呋喃及其衍生物的变压力热解实验与模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用同步辐射真空紫外光电离质谱技术研究了呋喃及其衍生物的热解,利用不同温度下的光电离质谱和光电离效率谱对热解产物进行了全面的鉴定,尤其是自由基和同分异构体,并测量了热解产物的摩尔分数曲线。结合前人和本文的理论计算,发展了呋喃类燃料宽压力、宽温度范围的热解模型,并利用本文的实验和前人的热解实验对模型进行了深入验证。
     第一章主要论述了开展呋喃及其衍生物变压力热解研究的依据和意义。简单介绍了在当前国际能源环境的大背景下,开发生物燃料的必要性,以及呋喃类新型生物燃料的优势和燃烧研究现状。
     第二章主要介绍了本文中使用的实验、理论和模型方法。对光束线、热解实验装置和实验方法等进行了简要描述,并通过详细的实验和理论推导证明了α-刚玉管的催化效应很弱,可以忽略。简要介绍了呋喃及其衍生物关键反应的量子化学和速率常数计算方法,以及利用CHEMKIN-PRO软件的模拟方法。
     第三章主要对呋喃低压热解中燃料分解和芳烃生成过程进行了详细的讨论。实验中,观察到了呋喃的主要单分子解离产物:丙炔+CO和乙炔+乙烯酮。基于本章计算的呋喃单分子解离反应的速率常数和本章实验数据发展了一个包含174个物种和950步反应的呋喃低压热解模型。基于实验结果和理论计算,炔丙基的生成主要来自于丙炔的后续分解反应,而非前人认为的呋喃单分子解离反应。另外,本文中的流动反应器出口位置的中低温区对高浓度自由基的复合反应较为灵敏,可用于验证此类反应的中低温区速率常数。实验和模型分析表明,炔丙基自复合生成苯的反应在中低温区的速率常数偏快。
     第四章是对2-甲基呋喃(MF)变压力热解的实验和动力学模型进行研究。利用量子化学方法(CBS-QB3)计算了MF的单分子解离反应、2-呋喃基甲基和H原子进攻MF反应的势能面。基于本章与前人的实验和计算结果,对前人发展的模型进行了更新,并且利用本章和前人工作中的热解实验数据对模型进行了验证。生成速率和灵敏性分析表明,MF的初始分解路径是通过单分子解离反应生成1-丁炔+CO和乙酰基+炔丙基、H提取反应生成2-呋喃基甲基并进一步分解生成大量的乙烯基乙炔、H原子加成取代反应生成呋喃+甲基以及H进攻反应生成CH2CHCHCO+甲基和C4H7+CO。另外,在MF热解过程中还探测到了大量的大质量芳烃产物包括苯、苄基、甲苯、苯乙炔、苯乙烯、茚基、茚和萘等。生成速率分析表明MF热解过程中高浓度的苯、甲苯和其它芳烃的生成是源于炔丙基和1,3-丁二烯的大量生成。
     第五章详细介绍了2,5-二甲基呋喃(DMF)的变压力热解实验和动力学模型研究。在DMF热解过程中观察到了大量苯酚、1,3-环戊二烯、2-甲基呋喃、乙烯基乙炔和1,3-丁二烯的生成。基于对DMF主要单分子解离反应的压力相关速率常数的计算,发展了一个包含285个物种和1173个反应的DMF热解反应动力学模型,并利用本章和前人的实验数据对模型进行了验证。生成速率分析和灵敏性分析表明DMF的主要分解路径为单分子解离反应生成CH3CHCCH+乙酰基、H提取反应生成5-甲基-2-呋喃基甲基、H原子本位取代反应生成2-甲基呋喃和H进攻反应生成1,3-丁二烯+乙酰基。5-甲基-2-呋喃基甲基的后续分解生成大量的苯酚和1,3-环戊二烯,而它们很容易分解生成大质量芳烃的前驱体环戊二烯基、苯基和苯。最终导致相比其它类似结构的环烷烃来说,DMF有较强的芳烃生成趋势。就三种呋喃类燃料比较而言,MF由于能够生成大量的炔丙基、苯和甲苯,因此其热解过程中产生的芳烃总浓度最高。这表明对于MF和DMF两种重要的新型生物燃料而言,需要在实际应用中关注其碳烟排放特性,而本论文对其热解过程中碳烟形成前驱物的实验和模型分析结果将有助于针对这两种燃料的碳烟抑制方案的设计。因此,本论文的工作一方面有助于三种呋喃类燃料燃烧反应动力学模型的发展,另一方面也为这些燃料实际应用中污染物排放问题的解决提供了理论支撑。
Pyrolysis of furan and its derivatives in flow reactor at various pressures were investigated. The pyrolysis intermediates, especially the free radicals and isomers were identified and quantified by using synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) technique. Based on the previous and present theoretical studies, the detailed kinetic pyrolysis models were developed and validated against the present work and previous pyrolysis experimental data.
     In Chapter1, the purpose and significance of the research on the pyrolysis of furan and its derivatives at various pressures were presented. Large production and exploitation of biofuels were essential under the background of international energy and environmental crisis. Besides, as new kinds biofuels, the advantages and recent research progress of furan and its derivatives were summarized.
     In Chapter2, the experimental methods, theoretical calculations and kinetic model were introduced. A brief description of beamlines and pyrolysis appratus were also displayed in this chapter. And a brief discussion of the catalytic effects of α-alumina flow reactor was presented, and the experimental observation reveals the negligible surface catalytic effects of our α-alumina flow tube. Besides, the theoretical methods on quantum chemistry and calculating rate constants of key reactions in furan and its derivatives are briefly introduced, as well as the simulation methods using CHEMKIN-PRO software.
     In Chapter3, fuel decomposition and aromatic ring formation in furan pyrolysis at low pressure were discussed in detail. Specific products, which are directly related to the unimolecular decomposition reactions of furan, were observed, such as propyne+CO and acetylene+ketene. Using the calculated rate constants of unimolecular decomposition reactions of furan, a low pressure pyrolysis model, which consists of174species and950reactions was developed and validated against the mole fraction profiles of pyrolysis species measured in this work. The decomposition of furan is mainly controlled by the unimolecular decomposition reactions under the investigated conditions. Based on the experimental results and theoretical calculation, propargyl radical is suggested to be mainly formed from the unimolecular decomposition of propyne rather than furan. Furthermore, the temperature drop region close to the flow reactor outlet provides a sensitive circumstance at low to intermediate temperature region to validation high concentration radical combination reactions for aromatics formation, and the propargyl self-combination may be over-estimated at low to intermediate temperature regions according to the modeling analysis and experimental validation.
     In Chapter4, experimental and kinetic modeling study of2-methylfuran pyrolysis at various pressures were introduced in detail. The potienal energy surface of unimolecular decomposition of MF and2-furanylmethyl and reactions of H atom attack MF were calculated using CBS-QB3. The kinetic model were optimized according to the previous model and the validation against the present and previous pyrolysis data of MF. Based on the rate of production (ROP) and sensitivity analyses, main pathways in the decomposition of MF and the growth of aromatics were determined. The unimolecular decomposition to produce1-butyne+CO and acetyl+propargyl, H-atom abstraction to produce2-furanylmethyl radical, ipso-substitution by H to produce furan and H-atom attack to produce CH2CHCHCO+CH3and C4H7+CO were concluded to dominate the primary decomposition of MF. Further decomposition of2-furanylmethyl radical leads to great production of vinylacetylene. Many large aromatic hydrocarbons, including benzene, benzyl radical, toluene, phenylacetylene, styrene, indenyl radical, indene, and naphthalene, were also detected. Based on the ROP analysis, it is concluded that the higher concentrations of benzene, toluene and other aromatics in the MF pyrolysis result from the greater formation of propargyl radical and1,3-butadiene.
