锆粉云火焰传播特性的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建立了一套适合于研究粉尘云火焰传播特性的实验系统,利用该实验系统,结合粒子图像测速(PIV)技术、高速显微和高速纹影技术等,研究了锆粉云中传播火焰的特性、火焰的微观结构及其传播机理,以及粒径、浓度等因素对火焰传播的影响规律。
     利用PIV技术测量了喷粉结束后管道中扬尘湍流强度随时间的变化过程,得到湍流强度随时间的衰减规律。应用管法测量了粉尘云的湍流燃烧速度,同时使用微细热电偶测量了火焰传播过程中温度变化特征,得到了初始湍流强度、粉尘云浓度和粉尘粒径对湍流燃烧速度和火焰温度的影响规律。研究结果表明,火焰湍流燃烧速度和火焰温度之间成线性关系,锆粉云火焰传播过程中,燃烧区主要是通过热传导的方式向预热区传递热量,而热辐射在热量传递过程中占次要地位。
     分别实验研究了点火端开口和封闭时火焰的传播特性,得到了不同粒径和粉尘云浓度下的火焰形态、火焰温度和火焰传播速度等表征火焰传播特性的参数,分析了粉尘粒径和浓度对锆粉云中传播火焰的影响规律。研究结果表明,火焰温度和传播速度均先随粉尘云浓度的增加而增加,在某个浓度时达到最大值,而后均随粉尘云浓度的增加缓慢减小;对于不同平均粒径的锆粉,其最大火焰传播速度和最高火焰温度所对应的粉尘云浓度却不同;获得了四种平均粒径下锆粉云的最低爆炸浓度,得到了随锆粉平均粒径的增加其最低爆炸浓度升高的规律,并在理论上进行了论证。
     利用高速纹影、高速显微摄像技术,研究了锆粉云火焰传播的精细结构,以及火焰阵面前粒子的运动速度,构建了火焰的结构模型,分析了火焰的传播机理。研究结果表明,根据锆粉粒径和浓度的不同,火焰前面的预热区厚度也不同,最大厚度可达2cm左右,预热区后为燃烧区,其厚度为数毫米量级,在燃烧区最前沿约1mm范围内主要是小的锆粒子在燃烧,其后的1-4mm范围内为大的锆粒子在燃烧;锆粒子和氧气在粒子的表面发生化学反应,形成气-固表面燃烧体系。根据实验结果和理论分析推测锆粒子的燃烧过程为:锆粒子在预热区内不断升温,当其温度达到某一值时,由于热应力的作用导致锆粒子表面的金属氧化膜破裂,空气中氧气可以和纯锆接触,从而发生燃烧反应。火焰在锆粉云中传播时,相对于大粒径锆粉,小粒径锆粉对火焰传播具有更重要的作用。
A set of experimental system was established which is suitable for studying dust flame propagation characteristic. Combining with PIV technology, microscopic lens and high-speed schlieren, flame propagation characteristic and flame microstructure as well as its propagation mechanism of zirconium particle cloud were investigated. At the same time particle size and dust concentration effect on flame propagation regularity were also studied.
     At first, the PIV measurement technique was used to measure turbulent intensity change with time after the end of dispersion,thus decay regularity of turbulent intensity was obtained. Turbulent burning speed was gained by Application of tube methods and at the same times superfine thermocouple was used to measure temperature change during the flame propagation. The initial turbulent intensity, the concentrations of dust cloud and dust particle size effect on the turbulent burning speed and flame temperature were gained. Flame propagation characteristics impacted by these three factors were further analyzed. The results demonstrate that the turbulent burning speed and flame temperature have a linear relationship, so the main heat transfer way was revealed in zirconium dust cloud flame propagation process. Combustion zone is mainly driven by thermal conductivity to transfer heat to preheated zone, while heat transfer by thermal radiation accounts for the secondary position in the process.
