考虑地基及部分楼板变形的框—剪结构分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在框架-剪力墙结构设计中,通常采用楼板在自身平面为刚性的假设。这一假设虽然大大简化了计算工作,但对平面布置不规则的建筑形式,如:个别抗侧力单元的间距很大,楼板刚度变小;建筑平面布置使楼板出现‘瓶颈区’,抗侧力结构沿高度方向有巨大的刚度突变;部分楼板平面形状不规则或有较大的开洞等情况时不能采用此假设,而全部按弹性楼板计算会使计算量很大。若仅对刚度有削弱的楼板考虑为弹性楼板,其它楼板按刚性计算则不仅满足计算精度且减小了计算量。
     对于地基变形即结构地基和基础共同作用的问题已经在各种结构设计计算中被广泛讨论。一般的计算方法是考虑地基模型为文克尔地基模型,但该模型具有不能扩散应力和变形的缺陷,不适宜做为高层建筑地基模型。本文考虑到地基土位于地下水以下时形成饱和土,它是一种流体饱和多孔介质,此时的地基宜模拟成各向同性的弹性半无限空间地基模型,而一般高层建筑地基较深,多处于地下水以下,故本文采用弹性半无限空间地基模型来模拟地基变形。
     本文主要对考虑地基及部分楼板变形的框-剪结构进行协同、二阶、动力特性和整体稳定的分析。在进行结构协同分析时,我们考虑部分楼板的变形影响,将楼板分成若干个刚性区域,每个刚性区域内的框架和剪力墙分别合并为一个综合框架和一个综合剪力墙,它们之间由刚性连杆连接成一个框-剪单元,综合框架和综合剪力墙均考虑其弯曲和剪切变形,可看作是竖放的铁摩辛柯梁。各个刚性区域间通过弹簧连接,形成空间协同工作体系。对弹性楼板和连梁的作用视为楼层标高处的弹性支撑。考虑上部结构、地基和基础共同作用,认为地基对结构有水平刚度和竖向转动刚度。从而建立考虑地基及部分楼板变形的计算模型。
     针对该模型,利用哈密顿力学原理,通过引入的对偶变量,将问题的求解从拉格朗日体系导向哈密顿体系。运用两端边值问题的精细积分法,通过Matlab语言编制计算程序求解结构的状态向量从而得到精确的数值解。最后通过实例分析并与有限元计算对比数据,得到了地基及部分楼板变形对建筑结构协同、二阶、动力特性和整体稳定影响的一些有用结论。整个数值算法具有稳定性高、精度高、收敛快的优点,为研究此类工程问题提供了一种新方法、新途径,有一定的工程参考价值。
The assumption of rigid slab is usually applied in the structural design of frame-shear wall structures, which greatly simplifies the calculation.But the assumption should not be used for the irregular layout of the building, such as: smaller slab stiffness caused by larger individual anti-side force unit spacing; enormous stiffness mutation of anti-side structure along the height direction due to the'bottleneck area' of building floor layout; some floor slabs with irregular shape or a larger open hole. However, great calculation amount is got by assumption of all elastic slab.If the floors with weakened stiffness are considered as flexible floor and others rigid, the computing accuracy is meeted and computational complexity is reduced.
     The combined effect of the foundation and base has been widely discussed in a variety of structural design calculations. Winkler foundation model is generally used. But it is not appropriate as a model of high-rise building foundation because the model cannot describe the spread of stress and deformation. The foundation soil at the groundwater below is saturated soil, which is a fluid-saturated porous media.So the foundation is analoged into isotropic elastic semi-infinite space foundation model.For the high-rise building foundations is deeper generally, most in the groundwater below, so semi-infinite elastic foundation model is used to simulate spatial deformation of the foundation in this paper.
     The frame-shear structure of coordination, the second order, the dynamic properties analysis and the overall stability analysis were performed mainly considering the deformation of the foundation and part of floor. In the cooperative analysis study of structure, the slab is divided into a number of rigid regions by the part of the deformation of floor slab. The framework and the wall within each rigid region were merged into a comprehensive framework and an integrated wall respectively, which were formed into frame-shear wall unit. Integrated framework and an integrated wall are regared as Timoshenko beam placed vertically considering bending and shear deformation. Various rigid regions were connected through the spring to form a collaborative work space system. The elastic floors and coupling beams were regarded as the elastic support of the floor elevation. The foundation of the structure has horizontal and vertical and rotation bound by considering the common role among the upper part of the structure, the foundation and basis. Thus the calculation model was set up to consider part of the foundation and slab deformation.