     In Chapter5, experimental and kinetic modeling study of2,5-dimethylfuran pyrolysis at various pressures were introduced in detail. Dozens of pyrolysis products, especially a series of radicals and aromatics, were identified from the measurement of photoionization efficiency spectra; and their mole fraction profiles were measured at790-1470K. Phenol,1,3-cyclopentadiene,2-methylfuran, vinylacetylene and1,3-butadiene were observed with high concentrations in the decomposition of DMF. The pressure-dependent rate constants of the major unimolecular decomposition reactions of DMF were theoretically calculated, and were adopted in the pyrolysis model of DMF with285species and1173reactions developed in the present work. The model was validated against the species profiles measured in both the present work and the previous pyrolysis studies of DMF. Based on the rate of production and sensitivity analyses, main pathways in the decomposition of DMF and the growth of aromatics were determined. The unimolecular decomposition to produce CH3CHCCH and acetyl radicals, H-atom abstraction to produce5-methyl-2-furanylmethyl radical, ipso substitution by H-atom to produce2-methylfuran and H-atom attack to produce1,3-butadiene and acetyl radical were concluded to dominate the primary decomposition of DMF. Further decomposition of5-methyl-2-furanylmethyl radical leads to great production of phenol and1,3-cyclopentadiene which can be readily converted to precursors of large aromatics such as cyclopentadienyl radical, phenyl radical and benzene. As a result, the formation of aromatics in the pyrolysis of DMF is promoted compared with the pyrolysis of cyclohexane and methylcyclohexane under very close conditions. Among furan and its derivatives, MF produces the highest concentration of aromatic species due to the large amounts formaiton of propargyl radical, benzene and toluene. Therefore, this observation emphasizes the necessity to investigate the sooting behavior and soot formation mechanism in MF and DMF combustion for the potential application as new biofuels. The experimental and modeling analyses on the formation of soot precursors in the pyrolysis of MF and DMF provide significant benefits to the design for the inhibition of their soot emissions. As a consequence, the investigations in the present work can help not only develop a detailed combustion model for furan and its derivatives, but also provide theoretical guidance for the reduction of the emissions in their practical applications.
引文
1.2013. International Energy Outlook 2013[R]. U.S. Energy Information Administration.
    2. Nigam PS, Singh A.2011. Production of liquid biofuels from renewable resources[J]. Prog. Energy Combust. Sci.,37 (1):52-68.
    3. Nexant. Prospectus liquid biofuels:Substituting for petroleum-a golbal techno economic and market evaluation. Available in: http://www.chemsystems.com/reports/search/docs/prospectus/MC Biofuels Pros .pdf Acessed:06/062007.
    4. Escobar JC, Lora ES, Venturini OJ, et al.2009. Biofuels:Environment, technology and food security [J]. Renewable and Sustainable Energy Reviews,13 (6-7):1275-1287.
    5. Roman-Leshkov Y, Barrett CJ, Liu ZY, et al.2007. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates [J]. Nature,447 (7147): 982-985.
    6. Zhao H, Holladay JE, Brown H, et al.2007. Metal Chlorides in Ionic Liquid Solvents Convert Sugars to 5-Hydroxymethylfurfural[J]. Science,316 (5831): 1597-1600.
    7. Mascal M, Nikitin EB.2008. Direct, high-yield conversion of cellulose into biofuel[J]. Angew. Chem. Int. Ed.,47 (41):7924-7926.
    8. Tran LS, Sirjean B, Claude PA, et al.2012. Progress in detailed kinetic modeling of the combustion of oxygenated components of biofuels[J]. Energy, 43(1):4-18.
    9. Tian GH, Daniel R, Li HY, et al.2010. Laminar Burning Velocities of 2,5-Dimethylfuran Compared with Ethanol and Gasoline[J]. Energy Fuels,24 (7): 3898-3905.
    10. Wu XS, Huang ZH, Wang XG, et al.2011. Laminar burning velocities and flame instabilities of 2,5-dimethylfuran-air mixtures at elevated pressures[J]. Combust. Flame,158 (3):539-546.
    11. Tran LS, Sirjean B, Glaude P-A, et al.2012. Progress in detailed kinetic modeling of the combustion of oxygenated components of biofuels[J]. Energy, 43(1):4-18.
    12. Pitz WJ, Cernansky NP, Dryer FL, et al.2007. Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels[J]. Society of Automotive Engineers:SAE Paper 2007-01-0175.
    13. Guibet JC, Faure E.1997. Carburants et moteurs:technologies, energie, environnement[M]. Editions Technip.
    14. Ballerini D, Alazard-Toux N, Appert O.2006. Les biocarburants:etat des lieux, perspectives et enjeux du developpement[M]. Editions Technip.
    15. Farrell JT, Cernansky NP, Dryer FL, et al.2007. Development of an Experimental Database and Kinetic Models for Surrogate Diesel Fuels [J]. Society of Automotive Engineers:SAE Paper 2007-01-0201.
    16. Pitz WJ, Mueller CJ.2011. Recent progress in the development of diesel surrogate fuels[J]. Prog Energ Combust,37 (3):330-350.
    17. GESTIS Substance Database of Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA). http://gestis-en.itrust.de/
    18. Haynes WM.2012. CRC Handbook of Chemistry and Physics,93rd Edition[M]. Florida:Taylor & Francis.
    19. Zhong SH, Daniel R, Xu H, et al.2010. Combustion and Emissions of 2,5-Dimethylfuran in a Direct-Injection Spark-Ignition Engine[J]. Energy Fuels, 24 (5):2891-2899.
    20. Daniel R, Tian GH, Xu HM, et al.2011. Effect of spark timing and load on a DISI engine fuelled with 2,5-dimethylfuran[J]. Fuel,90 (2):449-458.
    21. Grela MA, Amorebieta VT, Colussi AJ.1985. Very low pressure pyrolysis of furan,2-methylfuran and 2,5-dimethylfuran. The stability of the furan ring[J]. J. Phys. Chem.,89(1):38-41.
    22. Lifshitz A, Tamburu C, Shashua R.1998. Thermal decomposition of 2,5-dimethylfuran. Experimental results and computer modeling[J]. J. Phys. Chem. A,102(52):10655-10670.
    23. Djokic M, Carstensen H-H, Van Geem KM, et al.2013. The thermal decomposition of 2,5-dimethylfuran[J]. Proc. Combust. Inst.,34 (1):251-258.
    24. Somers KP, Simmie JM, Gillespie F, et al.2013. A comprehensive experimental and detailed chemical kinetic modelling study of 2,5-dimethylfuran pyrolysis and oxidation[J]. Combust. Flame,160 (11):2291-2318.
    25. Lifshitz A, Tamburu C, Shashua R.1997. Decomposition of 2-methylfuran. Experimental and modeling study[J]. J. Phys. Chem. A,101 (6):1018-1029.
    26. Vasiliou A, Nimlos MR, Daily JW, et al.2009. Thermal Decomposition of Furan Generates Propargyl Radicals[J]. J. Phys. Chem. A,113 (30):8540-8547.
    27. Lifshitz A, Bidani M, Bidani S.1986. Thermal reactions of cyclic ethers at high temperatures. Ⅲ. Pyrolysis of furan behind reflected shocks[J]. J. Phys. Chem., 90 (21):5373-5377.