     Flame propagation characteristic with ignition end open or close was investigated. The flame shape, flame temperature and flame propagation speed which represent flame propagation characteristic parameters were obtained and at the same time change regularity in flame propagation was also further analyzed. The results show that the flame temperature and flame propagation speed increase remarkably with the concentration of zirconium particle cloud at lower concentrations, reach the maximum value, and then decrease slightly at higher concentrations. For four different average particle sizes, the dust concentrations are different when flame temperature and flame propagation speed reach the maximum value. The minimum dust explosion concentration of four particle sizes was tested. The results reveal the particle sizes effect on the minimum dust explosion concentration and a theoretical qualitative analysis is also given.
     High-speed schlieren and microscopic lens were used to study flame microstructure and particle velocity before flame front.Flame structure model and propagation mechanism were reconstructed. The results demonstrate that the flame preheated zone thickness is different depending on particle size and dust concentration. Maximum thickness of preheated zone is up to 2cm or so. The combustion zone lays behind the preheated zone. The combustion zone thickness is mm order of magnitude. Smaller particles mainly exist in the width 1.0mm in the leading edge of the combustion zone, while the larger particles mainly appear 1-4mm behind the leading edge of the combustion zone. Zirconium particles and oxygen take chemical reaction on the zirconium particle surface and form gas-solid surface combustion system. According to the experimental results and theoretical analysis, the combustion process of zirconium particle was speculated. With the preheated zone temperature rise, when the preheated zone temperature reaches a certain value, the surface of zirconium particles causes the breakdown of the oxide film due to thermal stress. After the breakdown of the oxide film, pure zirconium can contact with the oxygen, no longer hindered by the surface oxide film. When temperature of the preheated zone reaches 220℃, Zirconium particles start to ignite. In the zirconium dust cloud flame propagation process, the smaller particles have the relatively more important role than the larger particles.
引文
[1]BS2955, Glossary of terms relating to powders [M], British Standard Institute, London,1958;
    [2]NFPA 68, Guide for venting of deflagrations [M], National fire protection Association,2002;
    [3]G.Vijayaraghavan, Impact assessment, modeling, and control of dust explosions in chemical process industries, MTech Thesis, Department of chemical engineering, Coimbatore Institute of Technology,2004;
    [4]赵衡阳,气体和粉尘爆炸原理[M],北京,北京理工大学出版社,1996;
    [5]. H.I.Reitsma, The explosion of a ship, loaded with black powder, in Leiden in 1807, Int.J.Impact Eng,2001,25:507-514;
    [6]R.K.Echhoff, Dust Explosions in the process industries, The 3rd Gulf professional Publishing, USA,2003;
    [7]S.K.Kuriechan, Causes and impacts of accidents in chemical process industries and a study of the consequence analysis software[D], Mphil thesis, Pondicherry University,2005;
    [8]段颖,粉尘爆炸的成因及避免灾害发生的对策研究[J],科技信息,2007,20:317
