气吸滚筒式超级稻育秧播种器的基本理论及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现有的常规稻精密播种器仅仅能满足常规水稻需要的播量要求,即3~5粒/穴(取秧面积)、合格率>85%,难以满足超级稻播种2±1粒/穴(取秧面积)的精准要求。本文在研究了国内外水稻精密播种设备的工作原理及气吸式播种器等相关理论的基础上,结合超级稻机械化种植的农艺要求,采用振动模态理论、两相流仿真分析、高速摄像和试验研究相结合的方法,进行了气吸滚筒式超级稻育秧播种器的基础理论及试验研究。首先,进行了超级稻种子流动特性和力学特性的试验研究。接着,在对气吸滚筒式播种器的充种区和携种区进行动力学分析的基础上,采用均匀设计方法对播种器进行了吸种性能试验和参数优化研究;首次采用计算流体力学FLUENT软件中的Euler-Lagrange两相流计算方法及雷诺应力(RSM)模型,建立了双层气吸式滚筒气室流体的湍流数学模型与物理模型,对滚筒气室的整体流场进行了数值模拟,分析了影响流场的因素;首次采用振动模态理论对超级稻种子在振动和气力作用下的充填机理进行了研究;应用高速摄像技术对吸种过程吸附瞬间进行了全面研究。最后,在上述研究的基础上,利用振动和气吸原理,采用振动除杂种盘供种和双层气吸滚筒吸种的组合方式,研制了一种振动供种和气力吸种相结合的超级稻精密育秧播种器,实现了播种的精确控制,其吸种精度达到了超级稻秧盘育秧精密吸种的技术指标要求(生产率大于450盘/小时、2±1粒/穴、播种合格率大于85%,空穴率小于3%),适用于超级稻秧盘育秧的高精度播种需要。
Rice is a very important food for the word. Over half of the human being & 60% of the total population in China live on it. Super rice is the new rice varieties and combinations that varieties through an ideal shape and the advantages of the use of hybrid combination of selective breeding which yield significant improvement in quality and strong resistance. China has now identified nearly 61 super rice varieties and combinations. Super hybrid rice planting area accounted for about 15% of rice planting area in China. And the acreage of super hybrid rice planted area will account for more than 30% in 2010, which is about 8 million hectares. There is a greater difference between the cultivation of super hybrid rice and conventional rice. Precision seeding of existing can only be applied to meet the needs of conventional seedling of rice which 3~5 seeds per hole and seedling qualified rate more than 85%,and it is difficult to meet the precise demands of super hybrid rice planting which 1~3 seeds per hole. At present, the mechanized cultivation model of super hybrid rice is still at an exploratory stage. There is no technology and supporting equipment in mechanized cultivation of super hybrid rice at home and abroad .Therefore the research of the key technology and equipment of super precision planting rice seedling is urgently needed. To study the key technologies and main difficulties in precision plug seedling of super rice, a new air-suction cylinder precision seeder for plug seedling of super rice was designed. The method combining with numerical simulation and high-speed camera and experimental research was used in this paper which combined with the agronomic requirements in mechanized cultivation and aimed at the seedling device performance evaluation index of super hybrid rice. The main contents and conclusions of the paper are following:
     1. Study the super hybrid rice characteristics based on the agronomic requirements in mechanized cultivation: The physical characteristics and the cutting intensity with three types of super hybrid rice are tested. The ratio of continued-growing for super hybrid rice began declining evidently with increasing load when the static force exceeds 180N. As static load is less than 120N, the ratio of continued-growing is above 95%. These parameters could be used as the basis of designing seedling device for super hybrid rice.
     2. A new air-suction cylinder precision seeder used the combinations of vibrating-plate and air-suction cylinder for plug seedling of super rice was designed on the basis of kinetic analysis with it. The seedling performance was studied by uniform design method. Establish the mathematical models of quality index of air-suction cylinder precision seeder, and acquire the appropriate range of parameters influencing factors.