    28. Bruinsma OSL, Tromp PJJ, de Sauvage Nolting HJJ, et al.1988. Gas phase pyrolysis of coal-related aromatic compounds in a coiled tube flow reactor:2. Heterocyclic compounds, their benzo and dibenzo derivatives[J]. Fuel,67 (3): 334-340.
    29. Organ PP, Mackie JC.1991. Kinetics of pyrolysis of furan [J]. J. Chem. Soc., Faraday Trans.,87 (6):815-823.
    30. Fulle D, Dib A, Kiefer JH, et al.1998. Pyrolysis of furan at low pressures: Vibrational relaxation, unimolecular dissociation, and incubation times[J]. J. Phys. Chem. A,102 (38):7480-7486.
    31. Winkler JK, Karow W, Rademacher P.2001. Gas phase pyrolysis of heterocyclic compounds, part 4:flow pyrolysis and annulation reactions of some oxygen heterocycles:furan, benzo[b]furan and dibenzofuran. A product oriented study [J]. Journal of Analytical and Applied Pyrolysis,57 (1):133-144.
    32. Hore NR, Russell DK.2004. The thermal decomposition of 5-membered rings: a laser pyrolysis study[J]. New. J. Chem.,28 (5):606-613.
    33. Urness KN, Guan Q, Golan A, et al.2013. Pyrolysis of furan in a microreactor[J]. J. Chem. Phys.,139 (12):124305.
    34. Wu XS, Huang ZH, Yuan T, et al.2009. Identification of combustion intermediates n a ow-pressure premixed laminar 2,5-dimethylfuran/oxygen/argon flame with tunable synchrotron photoionization[J]. Combust. Flame,156 (7):1365-1376.
    35. Togbe C, Tran LS, Liu D, et al.2014. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography-Part III:2,5-Dimethylfuran[J]. Combust. Flame,161 (3): 780-797.
    36. Wei LX, Li ZM, Tong LH, et al.2012. Primary Combustion Intermediates in Lean and Rich Low-Pressure Premixed Laminar 2-Methylfuran/Oxygen/Argon Flames[J]. Energy Fuels,26 (11):6651-6660.
    37. Tran LS, Togbe C, Liu D, et al.2014. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography-Part Ⅱ:2-Methylfuran[J]. Combust Flame,161 (3):766-779.
    38. Tian ZY, Yuan T, Fournet R, et al.2011. An experimental and kinetic investigation of premixed furan/oxygen/argon flames[J]. Combust. Flame,158 (4):756-773.
    39. Liu D, Togbe C, Tran LS, et al.2014. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography-Part Ⅰ:Furan[J]. Combust. Flame,161 (3):748-765.
    40. Sirjean B, Fournet R, Glaude PA, et al.2013. Shock tube and chemical kinetic modeling study of the oxidation of 2,5-dimethylfuran[J]. J. Phys. Chem. A,117 (7):1371-1392.
    41. Wei LJ, Tang CL, Man XJ, et al.2013. Shock-Tube Experiments and Kinetic Modeling of 2-Methylfuran Ignition at Elevated Pressure[J]. Energy Fuels,27 (12):7809-7816.
    42. Wei LJ, Tang CL, Man XJ, et al.2012. High-Temperature Ignition Delay Times and Kinetic Study of Furan[J]. Energy Fuels,26 (4):2075-2081.
    43. Ma X, Jiang C, Xu H, et al.2014. Laminar burning characteristics of 2-methylfuran and isooctane blend fuels[J]. Fuel,116 (0):281-291.
    44. Daniel R, Wei LX, Xu HM, et al.2012. Speciation of Hydrocarbon and Carbonyl Emissions of 2,5-Dimethylfuran Combustion in a DISI Engine[J]. Energy Fuels,26 (11):6661-6668.
    45. Wang CM, Xu HM, Daniel R, et al.2013. Combustion characteristics and emissions of 2-methylfuran compared to 2,5-dimethylfuran, gasoline and ethanol in a DISI engine[J]. Fuel,103:200-211.
    46. Ma X, Jiang C, Xu H, et al.2013. Laminar Burning Characteristics of 2-Methylfuran Compared with 2,5-Dimethylfuran and Isooctane[J]. Energy Fuels,27 (10):6212-6221.
    47. Simmie JM, Metcalfe WK.2011. Ab Initio Study of the Decomposition of 2,5-Dimethylfuran[J]. J. Phys. Chem. A,115 (32):8877-8888.
    48. Feller D, Simmie JM.2012. High-Level ab Initio Enthalpies of Formation of 2,5-Dimethylfuran,2-Methylfuran, and Furan[J]. J. Phys. Chem. A,116 (47): 11768-11775.
    49. Sirjean B, Fournet R.2013. Theoretical study of the reaction 2,5-dimethylfuran+H→products[J]. Proc. Combust. Inst.,34 (1):241-249.
    50. Sirjean B, Fournet R.2013. Unimolecular decomposition of 2,5-dimethylfuran: a theoretical chemical kinetic study[J]. Phys. Chem. Chem. Phys.,15 (2): 596-611.
    51. Friese P, Simmie JM, Olzmann M.2013. The reaction of 2,5-dimethylfuran with hydrogen atoms-An experimental and theoretical study [J]. Proc. Combust. Inst., 34(1):233-239.
    52. Sirjean B, Fournet R.2012. Theoretical Study of the Thermal Decomposition of the 5-Methyl-2-furanylmethyl Radical[J]. J. Phys. Chem. A,116 (25): 6675-6684.
    53. Zhang WC, Du BN, Mu LL, et al.2008. Computational study on the mechanism for the reaction of OH with 2-methylfuran[J]. Theochem-J. Mol. Struct.,851 (1-3):353-357.
    54. Gomez Alvarez E, Borras E, Viidanoja J, et al.2009. Unsaturated dicarbonyl products from the OH-initiated photo-oxidation of furan,2-methylfuran and 3-methylfuran[J]. Atmos. Environ.,43 (9):1603-1612.
    55. Simmie JM, Curran HJ.2009. Formation Enthalpies and Bond Dissociation Energies of Alkylfurans. The Strongest C-X Bonds Known?[J]. J. Phys. Chem. A, 113 (17):5128-5137.
    56. Aschmann SM, Nishino N, Arey J, et al.2013. Products of the OH Radical-Initiated Reactions of Furan,2-and 3-Methylfuran, and 2,3-and 2,5-Dimethylfuran in the Presence of NO[J]. J. Phys. Chem. A.
    57. Simmie JM, Somers KP, Metcalfe WK, et al.2013. Substituent effects in the thermochemistry of furans:A theoretical (CBS-QB3, CBS-APNO and G3) study[J]. The Journal of Chemical Thermodynamics,58 (0):117-128.
    58. Liu R, Zhou X, Zhai L.1998. Theoretical investigation of unimolecular decomposition channels of furan4[J]. J. Comput. Chem.,19 (2):240-249.
    59. D'Auria M.2000. Ab initio study on the photochemical isomerization of furan derivatives[J]. J. Org. Chem.,65 (8):2494-2498.
    60. Liu R, Zhou X, Zuo T.2000. The pyrolysis mechanism of furan revisited[J]. Chem. Phys. Lett.,325 (4):457-464.
    61. Sendt K, Bacskay GB, Mackie JC.2000. Pyrolysis of Furan:Ab Initio Quantum Chemical and Kinetic Modeling Studies[J]. J. Phys. Chem. A,104 (9): 1861-1875.
