用户名: 密码: 验证码:
基于CFD的大功率调速型液力偶合器设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合国家高技术研究发展计划(863计划)专题课题“大型泵与风机液力调速节能关键技术研究”(2007AA05Z256),基于三维多相流动理论和计算流体动力学(CFD),对大功率调速型液力偶合器的非稳态两相流动进行数值模拟;针对计算实例的数值计算结果对其流场的速度与压力分布进行详细分析,揭示其流场的流动规律和特性。基于三维流场数值解进行液力偶合器的特性预测,将理论计算与实验结果进行对比分析,从而验证理论方法和计算的正确性。在此基础上研究大功率调速型液力偶合器的现代设计方法,并基于UG和CFD方法对调速型液力偶合器进行参数化设计和优化设计。本文研究的主要内容有以下几个方面:
     (1)探讨气液两相流动的特点及目前气液两相流动研究中使用的数值计算方法,给出CFD中的几种多相流模型,并根据液力偶合器的实际情况进行分析以确定本文采用的模型。
     (2)基于CFD方法进行液力偶合器两相流动数值模拟,确定流场计算的解决方案;建立基型YOCQZ450调速型液力偶合器的三维模型,同时进行计算网格划分与边界条件设置;根据数值模拟结果详细分析偶合器在不同充液率下的速度场和压力场,并基于三维流场数值解计算其外特性和原始特性。
     (3)进行液力偶合器的外特性实验,测试大功率调速型液力偶合器在不同充液率下的外特性参数,并与预测结果进行对比分析,从而验证特性预测方法的正确性及准确性。
     (4)基于流场数值计算和特性计算方法,提出液力偶合器的现代设计方法,基于UG和CFD平台开发大功率调速型液力偶合器设计软件并进行参数化设计与优化设计。
With the development of our economy, equipment power and installed capacity increase very quickly in many industries, such as electric power, metallurgy, chemical industry, petroleum, mining and so on, and the demands of the pump and fan increase continuously. So the high-power energy-saving products are required urgently. The effect of saving electricity is conspicuous when variable speed hydrodynamic applies on fans and pumps, the more the power is, the more the saving electricity effect is. Aiming at some key technical problems which the design and manufacture of variable speed high-power hydrodynamic coupling is confronted with, this paper associates with the special subject“Key Technological Research on Hydrodynamic Variable Speed and Saving Energy of Large Pump and Fan”of the National High-tech Research Development Plan (863). Firstly, non-steady numerical calculation is conducted for the gas-liquid two-phase flow of hydrodynamic coupling, based on the calculation results velocity and press distribution of flow is analyzed in detail, and the flow law and behavior are revealed. Then the performance prediction of hydrodynamic coupling is conducted based on flow-field numerical solutions, and the correctness of the theoretical method and calculation is verified by comparing with the test results. Based on this, the modern design method of variable speed high-power hydrodynamic coupling is studied. The parametric design and optimization design is developed by UG and CFD, which can reduce the cost and cycle of design and modify, and make it convenient for the hydrodynamic coupling to popularization and application.
     Numerical Calculation of Gas-liquid Two-phase Flow in Variable Speed High-power Hydrodynamic Coupling
     Adjustable-speed function of variable speed hydrodynamic coupling is achieved by changing the liquid filled ratio. The inner has complicated gas-liquid two-phase three-dimension viscous flow. Three multiphase flow models in CFD method, which includes VOF model, Mixture model and Eulerian model, are further studied based on fully understanding the calculation models of gas-liquid two-phase flow and basic control equations of fluid motion as well as certain common used turbulence models and the methods to numerical simulation of turbulence. The calculation of gas-liquid two-phase flow of hydrodynamic coupling is conducted used Mixture model according to its characteristics.
     The calculation of gas-liquid two-phase flow is conducted through choosing relevant calculation parameters according to the working state of the variable speed high-power hydrodynamic coupling. The concrete calculation parameters are as follows: PISO algorithm is used in velocity-pressure coupling algorithm; the second-order upwind scheme is used in space disperse format; the non-steady model is used in numerical simulation method; sliding mesh theory is used in interface of the pump and turbine; the whole flow passage is used to calculate the flow field; the no-slip wall boundary condition is used in blades and the outer wall. The method and process of three dimensional field calculation is described in detail taking YOCQZ450 variable speed hydrodynamic coupling as example, including the basic assumption, geometric model, mesh model, boundary conditions, calculation steps, convergence criteria, and the internal flow field of hydrodynamic coupling in different conditions are calculated.