    [9]田东红,国内高端行业锆制品先行者[M],中投证券,2007;
    [10]熊炳昆,锆粉的制备与应用[J],稀有金属快报,2005,24(10):45-47;
    [11]张丽芳,可燃粉尘爆炸下限浓度的测试研究[J],机械工程与自动化,2009,(5):97-98;
    [12]丁大玉,袁生学,铝粉爆炸特性的实验研究[J],爆炸与冲击,1993,13(1):32-40;
    [13]浦以康,袁生学,微细球形铝粉爆炸特性的实验研究[J],爆炸与冲击,1993,13(3):193-204;
    [14]浦以康,贾复,胡俊,等容燃烧条件下粉尘等效燃烧速度的确定[J],燃烧科学与技术,2002,8(1):1-5;
    [15]尉存娟,谭迎新,路旭等,点火延迟时间对铝粉爆炸压力的影响研究[J],中北大学学报(自然科学版),2009,30(3):257-260;
    [16]李化,高聪,苏丹等,烟煤粉爆炸特性实验研究[J],四川大学学报(工程科学版)2009,41(6):79-83;
    [17]A.DiBenedetto, P.Russo, Thermo-kinetic modeling of dust explosions [J], Journal of Loss Prevention in the Process Industries,2007,20:303-309;
    [18]R.Pilao, E.Ramalho, C.Pinho. Overall characterization of cork dust explosion [J], Journal of
    Hazardous Materials,2006,133:183-195;
    [19]Masaharu Nifuku, Hiroshi.Tsujita, Kenji.Fujino et al, A study on the ignition characteristics for dust Explosion of industrial wastes[J], Journal of Electrostatics,2005,63:455-462;
    [20]T.Matsuda, M.Yashima, M.Nifuku, et al, Some aspects in testing and assessment of metal dust explosions [J], Journal of Loss Prevention in the Process Industries,2001,14:449-453;
    [21]Jacobson, M., Cooper, A.R.Nagy, Explosibility of metal powders [M], U.S. Bureau of Mines, Report of Investigation 6516,1964;
    [22]Yamada, K., Hyomen-Gijyutu [J], Surface Technology,1994,45:365-369;
    [23]A.Denkevits, S.Dorofeev, Explosibility of fine graphite and tungsten dusts and their mixtures[J], Journal of Loss Prevention in the Process Industries,2006,19:174-180;
    [24]Guangping Zhen, Wolfgang Leuckel, Effects of ignitors and turbulence on dust explosions[J], Journal of Loss Prevention in the Process Industries,1997,(5-6):317-324;
    [25]Qingming Liu, Chunhua Bai, Xiaodong Li et al, Coal dust/air explosions in a large-scale tube[J], Fuel,2010,89:29-33;
    [26]Ch.Proust, A.Accorsi, L.Dupont, Measuring the violence of dust explosions with the "20L sphere"and with the standard "ISO" vessel, Systematic comparison and analysis of the discrepancies[J], Journal of Loss Prevention in the Process Industries,2007,20:599-606;
    [27]Paul.R, Amyotte, Faisall.Khan, AtreyeeBasu, et al, Explosibility parameters for mixtures of pulverized fuel and ash[J], Journal of Loss Prevention in the Process Industries, 2006,19:142-145;
    [28]Ou-Sup Han, Masaaki Yashima, Toei Matsuda, et al, Behavior of flames propagating through lycopodium dust clouds in a vertical duct[J], Journal of Loss Prevention in the Process Industries,2000,13:449-457;
    [29]Ou-Sup Han, Masaaki Yashima, Toei Matsuda, et al, A study of Fame propagation mechanisms lycopodium dust clouds based on dust particles behavior[J], Journal of Loss Prevention in the Process Industries,2001,14:153-160;
    [30]Edward L. Dreizin, Vern K. Hoffman, Constant pressure combustion of aerosol of coarse magnesium particles in microgravity[J], Combustion and Flame,1999,118:262-280;
    [31]Edward L. Dreizin, Charles H. Berman, Edward P. Vicenzi, Condensed-phase modifications in magnesium particle combustion in air[J], Combustion and Flame,2000,22:30-42;
    [32]Wen-Jun Ju, Ritsu Dobashi, Toshisuke Hirano, Dependence of flammability limits of a combustible particle cloud on particle diameter distribution[J], Journal of Loss Prevention in the Process Industries,1998,11(3):177-185;