    62. Somers KP,, Simmie JM, Metcalfe WK, et al.2014. The pyrolysis of 2-methylfuran:a quantum chemical, statistical rate theory and kinetic modelling study[J]. Phys. Chem. Chem. Phys.,16 (11):5349-5367.
    63. Davis AC, Sarathy SM.2013. Computational Study of the Combustion and Atmospheric Decomposition of 2-Methylfuran[J]. J. Phys. Chem. A,117 (33): 7670-7685.
    64. Somers KP, Simmie JM, Gillespie F, et al.2013. A high temperature and atmospheric pressure experimental and detailed chemical kinetic modelling study of 2-methyl furan oxidation[J]. Proc. Combust. Inst.,34 (1):225-232.
    65.田国弘.2010.2,5-二甲基呋喃的喷雾特性及发动机适应性[J].汽车安全与节能学报.
    66. Chen GS, Shen YG, Zhang QC, et al.2013. Experimental study on combustion and emission characteristics of a diesel engine fueled with 2,5-dimethylfuran-diesel, n-butanol-diesel and gasoline-diesel blends[J]. Energy,54 (0):333-342.
    1. 李玉阳.2010.芳烃燃料低压预混火焰的实验和动力学模型研究[D]:[博士学位论文].合肥:中国科学技术大学.
    2. 王晶.2008.C2-C4醇类燃料的热解及低温等离子体研究[D]:[博士学位论文].合肥:中国科学技术大学.
    3. 杨斌.2006.苯/氧气及丁醇/氧气火焰的VUV光电离研究[D]:[博士学位论文].合肥:中国科学技术大学.
    4. 张泰昌.2010.若干流动体系中的化学反应研究[D]:[博士学位论文].合肥:中国科学技术大学.
    5. 杨玖重.2012.苯和苯/C2H6O混合燃料低压燃烧的实验与模型研究[D]:[博士学位论文].合肥:中国科学技术大学.
    6. 谢铭丰.2012.C3-C5直链脂肪酸甲酯的热解实验及动力学模型研究[D]:[博士学位论文].合肥:中国科学技术大学.
    7. 蔡江淮.2013.丁醇燃烧反应动力学的实验与模型研究[D]:[博士学位论文].合肥:中国科学技术大学.
    8. Cai JH, Zhang LD, Zhang F, et al.2012. Experimental and Kinetic Modeling Study of n-Butanol Pyrolysis and Combustion[J]. Energy Fuels,26 (9): 5550-5568.
    9. Wang ZD, Cheng ZJ, Yuan WH, et al.2012. An experimental and kinetic modeling study of cyclohexane pyrolysis at low pressure[J]. Combust. Flame, 159 (7):2243-2253.
    10. Zhang YJ, Cai JH, Zhao L, et al.2012. An experimental and kinetic modeling study of three butene isomers pyrolysis at low pressure [J]. Combust. Flame,159 (3):905-917.
    11.张义军.2011.C4系列烷烃和烯烃的热解实验及动力学模型研究[D]:[博士学位论文].合肥:中国科学技术大学.
    12. Linstrom PJ, Mallard WG.2011. NIST Chemistry Webbook[EB/OL]. Number 69, Gaithersburg, MD. http://webbook.nist.gov.
    13. Xie MF, Zhou ZY, Wang ZD, et al.2010. Determination of absolute photoionization cross-sections of oxygenated hydrocarbons [J]. Int. J. Mass Spectrom.,293 (1-3):28-33.
    14. Yang B, Wang J, Cool TA, et al.2012. Absolute photoionization cross-sections of some combustion intermediates[J]. Int. J. Mass Spectrom.,309:118-128.
    15. Narayanan CR, Srinivasan S, Datye AK, et al.1992. THE EFFECT OF ALUMINA STRUCTURE ON SURFACE SITES FOR ALCOHOL DEHYDRATION[J]. J. Catal.,138 (2):659-674.
    16. Pines H, Haag WO.1960. Alumina:Catalyst and Support. I. Alumina, its Intrinsic Acidity and Catalytic Activity 1[J]. J. Am. Chem. Soc.,82 (10): 2471-2483.
    17. Rice FO, Herzfeld KF.1951. The Mechanism of Some Chain Reactions[J]. J. Phys. Chem.,55 (6):975-987.
    18. Warnatz J, Maas U, Dibble RW.2006. Combustion:Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation[M]. Springer.
    19. Geankoplis CJ.1993. Transport Processes and Unit Operations[M]. Englewood Cliffs, NJ:PTR Prentice Hall.
    20. Frisch MJ, Trucks GW, Schlegel HB, et al Gaussian09, Gaussian Inc.: Wallingford CT,2010.
    21. Robertson SH, Glowacki DR, Liang CH, et al MESMER (Master Equation Solver for Multi-Energy Well Reactions), http://sourceforge.net/projects/mesmer.
    22. Poling BE, Prausnitz JM, O'Connell JP.2001. The properties of gases and liquids[M]. New York:McGraw-Hill.
    23.袁涛.2010.正庚烷、异辛烷热解和预混火焰的实验及动力学模型研究[D]:[博士学位论文].合肥:中国科学技术大学.
    24. CHEMKIN-PRO 15092, San Diego,2009.
    1. Weng JJ, Jia LY, Wang Y, et al.2013. Pyrolysis study of poplar biomass by tunable synchrotron vacuum ultraviolet photoionization mass spectrometry[J]. Proc. Combust. Inst.,34:2347-2354.
    2. Guarneri F, Ikeda E, Mackie JC.2001. A Study of Furan as a Model Oxygenated Reburn Fuel for Nitric Oxide Reduction[J]. Energy Fuels,15 (3):743-750.
    3. Organ PP, Mackie JC.1991. Kinetics of pyrolysis of furan[J]. J. Chem. Soc., Faraday Trans.,87 (6):815-823.
    4. Cullis CF, Norris AC.1972. The pyrolysis of organic compounds under conditions of carbon formation[J]. Carbon,10 (5):525-537.
    5. Grela MA, Amorebieta VT, Colussi AJ.1985. Very low pressure pyrolysis of furan,2-methylfuran and 2,5-dimethylfuran. The stability of the furan ring[J]. J. Phys. Chem.,89(1):38-41.
    6. Lifshitz A, Bidani M, Bidani S.1986. Thermal reactions of cyclic ethers at high temperatures. III. Pyrolysis of furan behind reflected shocks[J]. J. Phys. Chem., 90(21):5373-5377.
    7. Bruinsma OSL, Tromp PJJ, de Sauvage Nolting HJJ, et al.1988. Gas phase pyrolysis of coal-related aromatic compounds in a coiled tube flow reactor:2. Heterocyclic compounds, their benzo and dibenzo derivatives[J]. Fuel,67 (3): 334-340.
    8. Fulle D, Dib A, Kiefer JH, et al.1998. Pyrolysis of furan at low pressures: Vibrational relaxation, unimolecular dissociation, and incubation times[J]. J. Phys. Chem. A,102 (38):7480-7486.
    9. Winkler JK, Karow W, Rademacher P.2001. Gas phase pyrolysis of heterocyclic compounds, part 4:flow pyrolysis and annulation reactions of some oxygen heterocycles:furan, benzo[b]furan and dibenzofuran. A product oriented study[J]. Journal of Analytical and Applied Pyrolysis,57 (1):133-144.
    10. Hore NR, Russell DK.2004. The thermal decomposition of 5-membered rings: a laser pyrolysis study [J]. New. J. Chem.,28 (5):606-613.
    11. Vasiliou A, Nimlos MR, Daily JW, et al.2009. Thermal Decomposition of Furan Generates Propargyl Radicals[J]. J. Phys. Chem. A,113 (30):8540-8547.
