. The experimental methods and results of the drag coefficients were given.
     3. There are several important approaches of nonlinear finite element method to solve geometric nonlinear problem of spatial pipe & beam structures, which includes deformation process with large displacements and finite rotations, such as Total Largrangian (TL) formulation, Updated Largrangian (UL) formulation and Corotation (CR) formulation. Comparing the advantages of these approaches, the principle of Corotation formulation introduced by Rankin was described. The Corotation formulation was adopted to solve nonlinear problems of lifting pipeline.
     4. In order to obtain the basic parameters of lifting pipeline system for the dynamic analysis of launch and retrieval operation and towing mining, the configuration of lifting pipeline in space was analyzed by static analysis method based on multibody pipeline FEM model. Among many influencing factors of flexible hose configuration, the concentrated suspension buoyancy on hose affects its configuration greatly. Based on combinational analysis of configuration in space, action force on collector and deflection angle of flexible hose bottom, optimized arrangement of concentrated suspension buoyancy on hose was presented, including buoyancy value, arrangement proportion and suspension position of buoyancy balls.
     5. During the launch and retrieval operation, the configuration, shape and mechanical characteristic of lifting pipeline system transform quickly and greatly. The exploratory research of numerical simulation for launch and retrieval towing process was carried out in this thesis. According to the dynamic analysis of pipeline for launch operation process affter collector landing the sea floor, the initial FEM model for transient dynamic analysis was established. The pipeline shape and dynamic characteristic during launch and retrieval process under various motions parameters were analyzed by transient dynamic method. The research indicates: lower velocity of pipeline's launch improves the dynamic characteristic of flexible hose; the flexible hose is easily piled and enwind at some launch operation mode, and the advice to avoid such situation was offered; the numerical simulation of pipeline's retrieval is the inverse process of launch operation approximately, kinematics and dynamics characteristic of retrieval is comparable with that of launch.
     6. Based on the FEM model of integral lifting pipeline, transient dynamic characteristic of various linkage motions and 3 typical towing mining modes under continuous tracks was analyzed. Considering the combination effects of steady loads, transient loads and simple periodic motion, the dynamic response of pipeline in time domain was calculated, such as displacement, action force, stress, etc. The results of dynamic analysis indicate: the deflection angle of steel pipe and lateral deflecting of buffer increase with augmentation of towing velocity, as well as the deformation of hose's saddle shape; when towing velocity is less than 0.5m/s, the towing track of buffer is coincided with the setting route of ship on the whole and the following ability of pipeline system is also kept well.
     7. The launch length of flexible hose will be determined according to the water depth in sea trial, and the distance between buffer and sea floor varies with terrain changing. Therefore, safety domain for collector's motions was designed, in which the buffer was the center of coordinate system. The launch length of flexible hose and the distance between buffer and sea floor are discretized in range. Based on the analysis by FEM, the real-time inquiry table of safety domain for collector's motions was established for real-time monitor system in ocean mining.
     8. An experimental model in towing water tank with the similar characters of pipeline system in 1000m sea trial was designed to verify the FEM modeling method. And the FEM model of experiment system was established by modeling methods introduced by this thesis. Measuring records of typical hydrodynamic experiment and anhydrous experiment were obtained. The simulation results of pipe stress were coincided with the experimental results by comparison.
     Conclusions of research in this thesis provided basic characteristic parameters and theory reference for the design of mining system and operation planning of 1000m sea trial. And its methods can also provide references for mechanics research of long pipeline system in ocean engineering.
引文
[1]Stanistaw D,Ryszard K,Edward R,et al.海洋矿物资源(中译本)[M].北京:海洋出版社,2001.
    [2]中国大洋协会办公室,国家资源信息中心.关于先驱投资者申请矿区的登记[M].北京:海洋出版社,1998.
    [3]杜炳周,何思力,柯永清.太平洋中部沉积物类型与铁锰结核的丰度、覆盖率和品位的关系[M]∥太平洋中部铁锰结核研究论文集.北京:地质出版社,1992.
    [4]Bath A R,Preussag A G..Deep Sea Mining Technology:Recent Developments and Future Projects[C].Offshore Technology Conference.Houston Texas US.OTC 5998.1989:333-340.
