分层及饱和分层地基列车运行引起的地面振动特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着铁路尤其是高速铁路运输的发展,引起的振动日益频繁,对邻近振动敏感的精密仪器、设备和建筑物等有不可忽视的影响。一方面,随着高速铁路的发展,振动对人们生活环境和工作环境的影响愈显突出;另一方面,随着人们生活水平的提高,人们对生活环境和工作环境的质量要求也越来越高。铁路交通振动产生的环境影响与治理已成为亟需解决的重要课题之一。本文对铁路交通引起的地面振动的传播与衰减进行了研究,主要内容如下:
     (1) 把轨道作为弹性地基上的梁,考虑轨枕的离散作用,得到轨枕与道床之间的动反力,根据薄层法原理,推导了柱坐标系下的二次形函数薄层法模拟分层地基,得到了半空间分层土体的稳态响应,建立了运行车辆-轨道-地基的振动模型,得到频域内地基的振动响应,对频域内解答进行傅立叶逆变换得到时域振动反应;对分层地基上列车运行引起的地面振动进行分析,详细讨论了列车轴重、运行速度、列车长度等因素对地表振动的影响规律。结果表明:当列车速度小于场地的瑞利波速时,列车运行速度的提高对振动幅值的影响不大,而列车速度一旦接近场地的瑞利波速,场地的振动会显著增大;列车的固定轴距作用率对振动的频谱曲线影响比较明显,在移动轴重作用率附近出现加速度峰值;距轨道中心线越近,列车引起的地面振动越大,随着距离的增加而有较大的衰减,超过一定距离衰减变缓;振动加速度峰值受轮轴荷载的影响较大,基本上呈线性增加趋势;而列车长度对振动加速度的影响较小。
     (2) 从饱和土的Biot波动方程出发,根据薄层法的原理,将圆柱坐标系下饱和土的Biot轴对称波动方程在竖向进行离散,沿切向坐标及轴向分别进行Fourier级数分解和Hankel变换,得到饱和层状介质中频域波数域中的位移表达式,对此位移表达式进行Hankel逆变换和Fourier综合,求得频域柱坐标系内的位移表达式;结合运行列车-轨道-地基振动模型,对饱和分层地基上列车运行引起的地面振动进行分析,详细讨论了渗透系数、孔隙率、流体粘滞系数、剪切波速等主要土层参数对振动的传播及衰减的影响规律。结果表明:地基的第一层土体参数(表层参数)对列车运行引起的地面振动有较大的影响,随着表层土厚度的增加,下覆土层土体参数对地表振动的影响越来越小;地面振动随距
With the railway development, especially for high-speed train, the ground-borne vibration due to railway traffic has an increasing effect on precision instruments, equipment, buildings and the living environment of human beings as well. On the other hand, the increasing improvement of living standard makes the requirement to the environment of living and working more strictly than before. As a result, the project on the ground-borne vibration due to railway traffic is becoming a special concern in the civil and environmental engineering field. In this paper, the propagation and attenuation of the ground vibration due to high-speed train are studied. The main contents of the paper are as follows.
    The force between the sleeper and the ground is derived from the deflection curved of track, modeled as a beam on an elastic foundation. The basic solution of layered half space is obtained by the TLM (Thin Layer Method) using the second shape function and the vibration model of moving train-track-ground is constructed. The vibration amplitudes of the ground in the frequency domain can be calculated. By using IFFT, the vibration amplitudes in frequency domain are translated into time domain. The effects on the ground vibration by the factors such as the length, the load and the speed of the train are analyzed. The results indicated that the acceleration spectrum has a maximum at the fundamental axle passage frequency; the acceleration has a rather weak dependence on train speed when the speed below the Ralyeigh wave velocity of the upper layer, while a vibration boom may be expected when the train speed reaches this Ralyeigh wave velocity. A common character is that vibration generated by traveling trains attenuates much quickly in the near distance and decreases slowly in the far distance. The ground vibration is effected largely by the load of the axis and less by the train length.