     Flow Field Analysis of Variable Speed Hydrodynamic Coupling
     It has important significance of understanding the inner real flow and developing law to reduce the design cycle, low design risk, and improve the property. For fully understanding the distribution characteristic of gas-liquid two-phase flow in hydrodynamic coupling, the numerical calculation of three dimension flow in hydrodynamic coupling is conducted, and take internal flow filed of which the liquid filled ratio is 40% and 80% as example to make flow field analysis on the results of numerical simulation under braking condition( i = 0),traction condition( i =0.5) and rated condition( ). Under braking condition, the turbine holds still, and the impact effect by the high-speed irregular flow of pump is great, so the internal flow field of turbine is complicated, some irregular flow such as vortex and secondary flow appear in turbine. With the increase of the speed ratio, the effect of i =0.97centrifugal force on pressure variation is more and more important, simultaneously more flow take part in the primary cycle under the interaction of the centrifugal force and coriolis forces, which makes the extrusion that the outer loop of pump becomes more serious, so the static pressure on the outer loop of pump is relatively large.Compared with the braking condition, under traction condition, high pressure region on the pressure surface of turbine blade reduces, because with the increases of speed ratio, the incident angle of high-speed liquid impacting turbine from pump is relatively small. Under rated condition, the distribution of the static pressure of pump and turbine is regular, and the pressure value is increased radially in proportion, reaching the maximum at ingress of pump and turbine.
     Through the numerical calculation and analysis on the flow field of turbine blade and the whole flow field of variable speed hydrodynamic coupling under different condition and liquid filled ratio, the change of velocity and press distribution of the flow field is revealed. Preliminary understanding the flow behavior of the flow field in pump and turbine of hydrodynamic coupling, and the forming reason of the flow behavior is fully analyzed. It is convenient for understanding the working mechanism of the coupling to study the inner real flow and rules, which is helpful to guide the design of hydrodynamic coupling, and improve the property.
     Characteristics Prediction and Experimental Research on Variable Speed Hydrodynamic Coupling
     Based on the internal flow calculation, the torques and performance parameters of impeller in hydrodynamic coupling are calculated by using the equation of pump torque, and the original characteristic curve is drawing. The external characteristic experiment on YOCQZ450 variable speed hydrodynamic coupling is done, and the result is contrasted and analyzed with the result of three-dimensional flow field calculation, which indicates that the numerical results have high precision. The result shows that precision of numerical calculate is high, and agrees well with the experimental data. The maximum relative error is less than 15%, which can be accepted to the internal complex two-phase flow in hydrodynamic coupling, so the method of numerical simulation and performance prediction are validated. The numerical simulation results of this paper are very valuable for the analysis of three-dimension two-phase flow field in hydrodynamic coupling. The CFD method could be used to design the hydrodynamic coupling and change the disadvantages of traditional design method which need multiple trial production to setting. It could realize the calculation process on computer, reach the purpose of precise, saving time and money, and many further researches on hydrodynamic coupling can be well continued on the base of that.
     Research on the Design Method of Variable Speed High-power Hydrodynamic Coupling
     The traditional design method of hydrodynamic coupling is based on the preliminary model selection, process variables are determined by resort experiment, finally the basic parameters are determined. But rationality of the design awaits text. While the design based on CFD also needs to know certain prophase basic parameters to establish three-dimensional virtual model, and the result is obtained through calculation which can measure good or bad of the design. The main advantage is to recount to get a better result through modify the parameters of model. However, the traditional design is to conduct test through producing prototype wasting several months and then modifying due to the feedback from the test to the design period. Therefore the modern design method of hydrodynamic coupling is a kind of design method which is the combination of traditional design method, CFD and test mean.
     The modern design method of variable speed high-power hydrodynamic coupling is studied in this paper, and the software used for parameter design and optimization design of variable speed high-power hydrodynamic coupling is developed based on UG and CFD. The advanced computer technology is combined with CFD to establish three-dimensional virtual model, and the result is obtained through numerical calculation. The main advantage is to recount to get a better result through modify the parameters of model. However, the traditional design is to conduct test through producing prototype wasting several months and then modifying due to the feedback from the test to the design period. In this paper, three kinds of structural optimum design schemes of variable speed high-power hydrodynamic coupling are proposed based on CFD. Numerical simulation and performance prediction are conducted respectively to the three schemes, and the best optimization result is obtained through compare three schemes and base type.