    12. Urness KN, Guan Q, Golan A, et al.2013. Pyrolysis of furan in a microreactor[J]. J. Chem. Phys.,139 (12):124305.
    13. Bierbach A, Barnes I, Becker KH.1995. Product and kinetic study of the oh-initiated gas-phase oxidation of Furan,2-methylfuran and furanaldehydes at ≈300 K[J]. Atmos. Environ.,29 (19):2651-2660.
    14. Tian ZY, Yuan T, Fournet R, et al.2011. An experimental and kinetic investigation of premixed furan/oxygen/argon flames[J]. Combust. Flame,158 (4):756-773.
    15. Liu D, Togbe C, Tran LS, et al.2014. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography-Part I:Furan[J]. Combust. Flame,161 (3):748-765.
    16. Wei LJ, Tang CL, Man XJ, et al.2012. High-Temperature Ignition Delay Times and Kinetic Study of Furan[J]. Energy Fuels,26 (4):2075-2081.
    17. Liu R, Zhou X, Zhai L.1998. Theoretical investigation of unimolecular decomposition channels of furan4[J]. J. Comput. Chem.,19 (2):240-249.
    18. Liu R, Zhou X, Zuo T.2000. The pyrolysis mechanism of furan revisited[J]. Chem. Phys. Lett.,325 (4):457-464.
    19. Sendt K, Bacskay GB, Mackie JC.2000. Pyrolysis of Furan:Ab Initio Quantum Chemical and Kinetic Modeling Studies[J]. J. Phys. Chem. A,104 (9): 1861-1875.
    20. Zhang YJ, Cai JH, Zhao L, et al.2012. An experimental and kinetic modeling study of three butene isomers pyrolysis at low pressure[J]. Combust. Flame,159 (3):905-917.
    21. Cai JH, Zhang LD, Zhang F, et al.2012. Experimental and Kinetic Modeling Study of n-Butanol Pyrolysis and Combustion [J]. Energy Fuels,26 (9): 5550-5568.
    22. Cai JH, Yuan WH, Ye LL, et al.2013. Experimental and kinetic modeling study of 2-butanol pyrolysis and combustion[J]. Combust. Flame,160 (10): 1939-1957.
    23. Li YY, Cai JH, Zhang LD, et al.2011. Investigation on chemical structures of premixed toluene flames at low pressure[J]. Proc. Combust. Inst.,33:593-600.
    24. Li YY, Cai JH, Zhang LD, et al.2011. Experimental and modeling investigation on premixed ethylbenzene flames at low pressure[J]. Proc. Combust. Inst.,33: 617-624.
    25. Li YY, Zhang LD, Wang ZD, et al.2013. Experimental and kinetic modeling study of tetralin pyrolysis at low pressure[J]. Proc. Combust. Inst.,34 (1): 1739-1748.
    26. Frisch MJ, Trucks GW, Schlegel HB, et al Gaussian09, Gaussian Inc. Wallingford CT,2010.
    27. Glowacki DR, Liang C-H, Morley C, et al.2012. MESMER:An Open-Source Master Equation Solver for Multi-Energy Well Reactions [J]. J. Phys. Chem. A, 116 (38):9545-9560.
    28. Robertson SH, Glowacki DR, Liang CH, et al MESMER (Master Equation Solver for Multi-Energy Well Reactions), http://sourceforge.net/pro/ects/mesmer.
    29. Tsang W, Hampson RF.1986. Chemical kinetic database for combustion chemistry.1. Methane and related-compounds [J]. J. Phys. Chem. Ref. Data,15 (3):1087-1279.
    30. Li YY, Zhang LD, Yuan T, et al.2010. Investigation on fuel-rich premixed flames of monocyclic aromatic hydrocarbons:Part I. Intermediate identification and mass spectrometric analysis[J]. Combust. Flame,157 (1):143-154.
    31. Xie MF, Zhou ZY, Wang ZD, et al.2010. Determination of absolute photoionization cross-sections of oxygenated hydrocarbons [J]. Int. J. Mass Spectrom.,293 (1-3):28-33.
    32. Linstrom PJ, Mallard WG.2011. NIST Chemistry Webbook[EB/OL]. Number 69, Gaithersburg, MD. http://webbook.nist.gov.
    33. Yang B, Wang J, Cool TA, et al.2012. Absolute photoionization cross-sections of some combustion intermediates[J]. Int. J. Mass Spectrom.,309:118-128.
    34. Li YY, Zhang LD, Tian ZY, et al.2009. Experimental Study of a Fuel-Rich Premixed Toluene Flame at Low Pressure[J]. Energy Fuels,23:1473-1485.
    35. Yang B, Li YY, Wei LX, et al.2007. An experimental study of the premixed benzene/oxygen/argon flame with tunable synchrotron photoionization[J]. Proc. Combust. Inst.,31 (1):555-563.
    36. Miller JA, Klippenstein SJ.2003. The recombination of propargyl radicals and other reactions on a C6H6 potential[J]. J. Phys. Chem. A,107 (39):7783-7799.
    37. Hansen N, Miller JA, Westmoreland PR, et al.2009. Isomer-specific combustion chemistry in allene and propyne flames[J]. Combust. Flame,156 (11): 2153-2164.
    38. Georgievskii Y, Miller JA, Klippenstein SJ.2007. Association rate constants for reactions between resonance-stabilized radicals:C3H3+C3H3, C3H3+C3H5, and C3H5+C3H5[J]. Phys. Chem. Chem. Phys.,9 (31):4259-4268.
    39. Tranter RS, Yang X, Kiefer JH.2011. Dissociation of C3H3I and rates for C3H3 combination at high temperatures [J]. Proc. Combust. Inst.,33 (1):259-265.
    40. Appel J, Bockhorn H, Frenklach M.2000. Kinetic modeling of soot formation with detailed chemistry and physics:Laminar premixed flames of C-2 hydrocarbons[J]. Combust. Flame,121 (1-2):122-136.
    41. Blanquart G, Pitsch H.2007. Thermochemical Properties of Polycyclic Aromatic Hydrocarbons (PAH) from G3MP2B3 Calculations [J]. J. Phys. Chem. A,111 (28):6510-6520.
    42. Metcalfe WK, Dooley S, Dryer FL.2011. Comprehensive Detailed Chemical Kinetic Modeling Study of Toluene Oxidation[J]. Energy & Fuels,25 (11): 4915-4936.
    43. Gudiyella S, Brezinsky K.2012. High pressure study of 1,3,5-trimethylbenzene oxidation[J]. Combust. Flame,159 (11):3264-3285.
    44. Husson B, Ferrari M, Herbinet O, et al.2013. New experimental evidence and modeling study of the ethylbenzene oxidation[J]. Proc. Combust. Inst.,34 (1): 325-333.
    45. Matsugi A, Miyoshi A.2013. Modeling of two-and three-ring aromatics formation in the pyrolysis of toluene[J]. Proc. Combust. Inst.,34:269-277.
    1. Roman-Leshkov Y, Barrett CJ, Liu ZY, et al.2007. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates[J]. Nature,447 (7147): 982-985.
    2. Zhao H, Holladay JE, Brown H, et al.2007. Metal Chlorides in Ionic Liquid Solvents Convert Sugars to 5-Hydroxymethylfurfural[J]. Science,316 (5831): 1597-1600.
    3. James OO, Maity S, Usman LA, et al.2010. Towards the conversion of carbohydrate biomass feedstocks to biofuels via hydroxylmethylfurfural[J]. Energy & Environmental Science,3 (12):1833-1850.