    Based on Biot's dynamic equation, the TLM is adopted to derive the solution of Lamb's problem for layered saturated foundation under the action of dynamic load. The displacement expression in the frequency-wave number domain for layered
引文
[1] Okumura, Y and Kuno, K. Statistical analysis of field data of railway noise and vibration collected in an urban area. Applied Acoustics, 1991,33: 263-280
    
    [2] Hardy, M S A and Cebon, D. Response of continous pavements to moving dynamic loads. Journal of Engineering Mechanics, 1993,119(9): 1762-1780.
    [3] Bogaez, R. On dynamics and stability of continuous systems subjected to a distributed moving load. Ingenieur-Archiv, 1983, 53: 243-255.
    [4] Chen, Y H and Huang, Y H. Dynamic stiffness of infinite Timoshenko beam on viscoelastic foundation in moving co-ordinate. International Journal for Numerical Methods in Engineering, 2000,48: 1-18.
    [5] Chen, Y H, Huang, Y H and Shih, C T. Response of an infinite Timoshenko beam on a viscoelastic foundation to a harmonic moving load. Journal of Sound and Vibration, 2001, 241(5): 809-824.
    [6] Coskun, I and Engin, H. Non-linear vibrations of a beam on an elastic foundation. Journal of Sound and Vibration, 1999, 223(3): 335-354.
    [7] Coskun, I. Non-linear vibrations of a beam resting on a tensionless Winkler foundation. Journal of Sound and Vibration, 2000, 236(3): 401-411.
    [8] Sun, L and Deng, X. Dynamic analysis to infinite beam under a moving line load with uniform velocity. Applied Mathematics and Mechanics (English Edition), 1998,19(4): 367-373.
    [9] Dieterman, H A and Metrikine, A. The equivalent stiffness of a half-space interacting with a beam critical velocities of a moving load along the beam. European Journal of Mechanics, 1996,15(1): 67-90.
    [10] Metrikine, A and Dieterman, H A. Three-dimensional vibrations of a beam on elastic half-space: Resonance interaction of vertical-longitudinal and lateral beam waves. ASME Journal of Applied Mechanics, 1997, 64: 951-956.
    
    [11] Metrikine, A and Dieterman, H A. Lateral vibrations of an axially compressed beam on an elastic half-space due to a moving lateral load. European Journal of Mechanics, 1999,18:147-158.
    [12] Metrikine, A and Popp, K. Steady-state vibrations of an elastic beam on a visco-elastic layer under a moving load. Archieve of Applied mechanics, 2000, 70:399-408.
    [13] Jones, C J C and Block, J R. Prediction of ground vibration from freight trains. Journal of Sound and Vibration, 1996,193(1): 205-213.
    [14] Jones, D V and Petyt, M. Ground vibration in the vicinity of a strip load: an elastic layer on a rigid foundation. Journal of Sound and Vibration, 1992, 152(3): 501-515.
    [15] Jones, D V and Petyt, M. Ground vibration in the vicinity of a strip load: an elastic layer on elastic half-space. Journal of Sound and Vibration, 1993, 161(1): 1-18.
    [16] Jones, D V and Petyt, M. Ground vibration in the vicinity of a rectangular load on a half-space. Journal of Sound and Vibration, 1993,166(1): 141-159.
    [17] Jones, D V, Laghrouche, O, Le Houedec, D, and Petyt, M. Ground vibration in the vicinity of a rectangular load acting on a viscoelatic layer over a rigid foundation. Journal of Sound and Vibration, 1997, 202(2): 307-319.
    [18] Jones, DV,Le Houedec, D, Peplow, A T, and Petyt, M. Ground vibration in the vicinity of a moving harmonic rectangular load on a half-space. European Journal of Mechanics, 1998,17:153-166.
    [19] Jones, D V, Le Houedec, D, and Petyt, M. Ground vibrations due to a rectangular harmonic load. Journal of Sound and Vibration, 1998, 212(1): 61-74.
