大型超精密机床液压轴系幅板结构优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型非球曲面零件在国防科技工业、民用光机电产品等领域都有着十分重要的应用,大型超精密机床是加工该类零件的关键装备,为了保证该类零件的加工精度,目前国内外的大型超精密机床多采用液体静压主轴系统,以保证主轴轴系具有较高的回转精度和承载能力。
     液体静压主轴系统的上幅板是组成液体静压轴系的重要部件,由于液体静压轴系中油腔静压油压力的作用,上幅板在油腔压力作用方向会产生微米级的相对位移,引起轴系承载油膜厚度变化,影响超精密机床轴系的回转精度和刚度等关键技术指标。
     本论文通过对大型超精密机床液体静压轴系上幅板变形的理论分析,建立了其有限元数值计算模型,并通过具体的实验研究工作对模型加以修正。在油腔压力分别为1.0、1.5、1.8MPa三种情况下,用电感测微仪测试了幅板在油腔压力作用方向上的最大相对位移。当油腔压力为1.5MPa时,最大相对位移量为18.0μm,这些实测数据和有限元计算结果符合的较好。
     在以上分析的基础上,应用参数化有限元计算方法研究了幅板结构的4个重要参数——油腔压力中心线与螺钉孔间距、油腔压力中心线与内径间距、幅板厚度、幅板连接螺钉数目对上幅板在油腔压力作用方向上的相对位移的影响。接着针对原机床幅板结构进行了优化设计,当油腔压力为1.8MPa时,优化后的上幅板在油腔压力作用方向上的最大相对位移为2.6μm,达到了机床性能设计要求,可以保证大型非球曲面超精密加工机床液体静压轴系的承载能力和回转精度。
In the domain of national defence industry and civil optical-mechanical-electrical product, the large aspherical part have a very important application, and the large ultraprecise machine is the key equipment to process these part. In order to guarantee the machining accuracy of these part, the hydraulic principal axis system is applied in the large ultraprecise machine in the world presently, to ensure the principal axis system’s high rotating accuracy and carrying capacity.
     The up plank is a key part in the hydraulic bearing axis system, it would occur micrometer relative displacement in the direction of oil cavity pressure, which could be many micron. In this condition, the thickness of oil film in the main axis system is changed, so the key qualification of the bearing system is affected, such as rotating accuracy and rigidity.
     Based on theoretical analysis to the up plank’s distortion, the finite element method calculation model is established, by the certification of specific experiment, the validity of this FEM model is demonstrated. In the condition of the hydraulic pressure is 1.0、1.5 and 1.8MPa, the relative displacement of the up plank in the hydraulic pressure direction is tested using the inductance meter. It is indicated that when the oil pressure is 1.5Mpa, the largest relative displacement is 18.0 micron, which has a well agreement with the FEM calculation result.
     In the foundation of previous analyse, the APDL finite element calculation method is used to research the up plank’s relative displacement in the direction of oil pressure, which is related to three important structural parameter, such as the distance between the oil pressure’s centerline and the bolt hole、the thickness of the up plank、number of the connecting bolt. In succession, the optimization design method is used to get a better structural of the up plank, whose largest displacement in the oil pressure direction is 2.6macro when the pressure is 1.8Ma, this value could attain the performance design desire of the large machine, so the rotating accuracy and loading capacity of the large aspherical machine is guaranteed.
引文
1 Farah.A, Godoy. Finite Element Analysis of The GTC Commissioning Instrument Structure, Proceedings of SPIE-The International Society for Optical Engineering. 2002, 4837(1): 317~324
    2袁哲俊,王先逵.精密和超精密加工技术.机械工业出版社. 2003: 78
    3庞滔,郭人春等.超精密加工技术.国防工业出版社. 2000: 22~25
    4庞志成编著.液体气体静压技术.黑龙江人民出版社. 1981: 31~34
    5张冠坤,钟洪编著.液体动静压轴承.科学普及出版社广州分社. 1989: 55~57
    6袁哲俊.精密和超精密加工技术的新进展.工具技术. 2006,40(3) 5~6
    7广州机床研究所.液体静压技术原理及应用.机械工业出版社. 1978: 111~124
    8陈燕生等编.液体静压支承原理和设计.国防工业出版社. 1980: 111~124
    9丁振乾编著.流体静压支承设计.上海科学技术出版社. 1989: 15~19
    10许尚贤编著.液体静压和动静压滑动轴承设计.东南大学出版社, 1989: 27~39
    11张冠坤,钟洪编著.液体动静压轴承.科学普及出版社广州分社, 1988: 55~59
    12丁振乾,蒋福岩. DYNASTAT轴承基本特性分析.磨床与磨削. 1984,44(2) 170~173
    13广州机床研究所.国外静压技术发展概况.机床与液压. 2003: 1(39) 22~25
    14 Anwar. All-hydraulic Bearing Hydraulic Motor. Proceedings of the 3rd Inter-national Symposium on Fluid Power Transmission and Control. 1999,6(5): 179~183
    15 Aoyama. Dynamic Properties of a Hydraulic Bearing System. Qinghua Daxue Xuebao/Journal of Tsinghua University. 2000,56(3): 80~83
    16 King R.J. New kind of the Hydraulic Air Bearing. Run Hua Yu Mi Feng-Lubrication Engineering. 1999,14(1): 7~8