    [33]Wen-Jun Ju, Ritsu Dobashi, Toshisuke Hirano, Reaction zone structures and propagation mechanisms of flames in stearic acid particle clouds [J], Journal of Loss Prevention in the Process Industries,1998,11:423-430;
    [34]Ritsu Dobashi, Kazuya Senda, Detailed analysis of flame propagation during dust explosions by UV band observations[J], Journal of Loss Prevention in the Process Industries, 2006,19(2-3):149-153;
    [35]Jian-Lin Chen, Ritsu Dobashi, Toshisuke Hirano, Mechanisms of flame propagation through combustible particle clouds[J], Journal of Loss Prevention in the Process Industries,,1996, 9(3):225-229;
    [36]Jinhua Sun, Ritsu Dobashi, Toshisuke Hirano, Structure of flames propagating through aluminum particles cloud and combustion process of particles[J], Journal of Loss Prevention in the Process Industries,2006,19:769-773;
    [37]Jin-hua Sun, Ritsu Dobashi, Toshisuke Hirano, Temperature profile across the combustion zone propagating through an iron particle clouds[J], Journal of Loss Prevention in the Process Industries,2001,14:463-467;
    [38]Ying Huang, Grant A. Risha, Vigor Yang, Combustion of bimodal nano/micron-sized aluminum particle dust in air[C], Proceedings of the Combustion Institute,2007, 31:2001-2009;
    [39]Ying Huang, Grant A. Risha, Vigor Yang, Effect of particle size on combustion of aluminum particle dust in air[J], Combustion and Flame,2009,156:5-13;
    [40]Yunhua Zhao, Ho Young Kim, Sam S. Yoon, Transient group combustion of the pulverized coal particles in spherical cloud[J], Fuel,1986(7-8),1102-1111;
    [41]Hironao Hanal, Mitsuru Ueki, Kaoru Maruta, et al, A lean flammability limit of polymethylmethacrylate particle-cloud in microgravity[J], Combustion and Flame,1999, 118:359-369;
    [42]S. Goroshin, I. Fomenko, J. H. S. Lee, Burning velocities in fuesrl-rich aluminum dust clouds[C], Twenty-Sixth Symposium (International) on Combustion/The Combustion Institute,1996:1961-1967;
    [43]Gregory Young, Kyle Sullivan, Michael R. Zachariah, et al, Combustion characteristics of boron nanoparticles[J], Combustion and Flame,2009,156:322-333;
    [44]P. Bucher, R. A. Yeter, F. L. Dryer, Structure measurement of single, isolated aluminum particles burning in air[C], Twenty-Sixth Symposium (International) on Combustion/The Combustion Institute,1996:1899-1908;
    [45]Evgeny Shafirovich, Soon Kay Teoh, Arvind Varma, Combustion of levitated titanium particles in air[J], Combustion and Flame,2008,152:262-271;
    [46]Sun J H, Dobashi R, Hirano T, Combustion behavior of iron particles suspended in air[J], Combustion Science and Technology,2000,150:99-114;
    [47]Jinhua Sun, Ritsu Dobashi, Toshisuke Hirano, Concentration profile of particles across a flame propagating through an iron particle cloud[J],Combustion and Flame,2003, 134:381-387;
    [48]Edward L. Dreizin, Charles H. Berman, Edward P. Vicenzi, Condensed-phase modifications in magnesium particle combustion in air[J], Combustion and Flame,2000,122(1-2):30-42;
    [49]Edward L. Dreizin, Experimental Study of Aluminum Particle Flame Evolution in Normal and Micro-Gravity [J], Combustion and Flame,1999,116:323-333;
    [50]Y. Shoshin, E. Dreizin, Particle combustion rates in premixed flames of polydisperse metal-air aerosols[J], Combustion and Flame,2003,133:275-287;
    [51]I.E.Molodetsky, E. P. Vicenzi, E. L. Dreizin, et al, Phases of Titanium Combustion in Air[J], Combustion and Flame,1998,112:522-532;