     1) The seedling performance was studied by uniform design method, and establishes the mathematical models of the seeding performance of air-suction cylinder precision seeder, acquires the appropriate range of parameters influencing factors and opens out internal laws of the seeding process for air seed-metering device. Results by experiment show that: rotational speed is the most important factor for the quality index of absorption,then is vacuum pressure and Diameter of sucker followed. Other factors affect the passing rate is not significantly, but the law is complex.
     2) Establish the mathematical models between the quality index and multiples index and missing index with the influence factors of air-suction cylinder precision seeder, and acquire the appropriate range of parameters influencing factors. The optimal parameters are diameter of sucker by 1.4-1.6mm, and vacuum pressure by 3.0-3.5kPa, and rotational speed by 12~15rpm, and vibrating frequency by 45~95Hz, and sucker spacing by 2.6~3.0 mm. The regular percentage of the quality index comes to 90.92% and the regular percentage of missing index comes to 2.85% under these optimal parameters.
     3. For the first time, simulate and analyze the fluid field of air seed-metering with Euler-Lagrange and RSM through hydro-engineering simulation software FLUENT.According to the characteristic of fluid field for dual air-suction cylinder device, the flow field simulating and comparative test are carried under the conditions of different operating parameters of the positive and negative pressure.
     1) The clearly characteristic of the whole fluid field can be obtained for dual air-suction cylinder device by numerical values analyses. The results show that the method of simulation is reliable, visual and directly than the machine experiments. This study establishes a foundation for the systematic design theory and optimized design of air-suction cylinder device with super rice seedling.
     2) There is great effect for the uniform of vacuum chamber by diameter of sucker. The results of simulate and experimental analyses show that there is better seeding performance and the fluid field’s distributing uniformity at sucker diameter between 1.4-1.6mm. Intervene phenomena occurs between two sucker when the spacing of sucker smaller than 2mm. This phenomena severity influences the uniformity of fluid field. It also shows that there is better blowing performance at cylinder thickness between 5~ 8mm.
     4. For the first time, comprehensive analysis the process of vibration seed-plate work with the theory of vibration mode, reveal the filling mechanism of air suction cylinder device. 1)Build vibration model of the seed-plate and supply seed areas based on small deflection elastic theory, vibration location tests show that excitation source location affect qualification rate of seed suction significantly; excitation source under rear seed-plate is favorable for maintaining the accuracy sowing of steady-state; excitation frequency is an important factor that affect process of seed suction by the air-suction vibrating cylinder device, the best range of frequencies with using air-suction and vibrating frequency is between 90 ~ 100Hz.
     2)For the first time, build seed layer viscous damping mechanical model and thickness model with Modal analysis theory. Study seed layer and other working parameters on absorption properties through quadratic orthogonal tests, build regression equation between the factors of seed layer thickness, double-hole spacing and vibration frequency. Results show that seed layer thickness affect seed suction significantly in the vibration frequency range of 90 ~ 100Hz. seed Suction performance of sowing parts changes with the seed layer thickness. in productivity for the 450/ h, optimal parameters are seed layer thickness is 7 mm, vibration frequency is 98 Hz, qualification rate of seed suction is 93.12%.
     3)Analyze seed buds adhesion phenomenon in supply ways of the existing seed box, study vibration mechanism on impurity removal in seed-plate sieve area. The results show that impurities adsorbed to the suckers is caused by accumulation of water in the bottom of seed box, lower surface tension of the liquid can effectively reduce impurities adsorbed to the suckers. The numbers of plug the suckers is reduced with the vibration frequency increases when vibration frequency is low; But the numbers of plug the suckers is reduced unconspicuous with the vibration frequency increases when seed box at top of the cylinder.
     5. Analyze adsorption process of the air suction cylinder super rice seedling device via High-speed video camera system technique. Based on the high-speed camera images, analyze three stages of adsorption process and the seeds fall off phenomenon in supply seed area, analyze the reason of the seeds fall off carry seed area, find causes of qualified rate instability on seed suction and the best sucker hole spacing, provide the basis for the vibration seed-plate improvement.
     6.The new air-suction cylinder precision seeder with a vibrating-plate was developed for plug seedling of super rice, based on the above results,achieve precise control of suction seed. The performance of seedling which can satisfy the agronomic requirements in mechanized cultivation reached the technical requirements of precision seedling for super rice tray seedling.