    4. Sirjean B, Fournet R.2013. Unimolecular decomposition of 2,5-dimethylfuran: a theoretical chemical kinetic study[J]. Phys. Chem. Chem. Phys.,15 (2): 596-611.
    5. Sirjean B, Fournet R, Glaude PA, et al.2013. Shock tube and chemical kinetic modeling study of the oxidation of 2,5-dimethylfuran[J]. J. Phys. Chem. A,117 (7):1371-1392.
    6. Somers KP, Simmie JM, Gillespie F, et al.2013. A comprehensive experimental and detailed chemical kinetic modelling study of 2,5-dimethylfuran pyrolysis and oxidation[J]. Combust. Flame,160 (11):2291-2318.
    7. Togbe C, Tran LS, Liu D, et al.2014. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography-Part Ⅲ:2,5-Dimethylfuran[J]. Combust. Flame,161 (3): 780-797.
    8. Grela MA, Amorebieta VT, Colussi AJ.1985. Very low pressure pyrolysis of furan,2-methylfuran and 2,5-dimethylfuran. The stability of the furan ring[J]. J. Phys. Chem.,89 (1):38-41-.
    9. Lifshitz A, Tamburu C, Shashua R.1997. Decomposition of 2-methylfuran. Experimental and modeling study [J]. J. Phys. Chem. A,101 (6):1018-1029.
    10. Bierbach A, Barnes I, Becker KH.1995. Product and kinetic study of the oh-initiated gas-phase oxidation of Furan,2-methylfuran and furanaldehydes at ≈300 K[J]. Atmos. Environ.,29 (19):2651-2660.
    11. Zhang WC, Du BN, Mu LL, et al.2008. Computational study on the mechanism for the reaction of OH with 2-methylfuran[J]. Theochem-J. Mol. Struct.,851 (1-3):353-357.
    12. Simmie JM, Curran HJ.2009. Formation Enthalpies and Bond Dissociation Energies of Alkylfurans. The Strongest C-X Bonds Known?[J]. J. Phys. Chem. A, 113 (17):5128-5137.
    13. Feller D, Simmie JM.2012. High-Level ab Initio Enthalpies of Formation of 2,5-Dimethylfuran,2-Methylfuran, and Furan[J]. J. Phys. Chem. A,116 (47): 11768-11775.
    14. Davis AC, Sarathy SM.2013. Computational Study of the Combustion and Atmospheric Decomposition of 2-Methylfuran[J]. J. Phys. Chem. A,117 (33): 7670-7685.
    15. Somers KP, Simmie JM, Gillespie F, et al.2013. A high temperature and atmospheric pressure experimental and detailed chemical kinetic modelling study of 2-methyl furan oxidation[J]. Proc. Combust. Inst.,34 (1):225-232.
    16. Tran LS, Togbe C, Liu D, et al.2014. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography-Part II:2-Methylfuran[J]. Combust Flame,161 (3):766-779.
    17. Liu D, Togbe C, Tran LS, et al.2014. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography-Part I:Furan[J]. Combust. Flame,161 (3):748-765.
    18. Wei LJ, Tang CL, Man XJ, et al.2013. Shock-Tube Experiments and Kinetic Modeling of 2-Methylfuran Ignition at Elevated Pressure [J]. Energy Fuels,27 (12):7809-7816.
    19. Somers KP, Simmie JM, Metcalfe WK, et al.2014. The pyrolysis of 2-methylfuran:a quantum chemical, statistical rate theory and kinetic modelling study[J]. Phys. Chem. Chem. Phys.,16 (11):5349-5367.
    20. Frisch MJ, Trucks GW, Schlegel HB, et al Gaussian09, Gaussian Inc.: Wallingford CT,2010.
    21. Li YY, Cai JH, Zhang LD, et al.2011. Investigation on chemical structures of premixed toluene flames at low pressure[J]. Proc. Combust. Inst.,33:593-600.
    22. Li YY, Cai JH, Zhang LD, et al.2011. Experimental and modeling investigation on premixed ethylbenzene flames at low pressure[J]. Proc. Combust. Inst.,33: 617-624.
    23. Li YY, Zhang LD, Wang ZD, et al.2013. Experimental and kinetic modeling study of tetralin pyrolysis at low pressure[J]. Proc. Combust. Inst.,34 (1): 1739-1748.
    24. Linstrom PJ, Mallard WG.2011. NIST Chemistry Webbook[EB/OL]. Number 69, Gaithersburg, MD. http://webbook.nist.gov.
    25. Yang B, Wang J, Cool TA, et al.2012. Absolute photoionization cross-sections of some combustion intermediates [J]. Int. J. Mass Spectrom.,309:118-128.
    26. Xie MF, Zhou ZY, Wang ZD, et al.2010. Determination of absolute photoionization cross-sections of oxygenated hydrocarbons[J]. Int. J. Mass Spectrom.,293 (1-3):28-33.
    27. Lias SG, Bartmess JE, Liebman JF, et al.2012. Ion Energetics Data[M]. //Linstrom, P. J.; Mallard, W. G. Eds. NIST Chemistry WebBook, NIST Standard Reference Database Number 69. Gaithersburg, MD:National Institute of Standards and Technology.
    28. Wei LX, Li ZM, Tong LH, et al.2012. Primary Combustion Intermediates in Lean and Rich Low-Pressure Premixed Laminar 2-Methylfuran/Oxygen/Argon Flames[J]. Energy Fuels,26 (11):6651-6660.
    29. Li YY, Zhang LD, Tian ZY, et al.2009. Experimental Study of a Fuel-Rich Premixed Toluene Flame at Low Pressure[J]. Energy Fuels,23:1473-1485.
    30. Yang B, Li YY, Wei LX, et al.2007. An experimental study of the premixed benzene/oxygen/argon flame with tunable synchrotron photoionization[J]. Proc. Combust. Inst.,31 (1):555-563.
    31. Li YY, Zhang LD, Yuan T, et al.2010. Investigation on fuel-rich premixed flames of monocyclic aromatic hydrocarbons:Part I. Intermediate identification and mass spectrometric analysis[J]. Combust. Flame,157 (1):143-154.
    32. Luo Y-R.2007. Comprehensive Handbook of Chemical Bond Energies[M]. Boca Raton, FL:CRC Press.
    33. Sendt K, Bacskay GB, Mackie JC.2000. Pyrolysis of Furan:Ab Initio Quantum Chemical and Kinetic Modeling Studies[J]. J. Phys. Chem. A,104 (9): 1861-1875.
    34. Tranter RS, Yang X, Kiefer JH.2011. Dissociation of C3H3I and rates for C3H3 combination at high temperatures[J]. Proc. Combust. Inst.,33 (1):259-265.
    35. Laskin A, Wang H, Law CK.2000. Detailed kinetic modeling of 1,3-butadiene oxidation at high temperatures [J]. Int. J. Chem. Kinet.,32 (10):589-614.
    36. Wang B, Hou H, Yoder LM, et al.2003. Experimental and Theoretical Investigations on the Methyl-Methyl Recombination Reaction[J]. J. Phys. Chem. A,107(51):11414-11426.
    37. Smith GP, Golden DM, Frenklach M, et al.1999. GRI 3.0[EB/OL]. http://www.me.berkeley.edu/gri mech/.
    38. Lifshitz A, Tamburu C, Shashua R.1998. Thermal decomposition of 2,5-dimethylfuran. Experimental results and computer modeling[J]. J. Phys. Chem. A,102(52):10655-10670.