    [1]王玉芬,刘连城,石英玻璃[M],北京,化学工业出版社,2007;
    [2]Nagy J., Verakis C H. Development and control of dust explosion [M], UK, M arcel Dekker, Inc,1983;
    [3]Eckhoff R K. Dust explosion in the process industries [M], US, Butterwoth-Heinmann Ltd, 1991;
    [4]Pu Y k. Fundamental characteristic of laminar and turbulent flames in cornstarch dust-air in mixtures [D], McGill University, Canada,1988;
    [5]Van W ingerden K, Stavseng L, Measurements of the laminar burning velocities in dust-air in mixtures [J], VDI-Berichte,1996,1272:553-564;
    [6]A.Denkevits, S.Dorofeev, Explosibility of fine graphite and tungsten dusts and their mixtures[J], Journal of Loss Prevention in the Process Industries,2006,19:174-180;
    [7]陈东梁,孙金华,刘义等,甲烷、煤尘复合体系燃烧特性及火焰结构的实验研究[J],自然科学进展,2007,17(4):494-499;
    [8]Ashok G. Dastidar, Paul R. Amyotte, Michael J. Pegg, Factors influencing the suppression of coal dust explosions[J], Fuel,1997,76(7):663-670;
    [9]廖光煊,王喜世,秦俊,热灾害实验诊断方法[M],合肥,中国科学技术大学出版社,2003;
    [10]范维澄,王清安,姜冯辉等,火灾学简明教程[M],合肥,中国科学技术大学出版社,1995;
    [11]张世湘,热电偶及其应用[M],北京,冶金工业出版社,1951;
    [12]Ballantyne A, Moss J B, Fine wire thermocouple measurements of fluctuating temperature [J], Combustion science and flame,1977:63-72;
    [13]Yang,X.M.,Tsuruda,Hirano,The structure of flame propagating spray flames[J], Proceedings of Comodia,1990:211-215;
    [1]Cambray, P., Joulin, G. Length-scales of wrinking of weakly forced unstable premixed flames [J]. Combinatorial science and technology,1994,97:405-428
    [2]Goix, P.J, Shepherd, I.G. Lewis number effects on turbulent premixed flame structure [J]. Combustion science and technology,1993,91:191-200;
    [3]Sivashinsky, G, Cascade renormalization theory of turbulent flame speeds [J].Combinarorial science and technology,1988,62:77-96
    [4]Y.K. Pu, J. Jarosinski, V.G Johnson.et al,Turbulence effects on dust explosions in the 20-liter spherical vessel[C], Symposium (International) on Combustion,1991,23(1):843-849;
    [5]Van der Wel, P.G.J., Ignition and propagation of dust explosions [D], Delft University of Technology,1993;
    [6]Tezok, F., Kauffman, C. W., Sichel, M. et al, Turbulent burning velocity measurements for dust-air mixtures in a constant volume spherical bomb[J], Communication pre'sente'e au 10th ICDERS,1985;
    [7]张兆顺,崔桂香,许春晓,湍流理论与模拟[M],清华大学出版社,2005;
    [8]Eckhoff R K, Prevention and mitigation of dust explosions in the process industries:a Survey of recent research and development [J]. Journal of Loss Prevention in the Process Industries, 1996,9(1):3-20;
    [9]严楠,浦以康,封闭圆柱形粉尘爆炸罐内扬尘诱导湍流特性的确定[J],流体力学实验与测量,1999,13(3);59-64
    [10]胡俊,浦以康,万士昕,粉尘等容燃烧容器内扬尘系统诱导湍流特性的实验研究[J],实验力学,2000,15(3):341-348;
    [11]李新光,张平,20L球形装置上粉尘湍流速度的测量[J],东北大学学报(自然版)2003,24(10):952-955;
    [12]A.E. Dahoe, R.S. Cant b, M.J. Pegg c, et al, On the transient flow in the 20-liter explosion sphere[J], Journal of Loss Prevention in the Process Industries,2001,14:475-487;
    [13]杜海,三维PIV系统中匹配技术的研究[D],大连理工大学,2009;
    [14]Pu Y k, Li Y C, Kauffman C W, et al, Determination of turbulence parameters in closed explosion Vessels [J]. Progress in Astronautics and Aeronautics,1989,132:107-123;
    [15]Kauffman C k, Srinath S R, Tezok F I, et al, Turbulent and accelerating dust flames[C], Proc. of 20th symp (international) combustion,1984:1701-1708;