引文
[1]袁隆平.通过科技进步展望我国水稻的增产潜力[J].科技导报,2006 (4):卷首寄语.
    [2]袁隆平.超级杂交稻研究[M].上海:上海科学技术出版社,2006.
    [3]张卫星,朱德峰.欧洲水稻生产系统及其发展策略[J].中国稻米,2007 (2):24-27.
    [4]何喜玲,王俊.水稻机械直播技术综述[J].中国农机化,2003,(1):23-25.
    [5]大谷隆二,西崎邦夫,柴田洋一,横地泰宏.無代かき水稲直播栽培に関す研究(第2報)—施肥播種機の開発と評価[J].農業機械学会誌.1997,59(1):77-85.
    [6]李宝筏,张树彬.世界水稻种植模式发展[J].种植机械专辑,1997,(9):1-4.
    [7]朱德峰,严学强.国外水稻直播栽培发展概况[J].耕作与栽培,1997, (1-2):102-103.
    [8]焦春海.国外直播水稻生产与研究进展[J].世界农业,1994 (7):23-25.
    [9]于海业,马成林,陈晓光等.日本水稻栽培管理技术研究的现状[J].农业机械学报,1996,27(增):174-178
    [10]张玉屏,朱德峰.澳大利亚水稻生产标准化技术[J].中国稻米,2003,(1):39-40.
    [11]中华人民共和国国家统计局编.中国统计年鉴[M].北京:中国统计出版社,2006.
    [12]袁隆平.超级杂交水稻育种研究的进展[J].中国稻米,2008(1):1-3
    [13]周红亚,袁钊和.美国的水稻生产机械化[J].中国农机化,1999(6):41-42.
    [14]杜华平编著.水稻机械化生产技术手册[M].上海:上海科学技术出版社,2008.
    [15]金千瑜.韩国的直播稻生产与技术[J].世界农业,1997,221(9):16-18.
    [16]朱德峰,陈慧哲,徐一成.我国水稻机械种植的发展前景与对策[J].农业技术与装备,2007(1):14-15.
    [17]Sharma A R.Direct seeding and transplanting for rice production under flood-prone lowland conditions[J].Field Crops Research,1995(44):129-137.
    [18]袁月明.气吸式水稻芽种直播排种器的理论及试验研究[D].长春:吉林大学,2005.
    [19]张玉屏,朱德峰.澳大利亚水稻生产标准化技术[J].中国稻米,2003(1):39-40.
    [20]陈建国.水稻种植机械化的发展概况.中国农机化[J].1996,(6):21.
    [21]石宏,李达.目前国内外播种机械发展走向[J].农机机械化与电气化.2002 (2) :42.
    [22]焦春海.泰国水稻生产概况[J].世界农业,1995,(5):16-18.
    [23]袁月明,马旭.我国水稻种植机械化的发展现状及芽播机械化的展望[J].农机化研究,2004(1):41-43.
    [24]Murugaboopathi C,etc.New Rice Growing System to Increase Labor Productivity in Japan[J].AMA,1992,23(1):15-19.
    [25]金千瑜.韩国的直播稻生产与技术[J].世界农业,1997,221(9):16-18.
    [26]澤村宣志,大黒正道,佐佐木豊.水稲散播直播栽培のためのトラムライン走行作業方式の開発[J].農業機械学会誌.2001,63(6):90-94.
    [27]宋建农,庄乃生,王立臣,等.21世纪我国水稻种植机械化发展方向[J].中国农业大学学报,2000,5(2):30-33.
    [28]蒲红,刘宇辉,孟然.我国水稻栽植机械的研究现状及展望[J].佳木斯大学学报(自然科学版),2003,21(2):208-211.
    [29]袁钊和,陈巧敏,杨新春.论我国水稻抛秧、插秧、直播机械化技术的发展[J].农业机械学报,1998,29(3):181-183.
    [30]小林悦男,小田富広,重光訳眩丧楗鄵e動式播種装置:日本,8322332A[P],1996-12-10.