    [20] Sheng, X, Jones, C J C, and Petyt, M. Ground vibration generated by a harmonic load acting on a railway track. Journal of Sound and Vibration, 1999, 225(1): 3-28.
    [21] Sheng, X, Jones, C J C, and Petyt, M. Ground vibration generated by a load moving along a railway track. Journal of Sound and Vibration, 1999, 228(1): 129-156.
    [22] Jones, C J C, Thompson, D J, and Petyt, M. Studies using a combined finite element and boundary element model for vibration propagation from railway tunnels. In Proceedings the Seventh International Congress on Sound and Vibration, Garmish-Partenkirchen, 2000. 2703~2710.
    [23] Kausel, E and Roessct, J M. Semi analytic Hyperelcment for Layered Strata, Journal of The Engineering Mechanics Division, 1977, vol. 4: 569~588.
    [24] Kausel, E. The Thin-Layer Method in seismology and earthquake engineering, in Wave Motion in earthquake Engineering, Kausel, E. Ed. Southampton, Boston: WIT Press, 2000. 193~213.
    [25] Lysmer, J. Lumped mass method for Rayleigh waves, Bulletin of the seismological Society of America, 1970, vol. 60: 89~104.
    [26] Waas, G. Linear Two-Dimensional Analysis of Soil Dynamics Problems in Semi-Infinite Layered Media, Doctor. Berkeley: The University of California, 1972.
    [27] Tajimi, H. A Contribution to Theoretical Prediction on Dynamic Stiffness Surface Foundations, presented at Proceeding 7th World Conference on Earthquake Engineering, Istanbul, 1980.
    [28] Waas, G. Displacement solutions for dynamic loads in transversely isotropic stratified media. Soil Dynamics and Earthquake Engineering, 1985,13:173~193
    [29] Kausel, E. An Explicit Solution for The Green Functions for Dynamic loads in Layered Media, Department of Civil Engineering, MIT, Cambridge, 1981.
    [30] Seal, S H. Dynamic loads in layered halfspaces, in Department of Civil Engineering, PhD. Cambridge: MIT, 1985.
    [31] Kausel, E. Thin-Layer Method Formulation in the Time Domain, International Journal for Numerical Methods in Engineering, 1994, vol. 37: 927~929.
    [32] Sen, R. Green's Function Implementation for Pile Analysis, Journal of Engineering Mechanics, ASCE, 1987, vol. 113: 594~609.
    [33] 长谷川正幸,弹性波動论基群杭動的举動関基礎的研究,清水建设株式会社 1993.
    [34] Bougacha, S. and Tassoulas, J L. Seismic analysis of gravity dams, I: modeling of sediments, Journal of Engineering Mechanics, ASCE, 1991, vol. 117: 1826~1837.
    [35] Bougacha, S. andTassoulas, J L. Analysis of foundations on fluid-filed poroelastic stratum, Journal of Engineering Mechanics, ASCE, 1993, vol. 119: 1632~1648.
    [36] Nogami T. and Kazama, M. Dynamic response analysis of submerged soil by thin layer element method, Soil Dynamics and Earthquake Engineering, 1992, Vol. 11: 17~26.
    [37] Nogami, T. Thin layer element method for dynamic soil-structure interaction analysis of axi-symmetric structure in submerged soil, Soil Dynamics and Earthquake Engineering, 1997, vol. 16: 337~351.
    [38] 陈清军,层状土介质中群桩及其上部结构体系对倾斜入射地震波的响应,同济大学博士学位论文,1992.
    [39] 杨正文,卢文达,分析土壤半无限域的一种有限层方法(Ⅰ)—一般理论,应用数学和力学,1992,881~890.
    [40] 卢文达,杨正文,分析土壤半无限域的一种有限层方法(Ⅱ)—几种特殊情形及算例,应用数学和力学,1992,945~950.
    [41] 谢伟平,移动荷载作用下基于薄层单元法的土动力分析,华中科技大学学报,2004,21:8~11.