    39. Tsang W, Lifshitz A.1998. Kinetic stability of 1,1,1-Trifluoroethane[J]. Int. J. Chem. Kinet.,30 (9):621-628.
    1. Tran LS, Sirjean B, Claude PA, et al.2012. Progress in detailed kinetic modeling of the combustion of oxygenated components of biofuels[J]. Energy, 43(1):4-18.
    2. Zhao H, Holladay JE, Brown H, et al.2007. Metal Chlorides in Ionic Liquid Solvents Convert Sugars to 5-Hydroxymethylfurfural[J]. Science,316 (5831): 1597-1600.
    3. Roman-Leshkov Y, Barrett CJ, Liu ZY, et al.2007. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates [J]. Nature,447 (7147): 982-985.
    4. Grela MA, Amorebieta VT, Colussi AJ.1985. Very low pressure pyrolysis of furan,2-methylfuran and 2,5-dimethylfuran. The stability of the furan ring[J]. J. Phys. Chem.,89(1):38-41.
    5. Lifshitz A, Tamburu C, Shashua R.1998. Thermal decomposition of 2,5-dimethylfuran. Experimental results and computer modeling[J]. J. Phys. Chem. A,102(52):10655-10670.
    6. Wu XS, Huang ZH, Yuan T, et al.2009. Identification of combustion intermediates in a low-pressure premixed laminar 2,5-dimethylfuran/oxygen/argon flame with tunable synchrotron photoionization[J]. Combust. Flame,156 (7):1365-1376.
    7. Tian GH, Daniel R, Li HY, et al.2010. Laminar Burning Velocities of 2,5-Dimethylfuran Compared with Ethanol and Gasoline[J]. Energy Fuels,24 (7): 3898-3905.
    8. Zhong SH, Daniel R, Xu H, et al.2010. Combustion and Emissions of 2,5-Dimethylfuran in a Direct-Injection Spark-Ignition Engine[J]. Energy Fuels, 24 (5):2891-2899.
    9. Daniel R, Tian GH, Xu HM, et al.2011. Effect of spark timing and load on a DISI engine fuelled with 2,5-dimethylfuran[J]. Fuel,90 (2):449-458.
    10. Friese P, Bentz T, Olzmann M, et al.2011. Proceedings of the European Combustion Meeting [C]. Cardiff, UK.
    11. Wu XS, Huang ZH, Wang XG, et al.2011. Laminar burning velocities and flame instabilities of 2,5-dimethylfuran-air mixtures at elevated pressures[J]. Combust. Flame,158 (3):539-546.
    12. Daniel R, Wei LX, Xu HM, et al.2012. Speciation of Hydrocarbon and Carbonyl Emissions of 2,5-Dimethylfuran Combustion in a DISI Engine[J]. Energy Fuels,26 (11):6661-6668.
    13. Djokic M, Carstensen H-H, Van Geem KM, et al.2013. The thermal decomposition of 2,5-dimethylfuran[J]. Proc. Combust. Inst.,34 (1):251-258.
    14. Friese P, Simmie JM, Olzmann M.2013. The reaction of 2,5-dimethylfuran with hydrogen atoms-An experimental and theoretical study [J]. Proc. Combust. Inst., 34(1):233-239.
    15. Sirjean B, Fournet R, Glaude PA, et al.2013. Shock tube and chemical kinetic modeling study of the oxidation of 2,5-dimethylfuran[J]. J. Phys. Chem. A,117 (7):1371-1392.
    16. Somers KP, Simmie JM, Gillespie F, et al.2013. A comprehensive experimental and detailed chemical kinetic modelling study of 2,5-dimethylfuran pyrolysis and oxidation[J]. Combust. Flame,160 (11):2291-2318.
    17. Togbe C, Tran LS, Liu D, et al.2014. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography-Part III:2,5-Dimethylfuran[J]. Combust. Flame,161 (3): 780-797.
    18. Wang CM, Xu HM, Daniel R, et al.2013. Combustion characteristics and emissions of 2-methylfuran compared to 2,5-dimethylfuran, gasoline and ethanol in a DISI engine[J]. Fuel,103:200-211.
    19. Simmie JM, Curran HJ.2009. Formation Enthalpies and Bond Dissociation Energies of Alkylfurans. The Strongest C-X Bonds Known?[J]. J. Phys. Chem. A, 113 (17):5128-5137.
    20. Simmie JM, Metcalfe WK.2011. Ab Initio Study of the Decomposition of 2,5-Dimethylfuran[J]. J. Phys. Chem. A,115 (32):8877-8888.
    21. Feller D, Simmie JM.2012. High-Level ab Initio Enthalpies of Formation of 2,5-Dimethylfuran,2-Methylfuran, and Furan[J]. J. Phys. Chem. A,116 (47): 11768-11775.
    22. Sirjean B, Fournet R.2012. Theoretical Study of the Thermal Decomposition of the 5-Methyl-2-furanylmethyl Radical [J]. J. Phys. Chem. A,116 (25): 6675-6684.
    23. Sirjean B, Fournet R.2013. Unimolecular decomposition of 2,5-dimethylfuran: a theoretical chemical kinetic study[J]. Phys. Chem. Chem. Phys.,15 (2): 596-611.
    24. Sirjean B, Fournet R.2013. Theoretical study of the reaction 2,5-dimethylfuran+H→products[J]. Proc. Combust. Inst.,34 (1):241-249.
    25. Somers KP, Simmie JM, Gillespie F, et al.2013. A high temperature and atmospheric pressure experimental and detailed chemical kinetic modelling study of 2-methyl furan oxidation[J]. Proc. Combust. Inst.,34 (1):225-232.
    26. Frisch MJ, Trucks GW, Schlegel HB, et al Gaussian09, Gaussian Inc.: Wallingford CT,2010.
    27. Robertson SH, Pilling MJ, Baulch DL, et al.1995. Fitting of pressure-dependent kinetic rate data by master equation/inverse Laplace transform analysis[J]. J. Phys. Chem.,99 (36):13452-13460.
    28. Glowacki DR, Liang C-H, Morley C, et al.2012. MESMER:An Open-Source Master Equation Solver for Multi-Energy Well Reactions[J]. J. Phys. Chem. A, 116 (38):9545-9560.
    29. Robertson SH, Glowacki DR, Liang CH, et al MESMER (Master Equation Solver for Multi-Energy Well Reactions), http://sourceforge.net/proiects/mesmer.
    30. Harding LB, Klippenstein SJ, Georgievskii Y.2007. On the Combination Reactions of Hydrogen Atoms with Resonance-Stabilized Hydrocarbon Radicalst[J]. J. Phys. Chem. A,111 (19):3789-3801.
    31. Tsang W, Hampson RF.1986. Chemical kinetic database for combustion chemistry.1. Methane and related-compounds [J]. J. Phys. Chem. Ref. Data,15 (3):1087-1279.
    32. Tsang W.1990. Chemical Kinetic Data Base for Combustion Chemistry Part 4. Isobutane[J]. J. Phys. Chem. Ref. Data,19(1):1-68.
    33. Tsang W.1988. Chemical kinetic data-base for combustion chemistry.3. Propane[J]. J. Phys. Chem. Ref. Data,17 (2):887-952.
    34. Luo Y-R.2007. Comprehensive Handbook of Chemical Bond Energies[M]. Boca Raton, FL:CRC Press.
    35. da Silva G, Cole JA, Bozzelli JW.2009. Thermal Decomposition of the Benzyl Radical to Fulvenallene (C7H6)+H[J]. J. Phys. Chem. A,113 (21):6111-6120.