    [31]李善军,廖庆喜,张衍林,等.油菜播种机斜窝眼偏心轮式排种器结构设计[J].农机化研究,2008,8:27-29.
    [32]谭赞良,赵进辉,刘诗安,等.窝眼轮式油菜排种器排种性能的研究[J].农机化研究,2006,6:168-170.
    [33]廖庆喜,黄海东,吴福通.我国玉米精密播种机械化的现状与发展趋势[J].农业装备技术,2006,32(1):4-7.
    [34]周海波.水稻秧盘育秧精密播种机的关键技术与研究[D].长春:吉林大学,2009.
    [35]徐一成,朱德峰,赵匀,等.超级稻精量条播与撒播育秧对秧苗素质及机插效果的影响[J].农业工程学报,2009,25(1):99-103.
    [36]赵立新,郑立允,王玉果,等.振动气吸式穴盘播种机的吸种性能研究[J].农业工程学报,2003,19(4):122-125.
    [37]李志伟,邵耀坚.电磁振动式水稻穴盘精量播种机的设计与试验[J].农业机械学报,2000,31(5):32-34.
    [38]胡建平,侯俊华,毛罕平.磁吸式穴盘精密播种机的研制及试验[J].农业工程学报,2003,19(6):122-125.
    [39]胡建平,毛罕平.磁吸式精密排种原理分析与试验[J].农业机械学报,2004,35(4):55-58.
    [40]吴明亮,汤楚宙,李明,等.水稻精密播种机排种器研究的现状与对策[J].中国农机化,2003,(3):30-31.
    [41]周海波,马旭,姚亚利.水稻秧盘育苗播种技术与装备的研究现状及发展趋势[J].农业工程学报,2008,34(4):301-306.
    [42] Yi-Chich Chiu,Din-Sue Fon,Gang-Jhy Wu. Simulation of Automatic Output Operations for Rice Seedlings [J].ASAE Annual International Meeting / CIGR XVth World Congress,2002.
    [43]Jagtap S , B . P . Verma . Computer models of two nursery potting systems[J] .Transactions of the ASAE,1983. 26(4): 983-986.
    [44]庞振强,黄建兰,苏聪英.2ZBQ-300型双层滚简气吸式水稻播种机的设计与试验研究[J].广西农业机械化,2001 36(2) :43-46.
    [45]庞昌乐,鄂卓茂,苏聪英,等.气吸式双层滚筒水稻播种器设计与试验研究[J].农业工程学报,2000,16(5):52-55.
    [46]周晓峰,胡敦俊.穴盘育苗气吸式精量播种器的吸附性能[J].山东理工大学学报(自然科学版),2004,18(2):37-41.
    [47]Barut,Zeliha,Bereket.Effect of different operating parameters on seed holding in the single seed metering unit of a pneumatic planter[J].Turkish Journal of Agricultural Machinery,2004,28(6):435-441.
    [48]Far,Jafari J,Upadhyaya S K.Development and field evaluation of a hydropneumatic planter for primed vegetable seeds[J].Transactions of the ASAE,1994,37(4):1069-1075.
    [49]Guarella P,Pellerano A, Pascuzzi S.Experimental and theoretical performance of a vacuum seeder nozzle for vegetable seeds[J]. J Agric Eng Res,1996,64:29-36.
    [50]Guarella P, Pellerano A.Working characteristic of sowing nozzles in vegetable nurseryoperations.International Horticultural congress,1990,Florence.
    [51]Zulin Z,Upadhyaya S K.Hydropneumatic seeder for primed seed[J].Transactions of the ASAE,1998,41(2):307-314.
    [52]Karayl D,Barat Z B.Mathematical Modelling of Vacuum Pressure on a Precision Seeder[J].Biosystems Engineering,2004,87(4):437-444.
    [53] R.C.Singh,G.Singh,D.C.Saraswat. Optimization of Design and Operational Parameters of a Pneumatic Seed Metering Device for Planting Cottonseeds[J]. Biosystems Engineering, 2005,92(4):429-438.
    [53]马成林,胡少兴,张爱武,等.排种器性能检测中摄像机系统的标定方法[J].光学技术,2001,27(2):162-164.