    [16]Wang Xishi, Liao Guangxuan, Yao Bin, et al, Priliminary study on the interaction of water mist with pool fires[J], Journal of fire science,2001,19:1-17;
    [17]崔屹,图像处理与分析-数学形态学方法与应用[M],北京,科学出版社,2000;
    [18]吴健康,数字图像分析[M],北京,人民邮电出版社,1989;
    [19]沙勇,传质导致的Rayleigh-Benard-Marangoni对流研究[D],天津大学博士论文,2002;
    [20]吴颖川,计算光学流动显示技术理论及应用研究[D],南京理工大学博士论文,2003;
    [21]翁文国,廖光煊,王喜世,基于互相关的DPIV图像诊断方法研究[J],实验力学,1999,14:323-329;
    [22]秦俊,廖光煊,王喜世,细水雾流畅三维LDV测量[J],量子电子学报,2001,18:281-284;
    [23]王喜世,伍小平,廖光煊et al,基于数字粒子图像的细水雾全场速度测量[J],实验力学,2003,18:6-11;
    [24]Zhengliang Liu, Ying Zheng, Lufei Jia et al, An experimental method of examining three-dimensional swirling flows in gas cyclones by 2D-PIV[J], Chemical Engineering Journal,2007,133:247-256;
    [25]Shuangfeng Wang, Fu Jia, An experimental study on flame propagation cornstarch dust clouds [J], Combust.Sci.and Tech.2006, and 178:1957-1975;
    [26]Tamannini F, Chaffee J L, Turbulent unvented gas explosion under dynamic mixture injection conditions[C], Proceeding of 23rd symposium (International) on combustion, the combustion institute,1990:851-859;
    [27]K.H. Ewald, U. Anselmi-Tamburini, Z.A. Munir, Combustion of zirconium powders in oxygen [J], Materials Science and Engineering,2000,291(1-2):118-130;
    [28]A.G:盖顿(英),H.G.伍法德,王方编译,火焰学[M],北京,中国科学技术出版社,1994;
    [29]Edward L. Dreizin, Vern K. Hoffmann, Constant pressure combustion of aerosol of coarse magnesium particles in microgravity[J], Combustion and Flame,1999,118:262-280;
    [30]D. L. Chen, J. H. Sun, Q. S. Wang, et al, Combustion Behaviors and Flame Structure of Methane/Coal Dust Hybrid in a Vertical Rectangle Chamber[J],Combust.Sci.andTech., 2008,180:1518-1528;
    [31]F.A.威廉斯著,庄逢辰,杨本濂译,燃烧理论[M],科学出版社,1985;
    [32]Pelce, P., Effect of gravity on the propagation of flames in tubes [J], Journal of physique, 1985,46:503-510;
    [33]Andrews, G. E, Bradley.D. Determination of burning velocities:A critical review [J], Combustion and Flame,1972,18:133-153;
    [34]Christophe.Proust., Flame propagation and combustion in some dust-air mixtures [J], Journal of Loss Prevention in the Process Industries,2006,19:89-100;
    [35]杨世铭,陶文铨,传热学[M],高等教育出版社,1998;
    [36]伯纳德.刘易斯,京特.冯.埃尔贝著,王方译,燃气燃烧与瓦斯爆炸[M],中国建筑工业出版社,2006;
    [1]Cashdollar K L, Coal dust explosibility [J], Journal of loss prevention in the process industry, 1996,9(1):65-76;
    [2]Amyotre P R, Mintz, Pegg M J, Sun Y H, The ignitability of coal dust-air and methane-coal dust-air mixture[J], Fuel,1993,72(5):671-659;
    [3]刘义,孙金华,陈东梁,甲烷-煤尘复合体系中煤尘爆炸下限的实验研究[J],安全与环境学报,2007,7(4);
    [4]Hironao Hanai, Mitsuru Ueki, Kaoru Maruta, et al, A lean flammability limit of polymethylmethacrylate particle-cloud in microgravity[J], Combustion and Flame,1999, 118:359-369;
    [5]徐彬,陈成光,爆炸理论讲义[M],1981;
    [6]孙金华,丁辉,化学物质热危险性评价[M],科学出版社,2005;
    [7]Proust, CH.,& Veyssiere, B., Fundamental properties of flames propagating in starch dust-air mixtures[J], Combustion Science and Technology,1988,62:149-172;
    [8]Yi Liu, Jinhua Sun, Dongliang Chen, Flame propagation in hybrid mixture of coal dust and methane[J], Journal of Loss Prevention in the Process Industries,2007,20:691-697;
    [9]Chen, D. L., Sun, J. H., Wang, Q. S., Liu, Y., Combustion Behaviors and Flame Structure of Methane/Coal Dust Hybrid in a Vertical Rectangle Chamber[J], Combustion Science and Technology,2008,180(8):1518-1528;