引文
[1]马文星.液力传动理论与设计[M].北京:化学工业出版社,2004.
    [2]程根生.调速型液力偶合器的性能及应用[J].淮南职业技术学院学报,2005(1):47-48.
    [3]刘应诚.调速型液力偶合器在电厂锅炉给水泵上的应用与节能[J].通用机械,2006 (9):74-75.
    [4]陈叶,杨达文,方耀清.调速型液力偶合器的研究及应用[J].煤矿机械,2002(7): 14-15.
    [5]过学迅,郑慕桥.液力变矩器流场研究的方法和进展[J].汽车工程,1995,17(3):145-151.
    [6]马文星.国外车辆液力传动研究现状及其展望[J].汽车工程,1996,18(4):193-198.
    [7]过学迅,郑慕桥.液力变矩器流场计算的压力修正法[J].汽车工程,1996,18(2): 89-93.
    [8]闫国军,董泳,吴剑威.液力变矩器部分充液特性研究及应用[J].工程机械,2007 (5):47-50.
    [9] DONG YU,KORIVI VAMSHI,ATTIBELE PRADEEP,et al.Torque Converter CFD Engineering Part I : Torque Ratio and K Factor Improvement through Stator Modifications[C]//SAE 2002-01-0883.
    [10]项昌乐,肖荣,闫清东,等.牵引—制动型液力变矩器流场分析[J].工程机械,2005 (5):43-46.
    [11]伍晓芳.空调用多翼离心风机现代设计的CAD/CFD研究[D].武汉:华中科技大学, 2004.
    [12]张惠民.叶轮机械中的三元流理论及其应用[M].北京:机械工业出版社,1984.
    [13]冯进,丁凌云,张慢来.离心式气液分离器流场的全三维数值模拟[J].长江大学学报(自然版),2006,3(4):112-115.
    [14]陈秀维.混流式水轮机转轮CFD优化[D].哈尔滨:哈尔滨工业大学,2004.
    [15]任涛,闫永强,梁武科.CFD技术在离心泵优化设计中的应用[J].排灌机械,2007, 25(1):25-28.
    [16] SINIBALDI E,BEUX F,SALVETTI MV.A Numerical Method for 3D Barotropic Flows in Turbomachinery[J].Flow Turbulence and Combustion,2006(4):371-381.
    [17]朱荣生,付强,李维斌,等.基于混合模型的离心泵叶轮内汽蚀两相流的CFD分析[J].中国农村水利水电,2006(8):51-53.
    [18]刘正先,曹淑珍,谷传纲,等.离心叶轮内三维湍流流场的实验研究[J].工程热物理学报,1999(5):558-562.
    [19]张永学,李振林.流体机械内部流动数值模拟方法综述.流体机械,2006,34(7): 34-38.
    [20]蔡兆麟,罗晟.流体机械叶轮内二次流及尾迹发展[J].华中科技大学学报,2001(A01): 7-10.
    [21]李雪松,马文星,吴允柱.液力偶合器制动工况三维流场数值模拟及制动转矩计算[C].第四届全国流体传动及控制学术会议论文集.大连,2006.
    [22]齐迎春.数值模拟技术在液力变矩器流场分析中的应用[D].长春:吉林大学,2004.
    [23]田华.液力变矩器现代设计理论的研究[D].长春:吉林大学,2005.
    [24]严鹏,吴光强,谢硕.液力变矩器泵轮流场数值分析[J].汽车工程,2004(2):183-186.
    [25] DONG Y,LAKSHMINARAYANA B,MADDOCK D.Steady and Unsteady Flow Field at Pump and Turbine Exit of a Torque Converter[J].ASME Journal of Fluid Engineering 1998,120:538-548.
    [26] DONG Y,LAKSHMINARAYANA B.Experimental Investigation of the Flow Field in an Automotive Torque Converter Stator[J].ASME Journal of Fluids Engineering,1999,121 788-797.
    [27] BY R R,LAKSHMINARAYANA B.Measurement and Analysis of Static Pressure Field in a Torque Converter Turbine[J].Journal of Fluids Engineering,1995(3):473-478.