    [54]马成林,于海业,等.大豆高速气力精密播种机的研制与开发[J].大豆通报,1998,(6):3-5.
    [55]左春柽,马成林,张守勤,等.新型气力精密排种器的空气动力学原理[J].农业工程学报,1997,27(3):110-114.
    [56]孙裕晶,马成林,牛序堂,等.基于离散元的大豆精密排种过程分析与动态模拟[J].农业机械学报,2006,37(11):63-66.
    [57]孙骊,李飞雄.气吸式排种器吸孔部位气流参数的试验研究[J].播种施肥机械专辑,1987,8:2-8.
    [58]何东健,李增武.组合吸孔气吸式排种器种子运动及参数研究[J].西北农业大学学报, 1995,23(6):33-37
    [59]盛江源,齐红彬.吸盘真空室理论流场的确定[J].吉林农业大学学报,1990,12(3):89-93.
    [60]栾明川,李法德.气吸式排种器型孔直径对花生排种性能的影响[J].农机化研究,1996,2:68-69
    [61]杨宛章,孙学军,康秀生.气吸式播种机种子吸附过程研究[J].新疆农业大学学报,2001,24(4):49-53.
    [62]赵文厚,张云,慕厚春等.4BQD-40气力喷射式排种器设计[J].林业机械与木工设备,1997,25(6):11-13.
    [63]李耀明,刘彩玲,陈进,等.水稻育苗播种装置气力吸种部件的研究[J].农业机械学报,1999,30(6):46-50,101.
    [64]陈立东,何堤,马淑英,等.气吸式排种器排种性能影响因素的试验研究[J].沈阳农业大学学报,2005,36(5) :634-636.
    [65]刘彩玲,宋建农,张广智,等.气吸式水稻钵盘精量播种装置的设计与试验研究[J].农业机械学报,2005,36(2):43-46.
    [66]张晓慧,宋建农.针状气吸式水稻精密播种机的设计与试验[J].农机化研究,2008(8):87-89,111.
    [67]刘彩玲,宋建农.种盘振动对气吸振动式精量播种装置工作性能的影响[J].中国农业大学学报,2004,9(2):12-14.
    [68]袁月明,马旭,朱艳华,等.基于高速摄像技术的气吸式排种器投种过程的分析[J].吉林农业大学学报,2008,30(4):617-620.
    [69]陈进,李耀明,王希强,等.气吸式排种器吸种孔气流场的有限元分析[J].农业机械学报2007,38 (9) :59-62.
    [70]夏红梅,李志伟,牛菊菊,等.气力滚筒式蔬菜穴盘播种机吸排种动力学模型的研究[J].农业工程程学报,2008,24(1):141-146.
    [71]马成林.精密播种理论[M].长春:吉林科学技术出版社,1999.
    [72]赵学笃,陈元生,张守勤.农业物料学[M].北京:机械工业出版社,1986.
    [73]张德文,李林,王惠民.精密播种机械[M].农业出版社,1982.
    [74]戴培玉.散粒体的力学性质分析及其在农业机械中的应用[A]农业工程中的力学问题研讨会论文集:力学与农业工程[C]北京:科学出版社,1994:61-68
    [75]张波屏.现代化种植机械工程[M].北京:机械工业出版社, 1997.
    [76]袁月明,吴明,马旭,等.水稻芽种物料特性的研究[J].吉林农业大学学报,2003,25(6):682-684.
    [77]王殿平,韩建勇,杨德东.气吸式精密播种机气吸装置气动分析[J].煤炭技术,2003 (22) : 86-87.
    [78]张洪霞,马小愚,雷得天.谷物及种子的力学—流变特性的研究进展[J].农机化研究,2004(3):177-178.
    [79]张波屏编译.播种机械设计原理[M].北京:机械工业出版社,1982.
    [80]赵立新,郑立允,刘志民,等.气动振动器气吸播种机的种子振动性能研究[J].农业工程学报,2005,21(7):65-68.
    [81]潘锦珊.气体动力学基础[M].北京:国防工业出版社,1995.
