径向柱塞泵滑靴副流场数值模拟与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
JBP系列径向柱塞泵是我国自主开发的具有高压力,大流量、高效率的容积式液压泵,在农业机械、工程机械、矿山机械、船舶制造等行业领域已经得到广泛应用,其性能将直接影响着液压系统的性能及运行情况。滑靴副作为该系列径向柱塞泵中的关键摩擦副之一,其性能对泵可靠性优劣起着至关重要的作用。因此,对其内部流场进行深入研究,较详细和较准确地掌握滑靴内部流体的流场和温度场分布,不仅具有理论意义,更具有很大的工程实用价值。
     1、本文将JBP32H径向柱塞泵滑靴-定子摩擦副作为研究对象,对其工作原理及结构进行分析研究,利用三维软件PRO/E建立了滑靴副流道的物理模型,利用GAMBIT建立了网格模型。
     2、根据计算流体力学的基本理论,建立描述滑靴副流道流动的数学模型,建立求解流场和温度场的控制方程和求解方程的基本假设和计算条件。并根据滑靴内液压油流动的实际流动情况,给出符合实际的初始以及边界条件。
     3、选用合适的仿真模型和设定相应的迭代初始参数,利用计算流体力学中有限体积法,选用laminar模型,选取FLUENT中的分离式求解器进行数值计算,得出不同工作条件下压力分布、速度分布以及温度场分布等相关数值模拟曲线。
     4、针对现有模型的不足,提出了一种改进的滑靴结构,并对改进后的滑靴副流道模型进行分析,数值计算结果表明改进方案可行。
     本文成功地将计算流体力学中的FLUENT软件引入到径向柱塞泵滑靴副研究领域,研究结果可以为以后JBP系列径向柱塞泵滑靴副进一步研究提供依据,对径向柱塞泵滑靴副结构设计和性能优化具有指导意义。
JBP radial piston pump is an independent development volume type hydraulic pump of our country,which has high pressure,large flow,high efficiency.It was widely used in the agricultural machinery,construction machinery,mining machinery,ship construction and so on.Its performance directly influences hydraulic system's performance and operational conditon.Slipper pair is one of the key friction pairs of this series pump,of which performance is playing the very important role to the pump's reliability.Therefore,conducting the further research to its ternal flow field and grasping the slipper pair internal fluid flow field and the temperature field distribution detailedly and accurately,not only has the theoretical signiflcances,but also has very practical values.
     Firstly,this paper analyzed the working principles and structure of the slipperstator friction pair of JBP32H radial piston pump,used three dimensional software PRO/E to establish the slipper pair's physical model,established the grid model by GAMBIT.
     Secondly,according to computational fluid dynamics' elementary theory,the paper established mathematical model of the slipper pair field's fluid flow,proposed the governing equations to solving flow field and the temperature fields,as well as the basic assumptions and calculation conditions of solving equation.And in term of the hydraulic oil's actual flow situation in the slipper,the initial conditions and boundary conditions that meet the actual conditions were given out.
     Thirdly,by selecting the appropriate simulation model and setting the corresponding iteration initial parameters,the model equations are solved by the Finite Volume Method and the segregated solver of FLUENT based on CFD principle and laminar flow model.The numerical simulation curves of the pressure distribution,the velocity distribution as well as the temperature field distribution under the different working conditions were obtained.
     At last,in view of the existing model's deficiency,this paper proposed an improved slipper structure and the improved model of slipper pair flow field was analyzed.The numerical calculation results indicated that the improved scheme was feasible.
     This paper applied iterative computation by using FLUENT software of CFD in the research of radial piston pump slipper pair successfully for the first time.The research results could provide evidences for the further researches on the slipper pair and have guiding significances for the radial piston pump slipper pair structure design and the performance optimization.