     Taking the parallel Timoshenko beams as calculation model, using Hamiltonian mechanics, by introducing the dual variables, the solution of the problem was oriented from the Lagrangian system to Hamiltonian system. The precise integration method of two end boundary conditions was adopted to realize the high-precision numerical solution of the system by means of computer progrmmers with Matlab. Finally, through examples of analysis and comparison with finite element data , some useful conclusions on the impact of synergies and second power characteristics and the overall stability by the deformation of foundation and floor of structure. The high stability , high precision and quick convergence are the advantage of the numerical algorithm,which must have reference value to the project since it provided a new method, new ways for the study of such works.
引文
[1]包世华..新编高层建筑结构[M] .北京:中国水利水电出版社,2001.
    [2]彭维.高层建筑结构设计原理[M].成都:西安交通大学出版社,2004.282~303
    [3]董建国.赵锡宏.高层建筑地基基础—共同作用理论与实践[M].上海:同济大学出版社,1997.6~96
    [4]宰金珉,赵锡宏.高层建筑基础分析与设计[M].北京:中国建筑工业出版社,1993.
    [5]黄义,何芳社.弹性地基上的梁、板、壳[M].北京:科学出版社,2005.1~23
    [6] JGJ 3-2002,高层建筑混凝土结构设计规范[S]
    [7]方鄂华,钱稼茹,叶列平.高层建筑结构设计[M].北京:中国建筑工业出版社,1993.90~143
    [8]裴星洙,张立.高层建筑结构的设计与计算.北京:中国水利水电出版社,北京:知识产权出版社,2007.
    [9]刘冬生,胡恒.上部结构与地基基础协同计算的应用研究[J].探矿工程,2005(增刊):57~59
    [10]徐礼华,刘祖德,茜平一,丁仕苗.高层建筑物—桩筏基础—地基相互作用体系动力特性分析,建筑结构[J].1996:180~187
    [11]罗芹,朱红霞,赵洪峰.高层建筑箱基地基变形计算方法探讨[J].城市勘测,2006(3):71~73
    [12]周同和.复合地基变形计算理论方法探讨[J].建筑科学,2005,21(1):61~65
    [13]钟阳,孙爱民,刘文光.弹性地基上四边自由矩形薄板的自由振动[J].振动工程学报, 2006,19(4):566~570
    [14]龚耀清,马伏龙.弹性地基上空间巨型框架结构的简化振动分析[J].工程力学,2007,24(3):8~12
    [15]贺会军.高层建筑上部结构与地基和基础共同工作的研究[J].山西建筑,2006,32(1): 68~69
    [16]张铜生,包世华.高层建筑结构考虑楼板变形和地基变形的计算[C].第十二届全国高层建筑结构学术交流会论文集,1992:765~772
    [17]包世华,张铜生.变截面框架—剪力墙—薄壁筒斜交结构考虑地基变形时的计算[C].第十二届全国高层建筑结构学术交流会论文集,1992:783~792
    [18]包世华,龚耀清.筒体结构考虑地基变形时的计算[J].工程力学增刊,1996(3):488~491
    [19]龚耀清,包世华,龙驭球.半无限大弹性地基上变截面筒中筒高层建筑结构的自由振动[J].工程力学,1999,16(3):7~14
    [20] BAO S. H.,ZHANG T. S. Vibrational analysis of tall building structures with consideration of floor slab and base soil deformations[C]. The 3rd World congress on Comput, Mech , Chiba, Japan, 1994:107~108
    [21] BAO S. H., ZHANG TONGSHENG. Analysis of tall building structures with stepped cross-sections and with base soil deformations considered. Proc[C]. Of 4th EPMESC. Dalian, China, 1992: 417~424