    [5]Everett J,Lecourt J,Darrell W.Williams.Deep Ocean Mining-New Application for Oil Field and Marine Equipment[J].OTC 1412,1971.
    [6]Chung J S.Deep-ocean Mining Issues and Ocean Mining working Group(OMG)[C].Proc.3rd Ocean Mining Symp.Goa,ISOP,1999:14-17.
    [7]简曲.大洋多金属结核资源开发的回顾和展望[J].中国矿业,1996,5(6):14-18.
    [8]中国大洋矿产资源研究开发协会.大洋多金属结核中试采矿系统1000m海上试验总体设计[R].中国大洋协会,2002.
    [9]中国大洋矿产资源研究开发协会.大洋多金属结核中试采矿系统“九五”综合湖试报告[R].中国大洋协会,2002.
    [10]International Seabed Authority.Deep-Seabed Polymetallic Nodule Exploration:Development of Environmental Guidelines[C].Proceeding of the International Seabed Authority's Workshop,Sanya,China,1998:29-39.
    [11]金建才,张杏林,徐传华.锰结核勘探开采技术分析[M]∥海底矿物丛书.中国大洋矿产资源研究开发协会,1995:63-121.
    [12]Herrouin G,凌胜(译).锰结核工业是一项有利可图的风险投资——法国四年研究概要[M]∥深海采矿技术文集.中国大洋矿产资源研究开发协会,1995:23-38.
    [13]钟祥,牛京考.日本大洋多金属结核开采试验的进展[J].国外金属矿山,2000.3
    [14]肖林京.深海采矿扬矿管运动学与动力学特性研究[D].北京:北京科技大学,2000.
    [15]Everett J,Lecourt J,Darrell W.Deep Ocean Mining-New Application for Oil Field and Marine Equipment[J].OTC 1412,1971.
    [16]布利森巴赫E,里希特H.深海多金属结核开采的回顾与展望[M]∥深海采矿技术文集.中国大洋矿产资源研究开发协会,1995:17-22.
    [17]让-皮埃尔·勒诺伯尔,黄忠荣(译).大洋多金属结核矿床的开发前景[M]∥深海采矿技术文集.中国大洋矿产资源研究开发协会,1995:39-51.
    [18]Brink A W,Chung J S.Automatic Position Control of a 300,000 Tons Ship During Ocean Mining Operations[C].Offshore Technology Conference.Paper No.OTC 4091,1981:205-224.
    [19]Chung J S.Deep-ocean Mining Issues and Ocean Mining working Group[C].Proc.3rd Ocean Mining Symp,Goa,ISOPE,1999:14-17.
    [20]Chung J S.An atticulated system with thrust control for deep ocean mining[C].Proceedings of the second ocean mining symposium,November,1997.
    [21]简曲.21世纪的大洋采矿[J].矿山机械,2000,4:8-22.
    [22]赵松年.刘峰.德国深海采矿技术的研究[J].金属矿山,1995,6.
    [23]Schwarz W,Freitag W,Grebe H,et al.Tiefseemaschinen f(u|¨)r die Manganknollengewinnung[R].Siegen Deutschland:Universit(a|¨)t-GH Siegen,1992
    [24]徐海良.单泵与储料罐组合的深海采矿软管输送系统研究[D].长沙:中南大学,2004.
    [25]Schwarz W,Grebe H.Workshop on Proposed Technologies for Deep Seabed Mining of Polymetallic Nodules[R].Universit(a|¨)t-GH Siegen,1999.
    [26]Kim Young-Ju,Yoon Chi-Ho,Yong-Chan Park.A Study on the Solid-Liquid Helical Flow in a slim hole annulus[C].Proceedings of the 7th ISOPE Ocean Mining Symposium.Lisbon,Portugal,2007:162-166.
    [27]Park J M,Yoon C H,Park Y C.Three Dimensional Solid-liquid Flow Analysis for Design of Two-stage Lifting Pump[C].Proceedings of the 7th ISOPE Ocean Mining Symposium.Lisbon,Portugal,2007:171-176.