    [28] FLACK R,BRUN K.Fundamental Analysis of the Secondary Flows and Jet-Wake in a Torque Converter Pump-Part I:Model and Flow in a Rotating Passage[J].Journal of Fluids Engineering,2005(1):66-74.
    [29] FLACK R,BRUN K.Fundamental Analysis of the Secondary Flows and Jet-Wake in a Torque Converter Pump-Part II:Flow in a Curved Stationary Passage and Combined Flows[J].Journal of Fluids Engineering,2005(1):75-82.
    [30] DEGOND PIERRE,DIMARCO GIACOMO,MIEUSSENS LUC.A Moving Interface method for Dynamic Kinetic–fluid Coupling[J].Journal of Computational Physics,2007(2):1176-1188.
    [31] SHIN SEHYUN,CHANG HYUKJAE,ATHAVALE MAHESH.Numerical Investigation of the Pump Flow in an Automotive Torque Converter[C]//SAE 1999-01-1056.
    [32] VON BACKSTROM T,LAKSHMINARAYANA B.Perspective:Fluid Dynamics andPerformance of Automotive Torque Converters:An Assessment[J].ASME Journal of Fluids Engineering,1996,118:665-676.
    [33] SHIN SEHYUN,KIM KYUNG-JOON,KIM DONG-JIN,et al.The Effect of Reactor Blade Geometry on the Performance of an Automotive Torque Converter[C]//SAE 2002-01-0885.
    [34] LIM GIWOO,JANG JAEDUK.Effects of Stator Shapes on Hydraulic Performances of an Automotive Torque Converter with a Squashed Torus[C]//SAE 2002-01-0886.
    [35] CIGARINI MARCO,JONNAVITHULA SREENADH.Fluid Flow in an Automotive Torque Converter:Comparison of Numerical Results with Measurements[C]//SAE 950673.
    [36]罗邦杰.工程机械液力传动[M].北京:机械工业出版社,1991.
    [37] BAI L,FIEBLG M,MITRA N K.Numerical Analysis of Turbulent Flow in Fluid Couplings[J].ASME Journal of Fluids Engineering,1997,119:569-576.
    [38] CHARLES N,MCKINNON,BRENNEN DANAMICHELE,et al.Hydraulic Analysis of a Reversible Fluid Coupling[J].Journal of Fluids Engineering,2001(2):249-255.
    [39] HUITENGA H,MITRA N K.Improving Startup Behavior of Fluid Couplings Through Modification of Runner Geometry:Part I—Fluid Flow Analysis and Proposed Improvement [J].Journal of Fluids Engineering,2000(4):683-688.
    [40] HUITENGA H,MITRA N K.Improving Startup Behavior of Fluid Couplings Through Modification of Runner Geometry:Part II—Modification of Runner Geometry and Its Effects on the Operation Characteristics[J].Journal of Fluids Engineering,2000(4):689-693.
    [41]李雪松.车辆液力减速器三维流场分析与特性计算[D].长春:吉林大学,2006.
    [42]吴开府.液力偶合器流场数值模拟及其分离流动控制研究[D].长春:吉林大学,2007.
    [43]王峰.基于流场分析的液力减速器制动性能研究[D].北京:北京理工大学,2007.
    [44]陈见.基于三维流动计算的液力减速器性能仿真研究[D].武汉:武汉理工大学,2008.
    [45]马根娣,孙鸿元.气液两相流研究概述[J].力学进展,1986,16(1):65-73.
    [46]周帼彦.螺旋片导流式分离器气液两相流的数值模拟与试验研究[D].南京:南京工业大学,2003.
    [47] MINEMURA KIYOSHI,UCHIYAMA TOMOMI.Three-Dimension Calculation of Air-Water Two-phase Flow in Centrifugal Pump Impeller Based on a Bubbly Flow Model[J].Journal of Fluids Engineering,1993,115(4):781-783.
    [48] WU YULIN.Three-dimension Calculation of Oil-bubble Flows through a Centrifugal Pump Impeller[C] . Proceedings of the Third Internal Conference on Pump andPerformance of Automotive Torque Converters:An Assessment[J].ASME Journal of Fluids Engineering,1996,118:665-676.