    [82]休斯W F,布赖顿J A.流体动力学[M].北京:科学出版社,2002.
    [83]陈文梅主编,流体力学基础[M].北京化学工业出版社,1995.
    [84]张兆顺,崔桂香.流体力学[M].北京:清华大学出版社,2006.
    [85]林建忠.流体力学[M].北京:清华大学出版社,2005.
    [86] GB6973-86单粒(精密)播种机的试验方法.
    [87]任露泉.试验优化设计[M].长春:吉林科学技术出版社,2002.
    [88]Baum J D, Luo Hong, Lohner R. Application of unstructured adaptive moving body methodology to the simulation of fuel tank separation from an F-16C/D fighter[J].AIAA ,1997,97-0166.
    [89]Chapman D R,Mark H, Pirtle M W. Computers vs wind tunnels aerodynamic flow simulations[J].Astronautics and Aeronautics,1975,13(4):22-30.
    [90]Welterlen T J, Leone C. Application of viscous, Cartesian CFD to aircraft stores carriage and separation simulation[J].AIAA,1997,96-2453,1996.
    [91]吴玉林,葛亮,陈乃祥.离心泵叶轮内部固液两相流动的大涡模拟[J].清华大学学报(自然科学版).2001,10:93-96.
    [92]Kitano Majidi,Numerical study of unsteady flow in a centrifugal pump[J].ASME Turbomachinery,2005(127):363-371.
    [93]王福军.计算流体动力学分析[M].北京:清华大学出版社.2004.9
    [94]朱自强,张正科,李津.网格生成和数值模拟的讨论[J].空气动力学学报,1998,01:64-67.
    [95]孙家广,等.计算机图形学[M].北京:清华大学出版社,1997.
    [96]容易,张会强和王希麟.城垛形喷口圆湍射流拟序结构的流动显示[J].清华大学学报,2004,44 (2):248-251.
    [97]Lakehal D, Theodoridis Q Rodi W. Three dimensional flow and heat transfer calculations of film cooling at the leading edge of a symmetrical turbine blade model[J].International Journal of Heat Fluid Flow,2001,22(2):113-122
    [98]Theodoridis G, Lakehal D, Rodi, W. 3D calculations of the flow field around a turbine blade with film cooling injection near the leading edge[J].Flow Turbulence andCombustion,2001,66(1):57-83.
    [99]Azzi A,Lakehal D. Perspectives in modeling film-cooling of turbine blades transcending conventional two-equation turbulence models[A] . Proceedings of IMECE'OL,2001,New York.
    [100]Walters K D,Leylek J H.Impact of film-cooling jets on turbine aerodynamic losses[J].ASME Journal of Turbomachinery,2000,122(3):537-545.
    [101]Yuling Shi Richard, Ray M B, Mujumdar A S. Numerical Study on the Effect of Cross-Flow on Turbulent Flow and Heat Transfer Characteristics Under Normal and Oblique Semi-confined Impinging Slot Jets[J]. Drying Technology.2003,21(10):1923-1939.
    [102]Tao Y, Adler W, Specht E. Numerical analysis of multiple jets discharging into a confined cylindrical crossflow[J].Journal of Process Mechanical Engineering.2002, 216(3): 173-180.
    [103]Yuan L L, Street R. Large-eddy simulation of a round jet in rossflow[J]. Journal of Fluid Mechanics, 1999,379:71-104.
    [104]Dae Geun Kim,IL Won Seo, Modeling the mixing of heated water discharged from a submerged multiport diffuser[J], Journal of hydraulic research, 2000.38(4):259-269
    [105]Davidson M.J,Wann H J. Strongly Adverted Jet in a Coflow[J] .Journal of Hydraulic Engineering, 2002,128:742- 752.
    [106]李长志,王莹,董鹏.湍流气固两相流动数值模拟理论研究的最新进展[J].电站系统工程,2002,18(3):19-20.
    [107]岑可法,倪明江,严建华,等.气固分离理论及技术[M].杭州:浙江大学出版社,1999.
    [108]岑可法,樊建人,工程气固多相流的理论及计算[M].杭州:浙江大学出版社,1990.