    [10]陈东梁.甲烷煤尘符合火焰传播机理的研究[D].中国科学技术大学博士论文,2007
    [11]Y. OKUYAMA, Y. OHTOMO, K. MARUTA, et al, An experimental study on particle-cloud flame in a micrgravity field [C], Proceedings of the Combustion Institute,1996:1369-1375
    [12]Hironao Hanai, Hideaki Kobayashi, Takashi Niioka, A numerical study of pulsating flame propagation in mixtures of gas and particles[C], Proceedings of the Combustion Institute, 2000,28:815-822;
    [13]Proust, CH., Veyssiere, B., Fundamental properties of flames propagating in starch dust-air mixtures [J]. Combustion Science and Technology,1988,62:149-172;
    [14]Ou-Sup Han, Masaaki Yashima, Toei Matsuda, et al, Behavior of flames propagating through lycopodium dust clouds in a vertical duct[J], Journal of Loss Prevention in the Process Industries,2000,13:449-457;
    [15]Eckhoff, R. K., Dust explosion in the process industries (2nded.)[M], Butterworth Heinemann, 1997;
    [16]Sun, J. H., Dobashi, R., Hirano, T. Structure of flame propagation through metal particle cloud and behavior of particles [C] In 27th Symposium (International) on Combustion.Pittsburgh:The Combustion Institute,1998:2405-2411
    [17]Sun J H, Dobashi R, Hirano T. Temperature profile across the combustion zone propagating through an iron particle cloud [J]. Journal of Loss Prevention in the Process Industries,2001, 14 (6):463-467
    [18]Sun J H, Dobashi R, Hirano T. Concentration profile of particles across a flame propagating through an iron particle cloud [J]. Combustion and Flame,2003,134(4),381-387.
    [19]Edward L. Dreizin, Vern K. Hoffman, Constant pressure combustion of aerosol of coarse magnesium particles in microgravity[J], Combustion and Flame,1999,118:262-280;
    [1]Baker, W.E., Tang, M.J, Gas, dust and hybrid explosions [M], New York, Elsevier Science Publishing Company Inc,1991;
    [2]Cashdollar, K.L., Coal dust explosibility [J], Journal of Loss Prevention in the Process Industries,1996,9 (1):65-76;
    [3]Hertzberg,M.,Cashdollar,K.L.,&Zlochower,I.A., Flammability limit measurements for dust and gases[C], In 21st Symposium (International) on Combustion, The Combustion Institute, 1986:303-313;
    [4]Dahoe, A.E., Zevenbergen, J.F., Lemkowitz, et al, Dust explosions in spherical vessels:the role of flame thinness in the validity of the cube-root law [J], Journal of Loss Prevention in the Process Industries,1996,9 (1):33-44;
    [5]Hertzberg, M., Zlochower, I.A., Cashdollar, K.L., Metal dust combustion explosion limits, pressures, and temperatures[C], In 24th Symposium (International) on Combustion, 1992:1827-1835;
    [6]Tamanini,F.,Valiulis,J.V., Improved guide lines for the sizing of vents in dust explosions[J], Journal of Loss Prevention in the Process Industries,1996,9 (1):105-118;
    [7]Zalosh, R.G., SEPE handbook of fire protection engineering [M], NFPA,1988:2-88;
    [8]Chen J L, Dobashi R, Hirano T, Mechanisms of flame propagation through combustible particle clouds [J], Journal of Loss Prevention in the Process Industries,1996,9 (3):225-229;
    [9]Han O S, Yashima M, Matsuda T, et al, A study of flame propagation mechanisms in lycopodium dust clouds based on dust particles behavior[J], Journal of Loss Prevention in the Process Industries,2001,14 (6):153-160;
    [10]Han O S,Yashima M, Matsuda T, et al, Behavior of flames propagating through lycopodium dust clouds in a vertical duct[J], Journal of Loss Prevention in the Process Industries, 2000,13(6):449-457;