    [28]Park S J,Yeu T K,Hong S,Choi J S,Kim H W.Design of a Hardware-in-the-loop Simulation(HILS) of Control and Monitoring System for Deep-seabed Manganese Nodule Miner[C].Proceedings of the 7th ISOPE Ocean Mining Symposium.Lisbon,Portugal,2007:198-203.
    [29]Hong Sup,Kim Hyung-Woo,Choi Jong-Su.A Way to Accomplish the Mining Technology for Polymetallic Nodules[C].ISA Workshop on Polymetallic Nodule Mining Technology.ISA,Chennai,India,2008.
    [30]Deepak C R,Pugazhaandi M.Underwater Sand Mining System for Shallow Waters[C].Proc.3st Ocean Mining Symp,ISOPE,Goa,India,1999:78-83.
    [31] Deepak C R. Development Tests on the Underwater Mining System Using Flexible Riser Concept[C]. Proc. 4st Ocean Mining Symp, ISOPE, Szczecin, 2001:94-98.
    [32] Deepak C R, Ramji S, Ramesh N R, et al. Development and Testing of Underwater Mining Systems for Long Term Operations using Flexible Riser Concept[C]. Proceedings of the 7th ISOPE Ocean Mining Symposium. Lisbon, Portugal, 2007:166-170.
    [33]Felippa C A, Chung J S. Nonlinear Static Analysis of Deep Ocean Mining Pipe - Part Ⅰ : Modeling and Formulation[J]. Journal of Energy Resources Technology, ASME, 1981,103(3): 11 -15
    [34] Chung J S, Felippa C A. Nonlinear Static Analysis of Deep Ocean Mining Pipe - Part Ⅱ: Numerical Studies[J]. Journal of Energy Resources Technology, ASME, 1981,103(3): 16-25.
    [35] Chung J S, Whitney A K, Loden W A. Nonlinear Transient Motion of Deep Ocean Mining Pipe [J]. Journal of Energy Resources Technology, 1981,103(3): 2 -10.
    [36] Chung J S, Whitney A K. Dynamic Vertical Stretching Oscillation of an 18000-ft Ocean Mining Pipe[C]. Proc Offshore Technology Conference. Houston, Texas, Paper No. OTC 4092,1981:42 - 50.
    [37] Whitney A K, Chung J S, Yu B K. Vibration of long marine pipes due to vortex shedding [J]. ASME. Journal of Energy Resources Technology, Vol.103, 1981: 231-237.
    [38] Chung J S, Whitney A K. Axial Stretching Oscillation of an 18000ft Vertical Pipe in the Ocean [J]. ASME. Journal of Energy Resources Technology, Vol.105, 1983: 195-200.
    [39] Brink A W, Chung J S. Automatic Position Control of a 300,000 Tons Ship During Ocean Mining Operations[C]. Offshore Technology Conference. Paper No. OTC 4091,1981:205-224.
    [40] Chung J S. Flow-induced torsional moment and vortex suppression for a circular cylinder with cables[C]. Proceedings of the International Offshore and Polar Engineering Conference, v 3,1994: 447-467
    [41] Chung J S, Cheng B R, Huttelmaier H P. Three-Dimensional Coupled Responses of a Vertical Deep-Ocean Pipe: Part Ⅰ. Excitation at Pipe Ends and External Torsion [J]. Int J Offshore & Polar Eng, ISOPE, Vol.4, No.4, 1994: 320-330.
    [42] Chung J S, Cheng B R, Huttelmaier H P. Three-Dimensional Coupled Responses of a Vertical Deep-Ocean Pipe: Part Ⅱ. Excitation at Pipe Top and External Torsion [J]. International Journal of Offshore and Polar Engineering, ISOPE, 1994,4 (4): 331.339.