    [33] SHIN SEHYUN,KIM KYUNG-JOON,KIM DONG-JIN,et al.The Effect of Reactor Blade Geometry on the Performance of an Automotive Torque Converter[C]//SAE 2002-01-0885.
    [34] LIM GIWOO,JANG JAEDUK.Effects of Stator Shapes on Hydraulic Performances of an Automotive Torque Converter with a Squashed Torus[C]//SAE 2002-01-0886.
    [35] CIGARINI MARCO,JONNAVITHULA SREENADH.Fluid Flow in an Automotive Torque Converter:Comparison of Numerical Results with Measurements[C]//SAE 950673.
    [36]罗邦杰.工程机械液力传动[M].北京:机械工业出版社,1991.
    [37] BAI L,FIEBLG M,MITRA N K.Numerical Analysis of Turbulent Flow in Fluid Couplings[J].ASME Journal of Fluids Engineering,1997,119:569-576.
    [38] CHARLES N,MCKINNON,BRENNEN DANAMICHELE,et al.Hydraulic Analysis of a Reversible Fluid Coupling[J].Journal of Fluids Engineering,2001(2):249-255.
    [39] HUITENGA H,MITRA N K.Improving Startup Behavior of Fluid Couplings Through Modification of Runner Geometry:Part I—Fluid Flow Analysis and Proposed Improvement [J].Journal of Fluids Engineering,2000(4):683-688.
    [40] HUITENGA H,MITRA N K.Improving Startup Behavior of Fluid Couplings Through Modification of Runner Geometry:Part II—Modification of Runner Geometry and Its Effects on the Operation Characteristics[J].Journal of Fluids Engineering,2000(4):689-693.
    [41]李雪松.车辆液力减速器三维流场分析与特性计算[D].长春:吉林大学,2006.
    [42]吴开府.液力偶合器流场数值模拟及其分离流动控制研究[D].长春:吉林大学,2007.
    [43]王峰.基于流场分析的液力减速器制动性能研究[D].北京:北京理工大学,2007.
    [44]陈见.基于三维流动计算的液力减速器性能仿真研究[D].武汉:武汉理工大学,2008.
    [45]马根娣,孙鸿元.气液两相流研究概述[J].力学进展,1986,16(1):65-73.
    [46]周帼彦.螺旋片导流式分离器气液两相流的数值模拟与试验研究[D].南京:南京工业大学,2003.
    [47] MINEMURA KIYOSHI,UCHIYAMA TOMOMI.Three-Dimension Calculation of Air-Water Two-phase Flow in Centrifugal Pump Impeller Based on a Bubbly Flow Model[J].Journal of Fluids Engineering,1993,115(4):781-783.
    [48] WU YULIN.Three-dimension Calculation of Oil-bubble Flows through a Centrifugal Pump Impeller[C] . Proceedings of the Third Internal Conference on Pump and
    [70]牟介刚.离心泵现代设计方法研究和工程实现[D].杭州:浙江大学,2005.
    [71]黄勇,张博林,薛运锋.UG二次开发与数据库应用基础与典型范例[M].北京:电子工业出版社,2008.
    [72]吴占阳,侯忠滨.UG二次开发技术研究[J].现代机械,2005(5):48-50.
    [73]刘定伟,薛澄岐.UG二次开发接口技术研究[J].机械制作与自动化,2005,34(1): 80-83.
    [74]夏天,吴立军.UG二次开发技术基础[M].北京:电子工业出版社,2005.
    [75]谭浩强.C语言程序设计[M].北京:清华大学出版社,1999.
    [76]刘雅博,陈拂晓,郭俊卿.MFC在UG二次开发CAD系统中的应用[J].金属成形工艺,2004,22(3):39-41.
    [77]曲艳峰,杨小兵.利用UG/NX的二次开发技术实现齿轮参数化设计[J].上海电力学院学报,2006,22(1):93-96.
    [78]艾志久,马海峰,贺会群,等.基于CFD平台的旋流器优化设计系统开发[J].石油矿场机械,2007,36(5):40-43.
    [79]万天虎,赵道利,梁武科,等.基于CAD/CFD分析系统的流体机械翼型优化[J].流体机械,2005,33(11):37-39.
    [80]李文广.流体机械及工程国际学术会泵论文述评[J].水泵技术,2001,(1):3-8.