    [42] 陈镕,横观各向同性层状场地的动力分析及应用,同济大学博士学位论文,1999.
    [43] 李伟.层状地基WIB主动隔振分析,同济大学博士学位论文,2005.
    [44] Kausel, E and Tassoulas, L. Transmitting boundaries: a closed-form comparison. Bulletin of the Seismological Society of America, 1981, 71(1): 143~159.
    [45] Jones, C J C, Wang, A, and Dawn, T M. Modelling the propagation of vibration from railway tunnels. In Computational Acoustics and its Environmental Applications, Southampton, 1995, 285~292.
    [46] Becker, A and Schenkengel, K U. Conforming infinite elements for FE-calculations in soil dynamics. In Proceedings of the seventh international conference on soil dynamics and earthquake engineering, 1995, 35~44.
    [47] Gallego, R and Dominguez, J A. united formulation of two existing time-domain boundary element approaches. Communications in Applied Numerical Methods, 1990, 6: 17~25.
    [48] Banerjee, P K and Mamoon, S M. A fundamental solution due to a periodic point force in the interior of elastic half-space. Earthquake Engineering and Structural Dynamics, 1990,19: 91-105.
    [49] Muravskii, G B. Green functions for an incompressible linearly nonhomogeneous half-space. Archieve of Applied Mechanics. 1996,67: 81-95.
    [50] Saez, A and Domínguez, J. BEM analysis of wave scattering in transversely isotropic solids. International Journal for Numerical Methods in Engineering, 1999,44:1283-1300.
    [51] Saez, A and Dominguez, J. Far field dynamic Green's functions for BEM in transversely isotropic solids. Wave Motion, 2000,32:113-123.
    [52] Pak, R Y S and Guzina, B B. Seismic soil-structure interaction analysis by direct boundary element methods. International Journal of Solids and Structures, 1999, 36: 4743-4766.
    [53] Dominguez, J and Meise, T. On the use of the BEM for wave propagation in infinite media. Engineering Analysis with Boundary Elements, 1991, 8(3): 133-138.
    [54] Achenbach, J D. Wave Propagation in Elastic Solids. Amsterdam: North-Holl and Publishing Company. 1973
    [55] Alarcon, E, Cano, J J, and Dominguez, J. Boundary element approach to the dynamic stiffness functions of circular foundations. International Journal for Numerical and Analytical Methods in Geomechanics, 1989,13: 645-664.
    [56] Antes, H and von Estorff, O. Dynamic response analysis of rigid foundations and of elastic structures by boundary element procedures. Soil Dynamics and Earthquake Engineering, 1989, 8(2): 68-74.
    [57] Lombaert, G, Degrande, G, and Clouteau, D. Numerical modelling of free field traffic-induced vibrations. Soil Dynamics and Earthquake Engineering, 2000, 19: 473-488.
    [58] Tanrikulu, A H, Yerli, H R, and Tanrikulu, A K. Application of the multi-region boundary element method to dynamic soil-structure interaction analysis. Computers and Geotechnics, 2001, 28: 289-307.
    [59] Gavric, L. Computation of propagative waves in free rail using a finite element technique. Journal of Sound and vibration, 1995,185: 531-543
    [60] Gavric, L. Finite element computation of dispersion properties of thin-walled waveguides. Journal of Sound and vibration, 1994,173:113-124.
    [61] Papageorgiou, A S and Pei, D. A discrete wavenumber boundary element method for study of the 3-D response of 2-D scatterers. Earthquake Engineering and Structural Dynamics, 1998, 27: 619-638.
    [62] Tadeu, A J B and Kausel, E. Green's functions for two and a half-dimensional elastodynamic problems. Journal of Engineering Mechanics, 2000, 126(10): 1093-1097.
    [63] Tadeu, A J B, Antonio, J, and Godinho, L. Green's function for two-and-a-half dimensional elastodynamic problems in half-space. Computation Mechanics, 2001, 27: 484-491.