    [43] Chung J S. Track-keeping Control of Seafloor Miner by Successive Learning of Unknown Velocity and Soil Properties[C]. Proceedings of the 3rd Ocean Mining Symposium. Goa, ISOPE, 1999: 85-92
    [44] Chung J S. Deep-ocean Mining Technology: Learning Curve I [C]. Proceedings of the 5th Ocean Mining Symposium. Tsukuba, Japan, ISOPE, 2003: 1-5
    [45] Cheng Bao-rong, Chung J S, Zheng Zhao-chang. Effects of flexible joints on the 3-D nonlinear coupled responses of a long vertical pipe[C]. Proc 5th Int J Offshore and Polar Eng Conf, ISOPE, Hague, Netherlands, 1995: 236-243
    [46] Cheng Bao-rong, Chung J S. Effects of axial damper and elastic joints on the 3-D dynamic responses of a deep-ocean pipe with torsional coupling [J]. Int J Offshore and Polar Eng, 1997, 7(1): 36-43.
    [47] Chung J S, Cheng Bao-rong. MSE and FEM modeling of thrusts to elastic joints of long vertical pipe in 3-D nonlinear motions [J]. Int J Offshore and Polar Eng, ISOPE, 1999, 9(2): 117-125.
    [48] Chung J S, Cheng Bao-rong. Effects of elastic joints on 3-D nonlinear responses of a deep-ocean pipe: Modeling and boundary conditions [J]. Int J Offshore and Polar Eng, 1996, 6(3): 203-211.
    [49] Chung J S, Cheng Bao-rong, Zheng Zhao-chang. Application of thrusts to elastic joints of long vertical pipe in 3-D nonlinear motions: Part I. MSE and FEM Modeling[C]. Proc 7th Int J Offshore and Polar Eng Conf, ISOPE, Honolulu, USA, 1997:115-122.
    [50] Cheng Bao-rong, Chung J S. Application of thrusts to elastic joints on long vertical pipe in 3-D nonlinear motions: Part II. Numerical Examples by MSE and FEM results[C]. Proc 8th Int J Offshore and Polar Eng Conf, ISOPE, Montreal,Canada, 1998:189-198
    [51]Mustoe G G, Hettelmaier H P, Chung J S. Assessment of dynamic coupled bending-axial effects for two-dimensional deep-ocean pipes by the discrete element method [J]. International Journal of Offshore and Polar Engineering, 1992, 2(4): 289-296.
    [52]Mustoe G. G. W, Hettelmaier H. P., Chung J. S. Dynamic coupled bending-axial analysis of two-dimensional deep-ocean pipes by the discrete element method[C]. Proc Second Int Offshore Polar Eng Conf, 1992: 504-511.
    [53]Huttelmaier H P,Chung J S,Mustoe G G.,Zheng Zhao-Chang,Cheng Bao-rong.Eigenvalues of a long vertical pipe by DEM,FEM and exact solution[C].Proceedings of the Third International Offshore and Polar Engineering Conference,1993:311-314.
    [54]洪夔.深海海底采矿扬矿管系统的三维动态分析[J].国外金属矿山,1999(3):50-56.
    [55]Hong Sup,Kim H W,Choi J S.A New Method Using Euler Parameters for 3D Nonlinear Analysis of Marine Risers/Pipelines[C].Proceedings of the 5th Ocean Mining Symposium.Tsukuba,Japan,ISOPE,2003:83-90.
    [56]Hong Sup,Choi J S,Kim H W.Effects of internal flow on dynamics of underwater flexible pipes[C].Proceedings of the 5th Ocean Mining Symposium.Tsukuba,Japan,ISOPE,2003:91-98.
    [57]Hong Sup,Kim H W.Coupled dynamic analysis of underwater tracked vehicle and long flexible pipe[C].Proceedings of the 6th Ocean Mining Symposium.Changsha,China,ISOPE,2005:132-140.
    [58]Yoon Chi-Ho,Park Yong Chan,Lee Dong Kil.Behavior of deep sea mining pipe and its effect on internal flow[C].Proceedings of the 5th Ocean Mining Symposium,Tsukuba,Japan,ISOPE,2003:76-82.
    [59]K(o|¨)hne M.Analyse des dynamischen Verhaltens elastischer F(o|¨)rderrohre zur Mineralgewinnung aus grossen Meerestiefen[J].InterOcean 1976,11:181-195.
    [60](日)通度善彦.盛桂浓译.深海锰结核采矿中扬矿管特性的研究[M]∥深海采矿技术文集,中国大洋矿产资源研究开发协会,1995.