    [81]赵兴艳,苏莫明,张楚华,等.CFD方法在流体机械设计中的应用[J].流体机械, 2000,28(3):22-25.
    [82] HALL J F,BATIGOU M,SIMMONS M J H,et al.A PIV Study of Hydrodynamics in Gas-liquid High throughput Experimentation Reactors with Eccentric impeller Configuration[J].Chemical Engineering Science,2005(4):6403-6413.
    [83] KADAMBI J R,MARTIN W T,AMIRTHAGANESH S et al.Particle Sizing Using Particle Imaging Velocimetry for Two-phase Flows[J].Powder Technology,1998(3):251-259.
    [84]巢二如.液力变矩器的能量损失及其补偿[J].矿业研究与开发,1994(3):47-49.
    [85]陶毅,郭颜军,李成博,等.液力变矩器叶轮叶片芯模具的逆工程设计[J].模具工业, 1999(12):42-44.
    [86] LEE C W,PALMA P C,SIMMONS K.Comparison of Computational Fluid Dynamics and Particle Image Velocimetry Data for the Air flow in an Aeroengine Bearing Chamber[J].Journal of Engineering for Gas Turbines and Power,2005(4):697-703.
    [87] SALEWSKI MIRKO,STANKOVIC DRAGAN,FUCHS LASZLO.A Comparison of Single and Multiphase Jets in a Crossflow Using Large Eddy Simulations[J].Journal ofEngineering for Gas Turbines and Power,2007(1):61-68.
    [88]朱保林.离心泵内流三维数值模拟[D].杭州:浙江工业大学,2005.
    [89]张慢来,冯进,丁凌云,等.一种轴流式叶轮的全三维优化设计[J].长江大学学报(自科版),2006,3(2):83-86.
    [90] CARIDAD JOSE A,KENYERY FRANK.Slip Factor for Centrifugal Impellers Under Single and Two-Phase Flow Conditions[J].Journal of Fluids Engineering,2005(2):317-321.
    [91] STEPHANE V.Local Mesh Refinement and Penalty Methods Dedicated to the Direct Numerical Simulation of Incompressible Multiphase Flows[C] . Proceedings of the ASME/JSME Joint Fluids Engineering Conference,2003.
    [92] WISSINK J G.DNS of Separating Low Reynolds Number Flow in a Turbine Cascade with Incoming Wakes[J].International Journal of Heat and Fluid Flow,2003(4):626-635.
    [93]谭立新.水气二相流数值模拟研究[D].成都:四川大学,1999.
    [94]周明,李文采.激光多普勒测速技术在气液两相流中的应用[J].力学学报,1991,23 (1):46-52.
    [95]李祥东,汪荣顺,顾安忠.低温气液两相流研究的CFD技术[J].低温与超导,2004, 32(3):34-38.
    [96]卢金铃,席光,祁大同.气液两相流泵的研究进展.流体机械[J].2001,29(12): 12-15.
    [97]江尻英治.トルクコンバ—タの燃费向上技術[J].自動車技術,1992(4).
    [98]马文星,成凯,高秀华,等.液力传动元件内部流场测量的激光切面法[J].农业工程学报,1997(2):154-159.
    [99] BRUN KLAUS,FLACK RONALD D.The Flow Field Inside an Automotive Torque Converter: Laser Velocimeter Measurements[C]//SAE 960721.
    [100] BRUN K,FLACK R D ,GRUVER J K.Laser Velocimeter Measurements in the Pump of a Torque Converter-PartⅡ:Unsteady Measurements[C]//ASME 94-GT-48.
    [101] BAHR H M,FLACK R D,BY R R.Laser Velocimeter Measurements in the Stator of a Torque Converter[C]// SAE 901769.
    [102] WHITEHEAD LEONARD D,FLACK RONALD D.Velocity Measurements in an Automotive Torque Converter PartⅠ—Average Pump Measurements[J] . Tribology Transactions.1999,42:687-696.
    [103] YERMAKOV ALEXANDER,FLACK RONALD D,CLAUDEL WARREN D.AverageVelocity Measurements in Six Automotive Torque Converters : PartⅡ—Turbine Measurements[J].Tribology Transactions.2001,44:615-625.
    [104] SHIN SEHYUN,LEE BYUNG-CHEOL,HONG JONG-HAE,et al.Performance Improvement Using a Slotted Stator of an Automotive Torque Converter[C]//SAE 2003-01-0247.