    [109]周力行,湍流两相流动与燃烧的数值模拟[M].北京:清华大学出版社,1991.
    [110]V.Galperin,M. Shapiro.Cyclone as dust concentrations,Journal of Aerosol Science,2000,30 (S1):S897-S898.
    [111]L.Xiaodong,Y.Jianhua,C.Yuchun.Numerical simulation of the effects of turbulence intensity and boundary layer on separation efficiency in a cyclone separator[J].Chemical Engineering Journal,2003,95:235-240.
    [112]曲延鹏,陈颂英,王小鹏,等.不同湍流模型对圆射流数值模拟的讨论[J].工程热物理学报,2008,29(6):957-959.
    [113]张政,谢灼利.流体-固体两相流的数值模拟[J].化工学报,2001,52(1):1-12.
    [114]蒋恩臣,王立军,刘坤,等.联合收获机惯性分离室内气固两相流数值模拟[J].江苏大学学报(自然科学版),2006,27(3): 193-196.
    [115]吴青松,胡茂彬.颗粒流的动力学模型和实验研究进展[J].力学进展,2002,32(2):250-254.
    [116]吴海玲,陈听宽.应用不同紊流模型对二维横向射流传热数值模拟研究[J].西安交通大学学报,2001,35(9): 903-907.
    [117]李凤蔚,鄂秦,李杰,等.复杂外形网格生成技术[J].空气动力学学报,1998,01:74-77.
    [118]郭正,李晓斌,瞿章华,等.用非结构动网格方法模拟有相对运动的多体绕流.空气动力学学报,2001,19(3):310-316.
    [119]张来平.非结构网格、矩形/非结构混合网格复杂无粘流场的数值模拟[D].中国空气动力研究与发展中心,1996.
    [120]张来平,张涵信.复杂无粘流场数值模拟的矩形/三角形混合网格技术,力学学报, 1998,30(1):104-108.
    [121]李炜,姜国强,张晓元.横流中圆孔湍射流的漩涡结构[J],水科学进展,2003,14(5): 576-5820.
    [122]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [123]Dae Geun Kim,IL Won Seo, Modeling the mixing of heated water discharged from a submerged multiport diffuser[J],Journal of hydraulic research,2000.38(4):259-269.
    [124]Koobus B, Farhat C. Second-order schemes that satisfy the GCL for flow computations on dynamic grids,1998 AIAA 98-0113.
    [125]金忠青.N-S方程解法及其紊流模型[M].南京:河海大学出版社.1989.
    [126]袁月明,马旭,金汉学等.气吸式水稻芽种排种器气室流场研究[J].农业机械学报,2005,36(6):42-45.
    [127]唐辉,何枫.离心泵内流场的数值模拟[J].水泵技术,2002,(3):3-8.
    [128]苏铭德,黄素逸.计算流体力学基础[M].北京:清华大学出版社,1997.
    [129] HW.Liepmann,A.roshko.气体动力学基础[M].北京:机械工业出版社,1982.
    [130]张瑞林,陈巧敏,徐金山,等.振动气吸式秧盘精量播种机的工作原理及作业性能分析[J].中国农机化.1998,6-35.
    [131]李志伟.电磁振动组合式水稻穴盘育秧播种机理[D].广州:华南农业大学,2002.
    [132]张石平,陈进,李耀明.振动气吸式穴盘精播装置振动条件理论分析与试验[J].农业机械学报,2008,39(7):56-59.
    [132]郑丁科,李志伟,欧颖刚.电磁振动组合式毯状秧苗播种装置的设计与试验[J].华南农业大学学报(自然科学版),2004,25(1):103-106.
    [133]李建平,赵匀,应义斌,等.振动输送板上物料移动速度和位移的计算机模拟与试验验证[J].农业工程学报,1998,14(2):213-216.
    [134]陈佳琦.滚筒气力式蔬菜播种机的设计与试验[D].广州:华南农业大学,2006.
    [135]陈淑花,金良安,王孝通.颗粒斜槽流的实验研究与数值模拟[J].化学工程,2003,31(5):36-39.