    [22]李玉杯,熊峰.高层建筑上部结构、基础与地基土共同作用的地震时程分析[J].四川建筑科学研究,2005,31(2):98~102
    [23]王晖,吴胜发,孙作玉.地基不均匀沉降对上部结构影响的三维弹性支承分析法[J].岩土工程技术,2005,19(3):137~140
    [24]吴胜发,孙作玉.地基不均匀沉降对上部结构内力和变形的影响[J].广州大学学报,2005,4(3):261~266
    [25]干腾君,康石磊,邓安福.考虑上部结构共同作用的弹性地基上筏板基础分析[J].岩士工程学报,2006, 28(1):110~112
    [26]黄记专.基础转动变形对框剪结构的影响分析与计算[J].福建建设科技,2006(5):27~28
    [27]童申家.弹性楼板的框架—剪力墙结构动力分析[J].西安建筑大学学报,1997,29(1): 74~78
    [28]黄德健,童申家.考虑楼板弯曲变形的框架—剪力墙结构地震分析[J].西安建筑科技大学学报,2002,34(1):57~60
    [29]赵西安.高层建筑结构考虑楼板变形的直接动力分析[J].计算结构力学及其应用,1990,7(4):32~39
    [30]赵西安.钢筋混凝土高层建筑结构设计[M].北京:中国建筑工业出版社,1992
    [31]赵西安.考虑楼板变形计算高层建筑结构[J].土木工程学报,1984(4):29~30
    [32] POPER.S.C. IDING. R.H: Appropriateness of the Rigid Floor assumption for Buildings with irregular Features[J]. Proc.8th European conf, on Earthquake Engine, (4), 1985: 23~27
    [33] KARADOGAN.H.F: Earthquake Analysis of 3D Structures with Flexible Floors [J]. Proc.7th world conf on Earthquake Engine. (5), Part 2. 1980: 110~115
    [34] ADRIENNE R.JOHNSTON,RETER K.DEAN,and HARRY W.SHENTON.Effects of vertical load and Hold—Down anchors on the cyclic response of wood framed shearwalls[J]. Journal of Structural Engineering,2006, 132(9): 43~46
    [35]包世华,袁驷.高层建筑结构考虑楼板变形的连续化常微分方程求解器法[J].建筑结构,1991(6):16~20
    [36]包世华,袁驷.高层建筑结构考虑楼板变形时水平振动的常微分方程求解器解法[J].建筑结构学报,1995(4):40~48
    [37]包世华,张亿果.变截面框架-剪力墙-薄壁筒斜交结构考虑楼板变形时的计算[J].工程力学,1992,9(2):1~11
    [38]包世华,张亿果.高层建筑结构考虑楼板变形时的整体稳定分析[J].土木工程学报,1992,25(4):37~46
    [39] BAO SHIHUA. Analyses of tall building structures by the metheod of analytic ODE solever. Computational Mechanics in Structural Engineering, Elsevier Applied Science[C].London and New York: 286~299
    [40] BAO SHIHUA ,YUAN SI. Coupled vibrations for tall building cooperating systems by ODE Solver [J].Proc. of Asian Pacific conf. On Comput. Mech. Hong Kong:1991, 261~266
    [41]剧锦三,刘安民,包世华.框-剪结构考虑楼板变形时的二阶分析[J].工程力学(增刊),1994:1256~1259
    [42]李从林,赵建昌.变刚度框架-剪力墙-薄壁筒斜交结构考虑部分楼板变形分析的广义框架法[J].工程力学,1994,11(4):83~93
    [43]张同亿,吴敏哲,李从林.框支剪力墙结构考虑楼板变形计算的超元法[J].工业建筑,2001,31(8):33~35
    [44]钟万勰.应用力学对偶体系[M].北京:科学出版社,2002:215~258
    [45]钟万勰.应用力学的辛数学方法[M].北京:高等教育出版社,2006
    [46]冯康,秦孟兆,Hamilton动力体系的Hamilton算法[J].自然科学进展—国家重点实验室通讯,1990(2):110~120
    [47] FENG KANG,Difference Schemes for Hamiltonian Formalism and Sympletic Geometry-In Memory of Prof. LOO-KENG HUA,Academia Sinica JuneB-10[J]. (1), Beijing, Proceedings of The international Symposium on Mechanics in the Next 15 years, 1986.21~31