    [105] WATANABE HISASHI,YOSHIDA KAZUNORI,YAMADA MASATOSHI,et al.Flow Visualization and Measurement in the Stator of a Torque Converter[J].SAE 9541263:25-30.
    [106] WATANABE HISASHI , KURAHASHI TETSUO , et al . Flow Visualization and Measurement of Torque Converter Stator Blades Using a Laser Sheet Lighting Method and a Laser Doppler Velocimeter[C]//SAE 970680.
    [107] LEE JIN-HYUK,LEE HOON.Dynamic Simulation of Nonlinear Model-Based Observer for Hydrodynamic Torque Converter System[C]//SAE 2004-01-1228.
    [108] MIDDELMANN VOLKER,GUNDLAPALLI RACISHANKAR,HALENE CLEMENS,et al . Development of Axially-squashed Torque Converters for Newer Automatic Transmissions[J].ASME Fluids Engineering Division Summer Meeting.2000.FEDSM 2000-111326.
    [109] SAKAMOTO HARUO,SUYAMA KIYOTO,SAKA TOKIMORI.Study on Torque Converter Circuit Profile[C]// SAE 920765.
    [110]岳明,徐行,杨茂林.离心式喷嘴内气液两相流动的数值模拟[J].工程热物理学报, 2003,24(5):888-890.
    [111]齐学义,翟小兵,张凤羽.液力变矩器三元流场计算的一种近似方法[J].水动力学研究与进展,2004(1):104-107.
    [112]张凤羽,翟小兵,齐学义.样条函数在液力变矩器三元流场计算中的应用[J].甘肃工业大学学报,2000(2):39-44.
    [113]谢代鹏,黄宗益.液力机械式自动变速汽车动力性计算数学模型[J].同济大学学报, 1998(6):691-695.
    [114]过学迅,吴涛.汽车自动变速器在中国的发展现状及前景[J].汽车研究与开发,1996 (6):7-10.
    [115]王成敏,佟志忠,董泳,等.液力变矩器叶栅系统参数的反求算法研究[J].工程机械, 2003(2):31-33
    [116]王清松,马文星,赵罡,等.液力变矩器叶轮和叶片非接触测量及三维建模[J].工程机械.2004(4):38-40.
    [117]王彦,王玉鹏,马文星.液力变矩器循环圆的综合描述及导数修正法[J].吉林大学学报(工学版),2002(1):79-82.
    [118]闫国军,董泳,陆肇达.导轮可调式液力变矩器数学模型的建立[J].哈尔滨工业大学学报,2001(2):200-202.
    [119]韩文明,黄金玲,葛安林.CAD/CAM一体化技术在液力变矩器研制中的应用[J].汽车技术,1999(1):23-26.
    [120]孙旭光,韩德才.液力变矩器广义方程组及仿真计算[J].机械工程学报,2000(5): 23-26.
    [121]李有义,阎国军,王成敏,等.液力变矩器叶栅绘形的计算机辅助设计方法[J].哈尔滨工业大学学报,2001(2):231-233.
    [122]商高高,何仁,陆森林.液力变矩器性能特性的数学模型[J].江苏理工大学学报,1999 (1):27-31.
    [123]闫清东,项昌乐.液力变矩器循环圆和叶片的计算机辅助设计[J].兵工学报,1995 (1):25-34.
    [124]赵国华.根据液力变矩器试验外特性反算内特性的计算方法[J].大连铁道学院学报, 1995(1):31-36.
    [125]张也影.流体力学[M].北京:高等教育出版社,1999.
    [126]臧发业,张传毅.工程机械液力传动损失与特性[J].建筑机械化,2001(4):17-19.
    [127]吴子牛.计算流体力学基本原理[M].科学出版社,2001.
    [128]杜巧连.液力变矩器的特性分析及其应用研究[J].汽车研究与开发,2000(1):21-23.
    [129]刘振军,秦大同,胡建军,等.轿车用液力变矩器性能实验分析[J].重庆大学学报(自然科学版),2002(2):103-105.
    [130]葛安林.车辆自动变速理论与设计[M].北京:机械工业出版社,1999.
    [131]刘悦,潘毓学.液力变矩器循环圆的修正[J].工程设计学报,2005(2):52-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700