    17 Kohji ONDA. Work Principle and Characteristic Analysis of Hydraulic Bearing. Chinese Journal of Mechanical Engineering (English Edition). 2002,5(7): 162~166
    18 Kohji ONDA. Performance of Membrane Compensated Multirecess Hydraulic-hybrid. Flexible Journal Bearing System Considering Various Recess Shapes. Tribology International. 2004,36(105): 11~24
    19 Shinji KASEI. Static and Dynamic Performance of High Stiffness Hydraulic thrust Bearing by Movable Land.Nihon Kikai Gakkai Ronbunshu, C Hen/Transations of the Japan Society of Mechanical Engineer. 2005,78(13):3 278~3284
    20 Steinmetz. Sensitivity Studies for the Shallow-pocket Geometry of a Hydraulic thrust Bearing. American Society of Mechanical Engineers, The Fluid Power and Systems Technology Division. 2003,135(74): 231~238
    21 Yang Zhao. High Speed, High Temperature, Fault Tolerant Operation of a Combi-nation Magnetic-hydraulic Bearing Rotor Support System for Turbomachinery. Proceedings of the ASME Turbo Expo. 2004,17(5): 599~606
    22 Kane, N.R.A hydraulic Rrotary Bearing with Angled Surface Self-compensation. Precision Engineering. 2003,48(17): 125~139
    23 Kitamura, Mitsuru. Optimization of Ship Structure Based on Zooming Finite Element Analysis with Sensitivities. International Journal of Offshore and Polar Engineering. 2003,13(1): 60~65
    24 Wang Lili; Ge Peiqi, Lu, Changhou, Cheng Jianhui. Input Pressure Effects on the Static and Dynamic Characteristics of Hydrodynamic Lubrication Radial Sliding Bearing. Run Hua Yu Mi Feng/Lubrication Engineering. 2005,14(19): 26~28
    25党根茂.气体润滑技术.东南大学出版社, 1990: 105~112
    26董卫华.几何加工精度对气体动压径向轴承性能的影响.南京航空航天大学学报. 2004, 44(2) 170~173
    27韩荣德.复合形法在气体静压轴承设计中的应用.制造技术与车床. 1996, 3: 27~62
    28侯予,王瑾等.径向小孔静压气体轴承的试验研究.润滑与密封, 2002, 6: 13~14
    29丁振乾等.液体静压轴承的动态特性分析,第二次全国摩擦磨损润滑学术会议论文集, 1982
    30许尚贤,陈宝生.周向无回油槽油腔式静压轴承优化设计,南京工学院学报, 1985, 15(1): 152~162
    31许尚贤.摩擦学,南京工学院, 1985: 136~139
    32篮勋.润滑理论,上海交大出版社, 1984: 25~60
    33郭力.动静压滑动轴承及其支承主轴系统的研究.西安交通大学博士论文. 1999, 9: 6~9
    34余鸿钧.流体动静压混合轴承及主轴.河北科学技术出版社, 1993, 10: 75~77
    35郭力.高速主轴单元制造技术.国家科委先进制造技术发展规划, 1997
    36王志民.动静压混合轴承在机床改造中的应用.制造技术与机床, 1998, 6: 13~14
    37冯登泰.接触力学的发展概况.力学进展, 1987, 17 (4): 431~446
    38黄文彬.有限单元法基础.中国农业大学材料力学教研室, 1992: 136~145
    39 Rodriguez.M.P, Shammas.N.Y.A. Finite Element Simulation of Thermal Fatigue in Multilayer Structures: Thermal and Mechanical Approach. Microelectronics and Reliability. 2001,41(4): 517~523
    40 Mark F Adams. Multigrid Equation Solvers for Large Scale Nonlinear Finite Element. University of California at Berkeley. 1999,17(1): 56~59
    41 A. Ibrahimbegovic,B. Brank, J. Korelc.Nonlinear Shell Problem Formulation Accounting for Through-the-thickness Stretching and Its Finite Element Implementation. Computational Structures Technology. 2002,13(4): 47~51
    42 K. J. Bathe, J. F. Hiller, H. Zhang. On the Finite Element Analysis of Shells and Their Full Interaction with Navier-stokes Fluid Flows. Computational Structures Technology. 2002,21(4): 75~78
    43 E. D. Sotelino, Y. Dere. Parallel and Distributed Finite Element Analysis of Structures. Engineering Computational Technology. 2002,37(4): 146~153
    44 Cao Ji-Guang, Zhou Si-Zhu, Chen Wei-Qian. Analysis of Dynamic Property of Radar Antenna by Using Finite Element Method (FEM). Jianghan Shiyou Xueyuan Xuebao/Journal of Jianghan Petroleum Institute. 2002,24(1): 86~87
    45 K. Morgan, P. D. Ledger, J. Peraire, O. Hassan, N. P. Weatherill. Finite Element Methods for Electromagnetic Scattering. Engineering Computational Technology. 2002,17(4): 64~67
    46 Huanzhen Chen, Ziwen Jiang. A Characteristics-mixed Finite Element Method for Burgers Equation. The Korean Journal of Computational & Applied Mathematics 2004,57(14): 37~3
    47孙松林,王德信,谢能刚.接触问题有限元分析方法综述.水利水电科技进展. 1997, 6: 23~24
    48温卫东,高德平.接触问题数值分析方法的研究现状与发展.南京航空航天大学学报. 2004, 12(6): 592~597

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700