    [61](日)麻生和夫.王保申译.下端装有缓冲器的阶梯式扬矿管的动力特性——锰结核采矿用的扬矿管特性[R].日本矿业会志,1998.
    [62]Jelena V P,Niels J R.Riser High Frequency Response[C].Proceedings of the 17th International Offshore and Polar Engineering Conference Lisbon,Portugal,2007:827-834
    [63]C(?)sar T.Sanches,Carlos E.Mazzilli.Non-linear Modal Analysis Applied to Riser Dynamics[C].Proceedings of the 17th International Offshore and Polar Engineering Conference Lisbon,Portugal,2007:820-826.
    [64]Tanaka R L,Martins C A.Dynamic Optimization of Steel Risers[C].Proceedings of the 17th International Offshore and Polar Engineering Conference Lisbon,Portugal,2007:859-844.
    [65]肖林京,张文明.深海采矿扬矿管非线性动态特性研究[J].煤炭学报.2002, 27(4):417-421.
    [66]肖林京,曾庆良.深海采矿场矿管非线性偏移特性研究[J].机械工程学报.2002,38(8):94-99.
    [67]申焱华,张文明.基于Galerkin法的阶梯式扬矿管偏移分析[J].金属矿山.2002(4):30-32.
    [68]冯雅丽,李浩然.5000m扬矿管纵向振动研究[J].有色金属.1999,51(4):13-18.
    [69]冯雅丽,张云仙,李浩然.5000m扬矿管的纵向振动[J].金属矿山,1999,(4):13-15.
    [70]刘江,毛纪陵,刘北英.深海采矿扬矿管横向运动状态分析[J].中国工程科学.2001.3(11):74-79
    [71]Ablow C M,Schechter S.Numerical Simulation of undersea cable dynamics[J].Ocean Engineering,1983,10(6).:443-457
    [72]Milinazzo F,Wilkie M,Latchman S A.An efficient algorithm for simulatiing the dynamics of towed cable system[J].Ocean Engineering,1987,14(6):513-526
    [73]Owen D G,Qin K.Model test and analysis of flexible riser system[J].Offshore Mechanics and Arctic Engineering,1986,3:354-362
    [74]Ghadimi R.A simple and Efficient Algorithm for the static and dynamic analysis of flexible marine riser[J].Computers & Structures,1988,29(4):541-555
    [75]L(?)bbert M.Eperimentelle Modellierung flexibler dynamisch bewegter Verbindungsleitungen zwischen selbstfahrenden tiefseemaschinen und ihren Mutterschiffen[D].Siegen:Universit(a|¨)t-GH Siegen,1989
    [76]Schwarz W,Freitag W,Grebe H,Hoffmann E.Untersuchungen zum dynamischen Verhalten flexibler Verbindungsleitungen zwischen Tiefseemaschinen und ihren Mutterschiffen[R].Berrict an die Deutsche Forschungsgemeinschaft.Fo|¨)rderkennzeichen Schw339/3-1,Universit(a|¨)t-GH Siegen,1993.
    [77]Freitag W.Theoretische und expermentelle Untersuchungen zum Verhalten langer Tiefseestr(a|¨)nge[D].Aachen:Universit(a|¨)t Aachen,1993.
    [78]Hoffmann E-O.Verhalten flexiber Verbingungsleitungen zum Verhalten langer Tiefseestr(a|¨)ten und schwimmenden Stationen[D].Aachen:Universit(a|¨)it Aachen,1995.
    [79]Grebe H.Allgemeines mathematisches Modell f(u|¨)r strangverbindungen zwischen mobilen Tiefseeger(a|¨)ten und ihren Mutterstationen[D].Universit(a|¨)t Aachen,1997.
    [80]简曲,李宝元.大洋采矿输送软管动力特性的数值研究[J].海洋工 程.2001,19(1):59-64.
    [81]崔凯.深海采矿系统中输运软管的数值模拟[C].第七届全国工业与环境流体力学会议论文.2001,5.
    [82]刘华新,孔凡凯.U.L.法在海底集矿机输运软管大变形分析中的应用[C].第十届全国结构工程学术会议论文集.2001,10.
    [83]郭小刚,张立人,金星.深海采矿流.固耦合软管系统的非线性动力学模型.工程力学[J].2000.17(3):93-104.