    [48] FENG KANG,On Difference Schemes and Symplectic Geometry, Proceedings of 1984 Beijing International Symposium on differential geometry and differential equations-Computation of Partial Differential Equations. Ed Feng Kang[C]. Science press, 1985: 42~58
    [49]唐立民.弹性力学的混合方程和哈密顿正则方程[J].计算结构力学及其应用,1991,8(4):343~350
    [50]唐立民.混合状态Hamiltonian元的半解析解和层合板的计算[J].计算结构力学及其应用,1992,9(4):347~360
    [51]钟万勰,条形域平面弹性问题与哈密尔顿体系[J],大连理工大学学报.1991,31(4):373~384
    [52]钟万勰.暂态历程的精细计算方法[J].计算结构力学及其应用,1995,12(1):1~6
    [53]钟万勰,钟翔翔.最优控制及偏微分方程半解析法[J].计算结构力学及其应用,1990,7(1):1~15
    [54]钟万勰.矩阵黎卡提(Riccati)微分方程的分析解[J].力学季刊,2000,21(3):1~7
    [55] ZHONG WANXIE,WILLIAMS F W. Physical interpretation of the symplectic orthogonality of the eigensolutions of a Hamiltonian or symplectic matrix. [J].Computers & Structures, 1993, 49(4): 749~750
    [56] ZHONG, W.X.,YANG, Z.S. Partial differential equations and Hamiltonian system. Computational mechanics in structural engineering[J], ed. F.Y.Cheng and Fu Zizhi, Elsevier, 1992: 32~48.
    [57] ZHONG WANXIE, ZHONG XIANGXIANG. Elliptic partial differential equation and optimal control[J]. Numerical Methods for PDE,1992,8(2): 149~169.
    [58] ZHONG W X, ZHU J P, ZHONG X X. A precise time integration algorithm for nonlinear systems[J].Proc. WCCM-3, 1994(1): 12~17
    [59]杜秀云.精细积分算法求解双曲热传导问题[J].辽宁师范大学学报,2004,27(3):297~300
    [60]王忠,王雅琳,王芳.任意激励下结构动力响应的状态方程精细积分法[J].计算力学学报,2002,19(4):419~422
    [61]储德文,王元丰.精细直接积分法的积分方法选择[J].工程力学,2002,19(6):115~119
    [62]王一凡.直接积分法与精细积分法结合求解结构动力方程[J].工业建筑,2006(6):554~556
    [63]顾元宪.瞬态传导方程精细积分方法中对称性的利用[J].力学与实践,2000,2(1):20~21
    [64]魏鸿磊,顾元宪,陈飚松.瞬态电磁场问题求解的精细积分法[J].沈阳工业大学学报,2003,25(1):43~46
    [65]陈飚松,顾元宪.瞬态热传导方程的子结构精细积分方法[J].应用力学学报,2001.18 (1):14 ~18
    [66]胡启平,李张苗,候瑞珀.铁摩辛柯梁梁弯曲问题的对偶求解体系[J].河北建筑科技学院学报,2006,23(3):1~2
    [67]胡启平,王晓虹,高自湘.弹性支承上变截面连续梁的自由振动[J].工程力学,1998(增刊):190~193
    [68]胡启平,李振宁.非均匀变截面梁弯曲问题的折线折算法[J].工程力学,2000,17(5):113~114
    [69]胡启平,史三元.变截面芯筒—框架结构受扭简化计算[J].煤矿设计,2001(3):32~34
    [70]胡启平,孙建梅.变截面框架—剪力墙结构的自由振动[J].工业建筑,2002,32(7):76~77
    [71]胡启平,孙建梅.高层框架侧移计算的连续化方法[J].河北建筑科技学院学报,2001,18(4):6~9
    [72]胡启平,张华,王长龙.框架结构空间分析的状态空间法[J].河北建筑科技学院学报,2004,21(4):36~38
    [73]胡启平,张华.框架—剪力墙—薄壁筒斜交结构分析的状态空间法[J].工程力学,2006,23(4):125~129
    [74]卢明.大底盘多塔高层建筑结构分析[D].河北:河北工程大学硕士学位论文,2008
    [75]吕铭.考虑地基及楼板变形的建筑结构分析[D].河北:河北工程大学硕士学位论文,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700