    [136]马旭,周海波,等,秧盘连续输送的穴孔同步精准播种对中装置:中国,200720058338[P],2008-11-19.
    [137]张翠萍,魏少强,郭勤淘,等.振动筛设计规范(JB/Tg022-1999)[S].北京:机械工业部机械标准化研究所,2000.
    [138]罗冠炜,俞建宁,尧辉明,等.含间隙振动系统的周期运动和分岔[J].机械工程学报,2006,42(2) :87-95.
    [139]李耀明,王智华,徐立章,等.油菜脱出物振动筛分运动分析及试验研究[J].农业工程学报,2007,23(9):111-114.
    [140]周海波,马旭,刘明亮.秧盘连续输送与穴孔同步精准播种对中装置的研究[J].吉林大学学报(工学版),2009,39(5):1212-1216.
    [141]张学义,邵耀坚,邹黎,等.电磁振动播种器种子运动分析及试验研究[J].农业工程学报,1996,12(1):81-86.
    [142]吴丽娟,李惠彬.直线振动筛的振动特性分析[J].机械工程师,2004,(8):45–47.
    [143]封俊,梁素任,曾爱军等.新型组合型孔式小麦精量排种器运动学与动力学特性的研究[J].农业工程学报,2000,16(1): 63-66.
    [144]Kachman S D, Smith J A. Alternative measures of accuracy in plant spacing for planters using single seed metering. Transaction of the A SA E, 1995, 39 (3) :379-384.
    [145]E.Sakaguchi, M.Suzuki. Numerical simulation of the shaking separation of paddy and brown rice using the discrete element method[J].Journal of Agriculture Engineer Research, 2001,79(3):307-315.
    [146]Gaitonde V N,Karnik S R,Achyutha B T,etc.Methodology of Taguchi optimization for multi-objective drilling problem to minimize burr size [J].International Journal of Machine Tools & Manufacture,2007(34):1-7.
    [147]于建群,付宏,李红,等.离散元法及其在农业机械工作部件研究与设计中的应用[[J].农业工程学报,2005,21(5):1-6.
    [148]S.Yoshiyuki,P.A.Cbndall. Three dimensional DEM simulation of bulk handling by screw conveyors[J].Journal of Engineering Mechanics[J] 2001,127(9):864-872.
    [149] Cundall P , Strack O . A discrete numerical model for granular assembles[J].Geotechniaue,1979,29(1):47-65.
    [150]Vidal D,Ridgway C,Pianet G,etc.Effect of particle size distribution and packing compression on fluid permeability as predicted by lattice-Boltzmann simulations [J].Computers & Chemical Engineering,2009,33(1):256-266.
    [151]Doucet J,Bertrand F,Chaouki J.Experimental characterization of the chaotic dynamics of cohesionless particles:Application to a V-blender [J].Granular Matter,2008,10(2):133-138.
    [152]闻邦椿,刘树英,等.振动机械的理论与动态设计方法[M].北京:机械工业出版社,2001.
    [153]张相庭,王志培,黄本才,等.结构振动力学[M].上海:同济大学出版社,2005.
    [154]黄玉盈.结构振动分析基础[M].武汉:华中工学院出版社,1998.
    [155] [美]S.M.凯利.机械振动[M].北京:科学出版社,2002.
    [156]沃德?海伦,斯蒂芬?拉门茨,波尔?萨斯.模态分析理论与实验[M].北京:北京理工大学出版社,2001.
    [157]李德葆,陆秋海.实验模态分析及其应用[M].北京:科学出版社,2001.
    [158]S.Yoshiyuki, P.A.Cbndall. Three dimensional DEM simulation of bulk handling by screw conveyors[J].Journal of Engineering Mechanics[J].2001,127(9):864-872.
    [159]Jones D I G.Handbook of Viscoelastic Vibration Damping[M].New York:John Wiley& Sons,2001.
    [160]周祖锷.农业物料学[M].北京:农业出版社,1994.
    [161]Guoping Lian, Colin Thornton, Michael J.Adams.Discrete particle simulation of agglomerate impact coalescence[J].Chemical Engineering Science,1998,53(19):3381-3391.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700