    [84]郭小刚,金星,张俊彦.流体阻力对软管空间平衡形态的影响[J].海洋工程.2000.18(2):1-6.
    [85]Xia J.X,Ni J.R.Hydraulic lifting of manganese nodules through a riser[J].Journal of Offshore Mechanics and Arctic Engineering,February,2004,126(1):72-77.
    [86]李蘅,李鹏程,韩文亮.垂直管粗颗粒水力提升不稳定流数值模拟[J].有色金属.2003,55(3):109-111
    [87]申焱年 毛纪陵垂直管道固液两相流的最小提升水流速度[J].北京科技大学学报.1999,21(6):519-522
    [88]夏建新.大洋多金属结核水力提升两相流体动力学及应用研究[D].北京:中国矿业大学,2000.
    [89]Li Pengcheng,Long Jiang,Zhou Jianjun,Han Wenliang.Simulation for the Motion of Polymetallic Nodules in Hydraulic Hoist for Deep Sea Mining[C].Proceedings of the 6th Ocean Mining Symposium.Changsha,China,ISOPE,2005.
    [90]Long Tian,Li Pengcheng,Long Jiang,Han Wenliang.Experiment Study on Critical Velocity in Vertical Pipes for Hydraulic Lifting[C].Proceedings of the 6th Ocean Mining Symposium.Changsha,China,ISOPE,2005.
    [91]Shen Yan-hua,Mao Ji-ling;Ling Sheng.Simulative analysis for deep-sea nodule lifting systems[J].Computer Applications in the Minerals Industries,2001:343-346
    [92]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997
    [93]张允真,曹富新.弹性力学及其有限元法[M].北京:中国铁道出版社,1983
    [94]李景涌.有限元法[M].北京:北京邮电大学出版社,1999
    [95]唐照千,黄文虎.振动与冲击手册(第一卷)[M].北京:国防工业出版社,1988
    [96]黄文.梁、板壳结构的几何非线性有限元分析[D].北京:北京农业工程大学,1995
    [97]郭乙木,陶伟明,庄茁.线性与非线性有限元及其应用[M].北京:机械工业出版社,2004
    [98]梁清香.有限元与MARC实现[M].北京:机械工业出版社,2005
    [99]Saeed Moavenl,欧阳宇,王崧 译.有限元分析——ANSYS理论与应用[M].北京:电子工业出版社,2003
    [100]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社,1999
    [101]Theory Reference[M].ANSYS,Inc.2000
    [102]Element Reference[M].ANSYS,Inc.2000
    [103]方钟圣.西北太平洋波浪统计集[M].国防工业出版社,1996.
    [104]郭琨.海洋手册[M].北京:海洋出版社,1984
    [105]邱大洪.波浪理论及其在工程中的应用[M].北京:高等教育出版社,1985
    [106]李远林.波浪理论及波浪载荷[M].广东:华南理工大学出版社
    [107]梅强中.水波动力学[M].北京:科学出版社
    [108]黄鹿祥.陆鑫深.海洋工程流体力学及结构动力响应[M].上海:上海交通大学出版社,1992
    [109]陆鑫森.高等结构动力学[M].上海:上海交通大学出版社,1992
    [110]益其乐,盛庆武,杨显成等.带小圆管圆柱振荡流中流体动力系数试验研究[J].中国造船,2001,42(2):19-25
    [111]杨显成.深海采矿中试系统运动和动力学分析计算[J].中国大洋矿产资源研究开发协会项目研究报告,2000
    [112]马良.海底管道在水流作用时诱发的振动效应[J].中国海洋平台,2000,15(2):30-34
    [113]董艳秋.波流联合作用下海洋平台张力腿的涡激非线性振动[J].海洋学报,1994,16(3):121-129
    [114]马驰,董艳秋,杨丽婷.海洋平台张力腿在两种边界条件下的涡激非线性振动的比较研究[J].船舶力学,2000,4(1):56-65
    [115]Argyris J.H,Kelsey S,et al.Matrix methods of structural analysis:a pr(?)cis of recent developments[J].Matrix Methods of Structural Analysis.Pergamon Press,London,1964,72:1-165.