    36. Poling BE, Prausnitz JM, O'Connell JP.2001. The properties of gases and liquids[M]. New York:McGraw-Hill.
    37. Xu ZF, Lin MC.2006. Ab initio kinetics for the unimolecular reaction C6H5OH->CO+C5H6[J]. J. Phys. Chem. A,110 (4):1672-1677.
    38. Sakai Y, Miyoshi A, Koshi M, et al.2009. A kinetic modeling study on the oxidation of primary reference fuel-toluene mixtures including cross reactions between aromatics and aliphatics[J]. Proc. Combust. Inst.,32:411-418.
    39. He YZ, Mallard WG, Tsang W.1988. Kinetics of hydrogen and hydroxyl radical attack on phenol at high temperatures[J]. J. Phys. Chem.,92 (8):2196-2201.
    40. Costa ID, Fournet R, Billaud F, et al.2003. Experimental and modeling study of the oxidation of benzene[J]. Int. J. Chem. Kinet.,35 (10):503-524.
    41. Carstensen HH, Dean AM.2012. A quantitative kinetic analysis of CO elimination from phenoxy radicals[J]. Int. J. Chem. Kinet.,44 (1):75-89.
    42. Miller JA, Klippenstein SJ.2003. The recombination of propargyl radicals and other reactions on a C6H6 potential[J]. J. Phys. Chem. A,107 (39):7783-7799.
    43. Seta T, Nakajima M, Miyoshi A.2006. High-temperature reactions of OH radicals with benzene and toluene[J]. J. Phys. Chem. A,110 (15):5081-5090.
    44. Laskin A, Wang H, Law CK.2000. Detailed kinetic modeling of 1,3-butadiene oxidation at high temperatures [J]. Int. J. Chem. Kinet.,32 (10):589-614.
    45. Klippenstein SJ, Harding LB, Georgievskii Y.2007. On the formation and decomposition of C7H8[J]. Proc. Combust. Inst.,31:221-229.
    46. Oehlschlaeger MA, Davidson DF, Hanson RK.2006. Experimental investigation of toluene plus H->benzyl plus H-2 at high temperatures[J]. J. Phys. Chem. A,110 (32):9867-9873.
    47. Metcalfe WK, Dooley S, Dryer FL.2011. Comprehensive Detailed Chemical Kinetic Modeling Study of Toluene Oxidation[J]. Energy & Fuels,25 (11): 4915-4936.
    48. Fahr A, Stein SE.1989. Reactions of vinyl and phenyl radicals with ethyne, ethene and benzene[J]. Proc. Combust. Inst.,22 (1):1023-1029.
    49. Zhang YJ, Cai JH, Zhao L, et al.2012. An experimental and kinetic modeling study of three butene isomers pyrolysis at low pressure[J]. Combust. Flame,159 (3):905-917.
    50. Cai JH, Zhang LD, Zhang F, et al.2012. Experimental and Kinetic Modeling Study of n-Butanol Pyrolysis and Combustion[J]. Energy Fuels,26 (9): 5550-5568.
    51. Cai JH, Yuan WH, Ye LL, et al.2013. Experimental and kinetic modeling study of 2-butanol pyrolysis and combustion[J]. Combust. Flame,160 (10): 1939-1957.
    52. Li YY, Cai JH, Zhang LD, et al.2011. Investigation on chemical structures of premixed toluene flames at low pressure[J]. Proc. Combust. Inst.,33:593-600.
    53. Li YY, Cai JH, Zhang LD, et al.2011. Experimental and modeling investigation on premixed ethylbenzene flames at low pressure[J]. Proc. Combust. Inst.,33: 617-624.
    54. Li YY, Zhang LD, Wang ZD, et al.2013. Experimental and kinetic modeling study of tetralin pyrolysis at low pressure[J]. Proc. Combust. Inst.,34 (1): 1739-1748.
    55. Tian ZY, Yuan T, Fournet R, et al.2011. An experimental and kinetic investigation of premixed furan/oxygen/argon flames[J]. Combust. Flame,158 (4):756-773.
    56. CHEMKIN-PRO15092, San Diego,2009.
    57. Linstrom PJ, Mallard WG.2011. NIST Chemistry Webbook[EB/OL]. Number 69, Gaithersburg, MD. http://webbook.nist.gov.
    58. Xie MF, Zhou ZY, Wang ZD, et al.2010. Determination of absolute photoionization cross-sections of oxygenated hydrocarbons [J]. Int. J. Mass Spectrom.,293 (1-3):28-33.
    59. Lias SG, Bartmess JE, Liebman JF, et al.2012. Ion Energetics Data[M]. //Linstrom, P. J.; Mallard, W. G. Eds. NIST Chemistry WebBook, NIST Standard Reference Database Number 69. Gaithersburg, MD:National Institute of Standards and Technology.
    60. Li YY, Zhang LD, Tian ZY, et al.2009. Experimental Study of a Fuel-Rich Premixed Toluene Flame at Low Pressure[J]. Energy Fuels,23:1473-1485.
    61. Yang B, Li YY, Wei LX, et al.2007. An experimental study of the premixed benzene/oxygen/argon flame with tunable synchrotron photoionization[J]. Proc. Combust. Inst.,31 (1):555-563.
    62. Bounaceur R, Da Costa I, Fournet R, et al.2005. Experimental and modeling study of the oxidation of toluene[J]. Int. J. Chem. Kinet.,37 (1):25-49.
    63. Wang ZD, Cheng ZJ, Yuan WH, et al.2012. An experimental and kinetic modeling study of cyclohexane pyrolysis at low pressure[J]. Combust. Flame, 159 (7):2243-2253.
    64. Wang ZD, Ye LL, Yuan WH, et al.2014. Experimental and kinetic modeling study on methylcyclohexane pyrolysis and combustion[J]. Combust. Flame,161 (1):84-100.
    65. Slavinskaya NA, Frank P.2009. A modelling study of aromatic soot precursors formation in laminar methane and ethene flames[J]. Combust. Flame,156 (9): 1705-1722.
    66. Pepiot-Desjardins P, Pitsch H, Malhotra R, et al.2008. Structural group analysis for soot reduction tendency of oxygenated fuels[J]. Combust. Flame,154 (1-2): 191-205.
    67. McEnally CS, Pfefferle LD.2011. Sooting Tendencies of Oxygenated Hydrocarbons in Laboratory-Scale Flames[J]. Environ. Sci. Technol.,45 (6): 2498-2503.
    68. Barrientos EJ, Lapuerta M, Boehman AL.2013. Group additivity in soot formation for the example of C-5 oxygenated hydrocarbon fuels[J]. Combust. Flame,160(8):1484-1498.
    69. Chen GS, Shen YG, Zhang QC, et al.2013. Experimental study on combustion and emission characteristics of a diesel engine fueled with 2,5-dimethylfuran-diesel, n-butanol-diesel and gasoline-diesel blends[J]. Energy,54 (0):333-342.
    70. Crynes LL, Crynes BL.1987. Coke formation on polished and unpolished Incoloy 800 coupons during pyrolysis of light hydrocarbons[J]. Ind. Eng. Chem. Res.,26 (10):2139-2144.
    71. Lifshitz A, Bidani M, Bidani S.1986. Thermal reactions of cyclic ethers at high temperatures. III. Pyrolysis of furan behind reflected shocks[J]. J. Phys. Chem., 90 (21):5373-5377.
    72. Lifshitz A, Tamburu C, Shashua R.1997. Decomposition of 2-methylfuran. Experimental and modeling study [J]. J. Phys. Chem. A,101 (6):1018-1029.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700