    [64] Hirose, S. Boundary element modelling and analysis of moving loads in time and frequency domains. In Chouw, N and Schmid, G (Eds.), Wave 2000, Bochum, Germany, Rotterdam: A.A. Balkema. 2000, 251-268.
    [65] Sheng, X., Jones, C J C and Thompson, D J. Modelling ground vibration from railways using wavenumber finite and boundary element methods. Proceedings of the Royal Society A. 2005, 461: 2043-2070.
    [66] Von Estorff, O and Kausel, E. Coupling of boundary and finite elements for soil-structure interaction problems. Earthquake Engineering Structural Dynamics, 1989,18:1065-1075.
    [67] Von Estorff, O. Dynamic response of elastic blocks by time domain BEM and FEM. Computers and Structures, 1991, 38(3): 289-300.
    [68] Auersch, L and Schmid, G. A simple boundary element formulation and its application to wavefield excited soil-structure interaction. Earthquake Engineering and Structural Dynamics, 1990,19: 931-947.
    [69] Mohammadi, M and Karabalis. Dynamic 3-d soil-railway track interaction by bem-fem. Earthquake Engineering and Soil Dynamics, 1995, 24: 1177-1193.
    [70] Pan, G and Atluri, S N. Dynamic response of finite sized elastic runways subject to moving loads: a coupled BEM/FEM approach. International Journal for Numerical Methods in Engineering, 1995, 38: 3143-3166.
    [71] Clouteau, D, Elhabre, M L, and Aubry, D. Periodic BEM and FEM-BEM coupling-Application to seismic behaviour of very long structures. Computational Mechanics, 2000, 25: 567~577.
    [72] 赵成刚,杜修力,崔杰.固体、流体多相孔隙介质中的波动理论及其数值模拟的进展.力学进展,1998,28(1):83~92.
    [73] Jones, J P. Pulse propagation in a poroelastic Solid. Journal of Applied Mechanics, 1969, 36(4): 879~880
    [74] Garg, S K, Nayfeh, H, and Coosd, A J. Compressional waves in fluid-saturated elastic Porous media, Applied Physics, 1974,45: 1968~1974.
    [75] Simon, B R, Zienldewicz, O C, and Paul, D K. A solution for the transient response of Saturated porous-elastic solids, International Journal for Numerical Analysis and methods in geomechanics, 1984, 8: 381~398.
    [76] Van Der Gtinten, J G M. and Van Dongen, M E H. Strain and pore pressure Propagation in a water-saturated porous medium. Journal of Applied Physics, 1987, 62: 4682~4687.
    [77] Gajo, A. Influence of viscous coupling in propagation of elastic waves in saturated soil, Journal of Geotechnic Engineering, 1995, 121(9): 636~644.
    [78] Paul S. On the displacements produced in a porous elastic half-space by an impulsive line load (non-dissipative case), Applied Geophysics, 1976,114: 605~614.
    [79] Philippacopoulos, A J. Lamb's problem for fluid saturated porous media. Bulletin of the Seismological Society of America, 1988, 78 (2): 908~923.
    [80] Norris, A N. Radiation from a point source and scattering theory in a fluid saturated porous solid. Journal of Acoustic Society of American, 1985, 77: 2012~2023.
    [81] Kaynia, A M. and Banetjee, P K. Fundamental solutions of Biot's equations of dynamic poroelasticity. International Journal of Engineering Society, 1993, 31(5): 817~830.
    [82] Chen, J. Time domain fundamental solution to Biot's complete equations of dynamic poroelasticity, Part Ⅰ: two-dimensional solution. International Journal of Solids and Structure, 1994, 31(10): 1447~1490.
    [83] Philippacopoulos, A J. Waves in a partially saturated layered half space: analytic formulation. Bulletin of the Seismological Society of America. 1987,77(5): 1838~1853.
    [84] 杨竣.层状饱和土中波的传播[D].浙江大学博士学位论文,1996
    [85] 王立忠,陈云敏,吴世明.饱和弹性半空间在低频谐和集中力下的积分形式解.水利学报,1996,2:84~88.