    [116]Argyris J.H,Balmer H,et al.Finite element method-the natural approach[J].Comput.Meth.Appl.Mech.Eng,1979,17(1):1-106.
    [117]Argyris J.H.An excursion into large rotations[J].Comput.Meth.Appl.Mech.Eng,1982,32:85-155.
    [118] Hsiao K M, Homg H J, et al. A corotational procedure that handles large rotations of spatial beam structures[J]. Computers & structures, 1987, 27: 769-781.
    [119]Rankin C C, Brogan F A. An element independent corotational procedure for the treatment of large ratation[J]. Journal of Pressure Vessel Technology, 1986, 108: 165-174.
    [120]Belytschko T, Hsieh B J. Non-linear transient finite element analysis with convected co-ordinates [J]. Int. J. Numer. Meth. Eng, 1973 ,7: 255-271.
    [121]Belytschko T, Schwer L, et al. Large displacement transient analysis of space frame[J]. Int. J. Numer. Meth. Eng, 1977,11: 65-84.
    [122]Hughes T J R, Liu W K. Nonlinear finite element analysis of shells: Part I. Three-dimensional shell [J]. Comput. Meth. Appl.Mech.Eng,1981,26: 331-362.
    [123] Hughes T J R, Liu W K. Nonlinear finite element analysis of shells: PartⅡ. Two-dimensional shell [J]. Comput. Meth. Appl.Mech.Eng, 1981,27: 167-181.
    [124]Papadrakais M. Post-buckling analysis of spatial structures by vector iteration methods[J]. Computers & structures, 1981, 14: 393-402.
    [125]Meek J L, Tan H S. Geometrically nonlinear analysis of space frames by an incremental iterative technique [J]. Comput. Meth. Appl. Mech. Eng, 1984, 47: 261-282.
    [126]Horrigmoe G and Bergan P. G. Nonlinear analysis of free-form shells by flat finite elements [J]. Comput. Meth. Appl. Mech. Eng, 1978, 16: 11-35.
    [127]Belytschko T, Glaum L. Application of higher order corotational stretch theories to nonlinear plate and shell element[J]. Computers & structures, 1979, 10: 175-182.
    [128] Bathe K J, Ho L W. A simple and effective element for analysis of general shell structures[J]. Computers & structures, 1981, 13: 673-681.
    [129] Hsiao K M. Nonlinear analysis of general shell structrues by flat triangular shell eIement[J]. Computers & structures, 1981,13: 673-681.
    [130]Sandhu J S, Stevens K A, et al. A 3-D co-rotational, curved and twisted beam element[J]. Computers & structures, 1990, 35(1): 69-79.
    [131]Elkaranshawy H A, Dokainish M A. Corotational finite element analysis of planar flexible multibody systems[J]. Computers & structures, 1993, 54(5): 881-890.
    [132] James F M. A 7500-Ton-Capacity Shipboard Completely Gimbalied and Heave Compensated Platform[J]. OTC 2630,1976: 123-142.
    [133] Research Vessel Deepsea Miner II [R]. Deepsea Ventures Inc. 1977.
    [134] Williams D W. Deep Ocean Mining-Technology Transfer from and to the Offshore Drilling Industry [J]. OTC 2775,1977: 395-402.
    [135]Hironori Yasukawa, Kunihiro Ikegami. Motion Analysis of a Towed Collector for Manganese Nodule Mining in Ocean Test [J]. Proc 9th Offshore and Polar Eng Conf, Brest. ISOPE, 1999,1:100-106.
    [136]Atmanand M A, Kathiroli S. Status of India' s Mining Programme[C]. ISA Workshop on Polymetallic Nodule Mining Technology. ISA, Chennai, India, 2008.
    [137]Li L. Kinematic Simulation of COMRA's Self-propelled Vehicle[C]. Proc.5th Pacific/Asia Offshore Mech Symp, ISOPE, Daejeon, Korea, 2002,1:89-95
    [138] Wang Zhen-yu, Liu Shao-jun, Li Li. Crawling feasibility simulation study on tracked vehicle for deep ocean mining [J]. Journal of System Simulation, 2004, 16(4): 644-648.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700