引文
[1]丁振乾.流体静压支承设计[M].上海:上海科学技术出版社,1989
    [2]何存兴.液压元件[M].北京:机械工业出版社,1982
    [3]上海煤矿机械研究所.液压泵和液压马达[M].北京:煤炭工业出版社,1976
    [4]徐绳武.柱塞式液压泵[M].北京:机械工业出版社,1985
    [5]许耀铭.曲轴连杆式液压马达提高性能和寿命的新设计方法[J].哈尔滨工业大学学报.1977,(4):3-11
    [6]Chen Zhuoru,Pan Shewei et al.A Study on the Dynamic Chracteristics of the Damping Capability Type Spherical Hydrostatic Bearing.Journal of Harbin Institute of Technology.1995,(2)
    [7]Chen Zhuoru,Liang Xingui,et al.Optimum Design and Dynamic Simulation of Double-pocket Bearing Friction Pairs between Eccentric Crankshaft and Connecting Rod Crankshaft Piston Motors.Chinese Journal of Mechanical Engineering.1993,6(4):15-20
    [8]唐群国.曲轴连杆液压马达球铰滑靴副的机理及试验研究[D].哈尔滨工业大学博士学位论文,2000
    [9]唐群国,陈卓如,陈晶田.曲轴连杆液压马达球铰滑靴副的机理及试验研究[J].机床与液压,2000(6):43-44
    [10]潘社卫,金朝铭等.液压马达滑靴副流场的数值模型研究[J].液压气动与密封,2001(4):21-23
    [11]胡新华.变粘度条件下静压支承滑靴副的研究[J].润滑与密封,2003(1):42-43
    [12]胡新华,杨继隆,姜伟.静压支承滑靴油膜的动态仿真分析[J].机床与液压,2003(1):85-86
    [13]贾跃虎,赵翠萍,刘良玉.径向柱塞泵高速滑动摩擦副的实验研究[J].流体传动与控制,2008(3):7-8
    [14]王志斌,高峰.液压泵滑靴实效分析与改进优化设计[J].材料工程,2005(11):54-57
    [15]魏聪梅,刘志奇,安高成等.径向柱塞泵中滑靴摩擦副的设计分析[J].流体传 动与控制,2004(11):4-6
    [16]C.J.Hooke.The Lubrication of Slippers in Axial Piston Pumps.5th International Fluid Power Symposium.University of Duham,England,1978:B2-13-16
    [17]Naohiro Iboshi.Characteristics of a Slipper Beating for Swash Plate Type Axial Piston Pumps and Motors.Bulletin of JSME.1986,29(254):2529-2544
    [18]Hooke,C.J.Kakoullis,Y.P.Lubrication of Slippers in Axial Piston Pumps,Hydraulic Fluids-Applications
    [19]T.A.Osman,M.Dorid,Z.S.Safar and M.O.Mokhtar.Experimental Assessment of Hydrostatic Thrust Bearing Performance.Tribology International,1996,29(3):233-239
    [20]T.A.Osman,Z.S.Safar and M.O.A.Mokhtar.Design of Annular Recess Aydrostatic Thrust Bearing under Dynamic Loading.Tribology International 1991,24(3):137-141
    [21]Satish C.Sharama,S.C.Jain and D.K.Bharuka.Influence of Recess Shape on the Performance of a Capillary Compensated Circular Thrust Pad Hydrostatic Bearing.Tribology International,2002,35(6):347-356
    [22]Ghosh MK,Mujumdar BC.Dynamic Stiffness and Damping Characteristics of Compensated Hydrostatic Thrust Bearing.ASME J.Of Lub.Tech,1982:104-491
    [23]徐文琴.静压支承油膜厚度的确定[J].机械制造与研究.2004,33(2):41-43
    [24]徐文琴.静压支承圆柱副动态特性研究[J].润滑与密封,2005(6):42-43
    [25]马文琦,姜继海,赵克定.变粘度条件下静压支承出油液阻的研究[J].中国机械工程,2001(7):818-820
    [26]柯坚,刘桓龙,刘思宁等.水压轴向柱塞泵滑靴静压支承分析与计算[J].中国机械工程,2003(2):101-104
    [27]赵雄等.液体动静压支承的功率消耗及温升研究[J].组合机床与自动化加工技术,2003(11):51-53
    [28]阳恩会,张建国,王存堂等.船用螺旋桨静平衡仪中球面静压支承静态特性分析[J].液压与气动,2005(1):23-26
    [29]孙雅洲,卢泽生,饶河清.基于FLUENT软件的多孔质静压轴承静态特性的仿真与实验研究[J].机床与液压,2007(3):170-172
    [30]周雪漪.计算水力学[M].北京:清华大学出版社,1995
    [31]郭鸿志.传输过程数值模拟[M].北京:冶金工业出版社,1998
    [32]王福军.计算流体力学-CFD软件原理与应用[M].北京:清华大学出版社,2004
    [33]姚征,陈康民.CFD通用软件综述[J].上海理工大学学报,2002,24(20):137-144
    [34]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001
    [35]FLUENNT Inc.,FLUENT USER'GUIDE.FLUENT Inc.,2003
    [36]乔中华.流体力学[M].太原:山西科学技术出版社,2001
    [37]林清安.Pro/ENGINEER野火中文版[M].北京:电子工业出版社,2006
    [38]陈燕生.流体静压支承原理和设计[M].北京:国防工业出版社,1980
    [39]盛敬超.液压流体力学[M].北京:机械工业出版社,1980
    [40]许耀铭.油膜理论与液压泵和马达的摩擦副设计[M].北京:机械工业出版社,1987
    [41]阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社,2006
    [42]韩占忠.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004
    [43]宋鸿尧,丁忠尧.液压阀设计与计算[M].北京:机械工业出版社,1982
    [44]雷天觉.液压工程手册[M].北京:机械工业出版社,1990
    [45]《机械设计手册》联合编写组.机械设计手册[M].北京:化学工业出版社,1987
    [46]张学学,李桂馥.热工基础[M].北京:高等教育出版社,2000
    [47]王存堂.工程机械液压系统及故障维修[M].北京:化学工业出版社,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700