    [86] 丁伯阳,樊良本,吴建华.两相饱和介质中的集中力点源位移场解与应用.地球物理学报,1999,42(6):803~807.
    [87] 黄义,张玉红.饱和土三维非对称lamb问题.(中国科学E辑),2000,30(4):375~384.
    [88] 张引科,黄义.横观各向同性饱和弹性多孔介质非轴对称动力响应,应用数学与力学,2001,22(1):56~69.
    [89] 陈胜立,张建民,陈龙珠.饱和土中埋置点源荷载的动力Green函数.岩土工程学报,2001,23(4):423~426.
    [90] 周香莲,王建华,陆建飞.饱和土表面在水平集中荷载作用下的瞬态反应.岩土力学,2002,23(2):387~391.
    [91] 金波,徐植信.多孔饱和半空间上刚体垂直振动的轴对称混合边值问题.力学学报,1997,29(6):711~719.
    [92] 陈龙珠,陈胜立.饱和地基上刚性基础的竖向振动分析.岩土工程学报,1999,21(4):392~397.
    [93] 陈龙珠,陈胜立.饱和地基上弹性圆板的动力响应.力学学报,2001,33(6):821~827.
    [94] 陈胜立,陈龙珠.上覆单相弹性土层的饱和地基上刚性基础的竖向振动轴对称混合边值问题,应用数学与力学,2002,23(2):201~206.
    [95] Zienkiewicz, O C and Shiomi, T. Dynamic behavior of saturated porous media, the general Boit formulation and its numerical solution. International Journal of Numerical and Analytical Methods in Geomechics, 1984, 8(1): 71~96
    [96] Prevost, J H. Wave propagation in fluid-saturated porous media: An efficient finite element procedure. Soil Dynamic and Earthquake Engineering, 1985, 4(4): 183~201
    [97] Zienkiewicz, O C, Paul, D K and Chan, A H C. Unconditionally stable staggered solution procedure for soil-pore fluid interaction problems. International Journal of Numerical and Analytical Methods in Geomechnics, 1988, 26: 1039~1055
    [98] Huang, M S and Zienkiewicz, O C. New unconditionally stable staggered solution procedure for coupled soil-pore fluid dynamic problems. International Journal of Numerical and Aalytical Methods in Geomechnics, 1998, 43: 1029~1052
    [99] 赵成刚,王进廷,史培新,李伟华.流体饱和两相多孔介质动力反应分析的显式有限元方法.岩土工程学报,2001,23(2):178~182
    [100] 杨军,宋二祥.饱和无限地基动力反应的有限元分析.清华大学学报,1999,39(12):82~85
    [101] kiyoshi, A T, Fuchida, K and Fang, H L Absorbing boundary conditions for dynamic analysis of fluid-saturated porous media. Soil Dynamic and Earthquake Engineering, 1994, 13(6): 387~397
    [102] 王栋,栾茂田.波浪作用下粘弹性海床动力响应的数值分析.工程力学,2002,19(4):130~134
    [103] Sandlu, R S. and Hong, S J. Dynamics of fluid-saturated soils variational formulation. International Journal of Numerical and Analytical Methods in Geomechnics, 1987, 11: 241~255.
    [104] Cheng, A H D, Badmus, J and Beskos, D E. Intergral equations for dynamic poroelasticity in frequency domain with BEM solution. Journal of Engineering Mechanics. ASCE, 1991, 117(5): 1136~1157.
    [105] Dominguez, J. Boundary elementary approach for dynamic poroelastic problems. International Journal of Numerical Methods in Engineering, 1992, 35(2): 307~324.
    [106] Chen, J and Dargush, G F. Boundary element method for dynamic poroelastic and thermoelastic analysis. International Journal of solids and structure, 1995, 32(15): 2257~2278
    [107] Dargush, G F and Chopra, M B. Dynamic analysis of axis-symmetrical foundation on poroelastic media. Journal of Engineering Mechanics, ASCE, 1996, 122(7): 623~632
    [108] Krylov, V V. Ground Vibration Boom from High-Speed Trains. Journal of Low Frequency Noise. Vibration and Active Control. 1999, 18(4): 251~283.