    [11]Ju W J, Dobashi R,Hirano T, Reaction zone structures and propagation mechanisms of flames in stearic acid particle clouds[J], Journal of Loss Prevention in the Process Industries, 1998,11(6):423-30;
    [12]Ju W J, Dobashi R,Hirano T, Dependence of flammability limits of a combustible particle cloud on particle diameter distribution[J], Journal of Loss Prevention in the Process Industries,1998,11(3):177-185;
    [13]Dobashi R. Senda K, Detailed analysis of flame propagation during dust explosions by UV band observations[J], Journal of Loss Prevention in the Process Industries,2006, 19(2-3):149-153;
    [14]Proust C, Veyssiere B, Fundamental properties of flames propagating in starch dust-air mixtures[J], Combustion Science and Technology,1998,62 (4-6):149-172;
    [15]Sun J H, Dobashi R, Hirano T, Structure of flames propagating through metal particle clouds and behavior of particles[C],Twenty-seventh Symposium (International) on Combustion, The Combustion Institute,1998,2405-2411;
    [16]Sun J H, Dobashi R, Hirano T, Combustion behavior of iron particles suspended in air[J], Combustion Science and Technology,2000,150:99-114;
    [17]Sun J H, Dobashi R, Hirano T, Concentration profile of particles across a flame propagating through an iron particle cloud[J], Combustion and Flame,2003,134(4):381-387;
    [18]Sun J H, Dobashi R,Hirano T, Temperature profile across the combustion zone propagating through an iron particle cloud[J], Journal of Loss Prevention in the Process Industries,2001, 14(6):463-67;
    [19]Sun J H, Dobashi R, Hirano T, Velocity and number density profiles of particles across upward and downward flame propagating through iron particle clouds[J], Journal of Loss Prevention in the Process Industries,2006,19(2-3):135-141;
    [20]Toshisuke Hirano, Combustion science for safety[C], Proceedings of the Combustion Institute,2002,29:167-180,
    [21]Yi Liu, Jinhua Sun, Dongliang Chen, Flame propagation in hybrid mixture of coal dust and methane[J], Journal of Loss Prevention in the Process Industries,2007,20:691-697;
    [22]E.V. Chernenko, V.I. Rozenband, V.V. Batzykin, [J], Combust.Explos. Shock Waves,1979, 15:475-477;
    [23]杨世铭,陶文铨,传热学[M],高等教育出版社,1998;
    [23]Hironao Hanai, Hideaki Kobayashi, Takashi Niioka, A numerical study of pulsating flame propagation in mixture of gas and particles[C], Proceedings of the Combustion Institute, 2000,28:815-822;
    [24]熊炳昆,锆铪冶金[M],北京,冶金工业出版社,2002;
    [25]I.E.Molodetsky, E. P. Vicenzi, E. L. Dreizin, et al, Phases of Titanium Combustion in Air[J], Combustion and Flame,1998,112:522-532;
    [26]H. Ewald, U. Anselmi-Tamburini, Z.A. Munir, Combustion of zirconium powders in oxygen [J], Materials Science and Engineering,2000,291(1-2):118-130;
    [27]Yin Yi, Sun Jinhua, Ding Yibin, Guo Song,He Xuechao, Experimental study of flames propagating through zirconium particle clouds[J], Journal of Hazardous Materials,2009, 170(1):340-344;
    [28]Jenkins, F A., Harvey E. W., Fundamentals of Optics [M], Fourth Edition by McGraw-Hill Book Company,1976;
    [29]Friedman.R, MacekA, Ignition and combustion of aluminum particles in hot ambient gases [J], Combustion and Flame,1962,6:9-19;
    [30]王龙甫,弹性力学[M],北京,科学出版社,1978

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700