    [109] Yang, Y B, Hung, H H and Chang, D W. Train-induced wave propagation in layered soils using finite/infinite element simulation. Soil Dynamics and Earthquake Engineering, 2003, 23: 263~278
    [110] Takemiya, H. Field vibration mitigation by homeycomb WIB for pile foundations of a high-speed train viaduct. Soil Dynamics and Earthquake Engineering, 2004, 24: 69~87
    [111] 夏禾,张楠,曹艳梅.列车对周围地面及建筑物振动影响的试验研究.铁道学报,2004,26(4):93~98
    [112] 边学成,列车运动荷载作用下地基和隧道的动力响应分析,杭州:浙江大学博士学位论文,2005
    [113] 孙雨明.铁路交通产生的地面振动与排桩隔振,上海:同济大学博士学位论文,2003
    [114] Lomaert, G, Degrande, G. Experimental validation of a numerical prediction model for free field traffic induced vibrations by in situ experiments. Soil Dynamics and Earthquake Engineering, 2001, 21(6): 485~497
    [115] Kausel, E, and Seal, S H. Static loads in layered halfspaces. Journal of Applied Mechanics, ASME, 1987, 54(2): 403~408
    [116] Seal, S H and Kausel, E. Dynamic and static impedances of eross-anisotropic halfspaces. Soil Dynamics and Earthquake Engineering, 1990, 8(4): 172~178
    [117] 王贻荪.地面波动分析若干问题.建筑结构学报,1982,4(2):16~17
    [118] 雷晓燕.轨道力学与工程新方法.北京:中国铁道出版社,2002
    [119] Biot, M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. Journal of Acoustics Society of America, 1956, 28: 168~191
    [120] Biot, M A. Generalized theory of acoustic propagation in porous dissipative media. Journal of Acoustics Society of America, 1962, 34: 1254~1264
    [121] 杨军,宋二祥.饱和无限地基动力反应的有限元分析.清华大学学报,1999,(12):82~85
    [122] 中国地震局.地震及前兆数字观测技术规范之地震观测。北京:地震出版社,2001
    [123] 李丽,彭文涛,李纲等.可作为新震源的列车振动及实验研究.地球物理学报,2004,47(4):680~684
    [124] Miller, G F, Pursey, H. On the partition of energy between elastic waves in a semi-infinite solid. Proceeding of Royal Society: London, 1955: 259~268
    [125] Woods, R D, Barnet, N E and Sangesser, R. Holography, a new tool for soil dynamics. Journal of Geotechnical Engineering Division, ASCE 1974; 100(11): 1234-1247.
    [126] 茅玉泉.地面振动传播衰减研究的概括和发展.第一届全国建筑振动学术交流会论文集,1995:352~362
    [127] 中国船舶工业总公司第九设计研究院.隔振设计手册.北京:中国建筑工业出版社,1986
    [128] 中华人民共和国标准.动力机器基础设计规范(GB50040-96).北京:中国计划出版社,1996
    [129] 茅玉泉.交通运输车辆引起的地面振动特性和衰减,建筑结构学报,1987,1:67~77
    [130] 庄司光等.卫生工学噪音振動篇、朝仓书店,1980:518~521
    [131] 竹宫宏和、合田 和哉、小森 大资,高速列车走行沿線地盘振動予测、土木工学会论文集,1999,619:193~201
    [132] 吉岗修.新幹線列车走行沿線地盘振動、铁道技术,1986,7:265~269
    [133] 石桥敏久等.电车走行地盘及地盘一基础振動传播性状,地盘环境振動评价预测对策关,2001,11~16
    [134] 杨先健.《工业环境振动与文物故迹防振规范》——铁路、道路引起的地面振动计算分析报告(内部资料).机械工业部第四设计研究院.2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700