铝合金半固态流变铸锻成形技术基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统铸造适合生产形状复杂的零件,但制件力学性能往往较低。传统锻造能生产高性能制件,但难以成形形状复杂的零件,且变形抗力较大。半固态成形介于液态铸造和固态锻造之间,兼具两者的优点,尤其半固态流变成形技术,由于具有短流程、低成本、高性能等优势而成为研究的热点。本文在铸造、锻造和半固态成形工艺的基础上,提出铝合金半固态流变铸锻成形技术,该技术能在同一副模具内实现铝合金的半固态流变铸造和锻造一体化成形,综合了铸造、锻造和半固态成形三种工艺的特点,具有短流程、快速高效、制件组织致密且力学性能高等优点。本文主要设计了旋转气泡搅拌及机械振动铝合金半固态浆料制备装置和铝合金半固态流变铸锻成形装置,研究了铝合金旋转气泡搅拌及机械振动制浆工艺,铝合金半固态流变铸锻成形工艺,并对半固态制浆和流变铸锻成形的机理进行了探讨。
     首先采用旋转气泡搅拌法、机械振动法的原理研制了铝合金半固态制浆装置,可控制包括搅拌温度、搅拌时间、搅拌转速、气体流速等多个参数。研制了半固态铸锻一体化模具,成形模具和制件均采用垂直分模,凸凹模均采用镶块式结构。设计了驱动成形模具的液压系统,并采用拉线位速传感器来实时显示压射的速度和位移。
     研究了旋转气泡搅拌制浆工艺,结果表明,要得到非枝晶半固态浆料,应将熔体由液相线以上温度冷却经过液相线并处于液相线以下5℃至20℃的范围内,并在激冷的同时施加搅拌。在本实验条件下,旋转气泡搅拌法的最佳工艺参数为:气流速率2 L/min,搅拌时间3 min,转速200 r/min,静置时间60 s。研究了坩埚中浆料组织的均匀性,发现非枝晶的平均晶粒尺寸在坩埚的上部较小下部较大,晶粒圆整度在坩埚的边缘较中心处圆整。
     研究了机械振动制浆工艺和复合制浆工艺,结果表明,要获得非枝晶半固态浆料,应使熔体温度由液相线以上激冷经过液相线并处于固液共存区间,在激冷的同时即施加振动。最佳振动时间为5 min。在所选的振动参数范围内,振幅和频率越大振动效果越好。振动速度为150 mms-1时能获得最为细小的非枝晶晶粒,振动速度为80 mms-1时能获得最为圆整的非枝晶晶粒。最佳的振动加速度为8000 mms-2。将垂直方向的振动简化为单自由度系统的简谐强迫振动,推导得出机械振动作用于熔体质点的功率公式,表明振动的效果与f3×A2(即振动速度f×A和振动加速度f2×A的乘积)成正比。直接将最优的旋转气泡搅拌工艺和机械振动工艺耦合得到复合制浆工艺,与单一方法制浆相比,复合制浆能得到最佳的平均晶粒尺寸和晶粒圆整度组合,其平均晶粒尺寸为64.5μm,晶粒圆整度为0.67。
     研究了液态和半固态金属型浇注试样的组织和力学性能,结果表明,半固态金属型试样的力学性能高于液态金属型(除复合制浆方法所得半固态试样的抗拉强度低于液态金属型外)。机械振动易于导致半固态浆料中出现显微空穴和孔洞,尤其复合气泡搅拌后,试样中易于产生气孔,从而恶化制件的力学性能。由于制浆过程中的搅拌和对流作用,半固态浆料中杂质颗粒难以聚集,其断口中无杂质颗粒存在,且能容许更高的杂质含量而不会恶化力学性能,而液态试样的断口中存在明显杂质颗粒,其延伸率较低。
     研究了流变铸锻工艺参数对半固态制件组织和力学性能的影响,结果表明,较高的压射压力和压射速度均有利于制件的充型,但压射速度过高易于产生卷气。最佳压射压力为40 MPa,最佳压射速度为92mm/s。压铸制件的最高抗拉强度为189.0MPa,延伸率为12.6%。半固态压铸后的坯料在不同的温度和固相率下进行锻造时,具有不同的力学性能。在低固相率(fs<0.5)锻造时相当于液态模锻,制件力学性能与半固态压铸相当;在接近fs=0.5的固相率锻造时,制件的力学性能恶化,其抗拉强度为170.3 MPa,延伸率为6.9%;在高固相率(fs>0.5)锻造时,制件力学性能与半固态压铸相当;半固态压铸后的坯料随后在固态下进行热锻,能得到最佳的力学性能,其抗拉强度为194.7 MPa,延伸率为14.3%。半固态坯料锻造时存在一个最佳锻造比,坯料在4 mm设定压下量时取得最佳力学性能,其抗拉强度为197.0 MPa,延伸率为11.3%,此时的锻造比为10%。半固态压铸坯料施加锻造后能弥合铸造孔洞类缺陷,得到组织更加致密的制件。在制件的中部为固相颗粒密实的致密组织,在制件的边缘为晶粒被拉长的流线形组织。
     探讨了半固态锻造及液相偏析的机理。高液相率锻造时,半固态浆料可被视为固相悬浮于液相的单相流体,其流变模型可假设为牛顿流体。公式推导得出半固态浆料的表观粘度与高径比、压强和应变之间的关系,表明锻造或压缩过程中表观粘度与高径比的平方和压强成正比,与坯料的应变成反比。.高固相率锻造时,半固态坯料应被视为两相体,其变形模型可假设为多孔材料。其受力可分为固相部分和液相部分的和,在总应力一定的情况下,固相率越高固相颗粒所受应力越大,固相越易于发生塑性变形,起到强化作用。半固态铸锻件的液相偏析层主要是在流变压铸过程中形成的,由于充型阶段浆料中存在压力梯度而产生液相偏析。通过公式推导得出液相偏析与压力梯度、液相率、粘度、渗流通道数量和曲折因子之间的关系。实验结果显示,枝晶组织制件的表面无液相偏析,Al和Si元素的含量无变化。而球晶组织制件的表面有一层明显的液相偏析,由基体至表面其Al元素出现下降的台阶,而Si元素有小幅的上升,表明液相偏析的存在。
Conventional casting is suitable for the production of complex parts. But has the disadvantage of low mechanical properties. Conventional forging can produce high performance parts, while complex one is difficult to be fabricated, and the deformation resistance is larger. Semi-solid forming lies between liquid casting and solid forging, and has advantages of both methods. Semi-solid forming especially rheoforming technology has become a research hotspot for advantages of short process, low-cost, and high-performance, etc. A process of integration of rheoforming and forging was proposed, based on casting, forging, and semi-solid forming processes. This technology which combines features of casting, forging, and semi-solid forming can realize rheoforming and forging of aluminum alloy in one mold. The technology has advantages of short processes, fast and efficient, dense parts, and high mechanical properties. In this paper, a slurry making equipment for applying rotating gas bubble stirring and mechanical vibration was developed. A device for integration of rheoforming and forging was designed. Slurry making process of aluminum alloy using rotating gas bubble stirring and mechanical vibration, and integration of rheoforming and forging process for aluminum alloy were explored. Mechanisms of slurry making, and rheoforming and forging were investigated.
     The semi-solid slurry making equipment for aluminum alloy was designed applying principles of rotating gas bubble stirring and mechanical vibration. Controllable parameters are stirring temperature, stirring time, rotation speed, and gas flow rate. The mould for integration of rheoforming and forging was designed. Forming molds and specimen are both separated vertically. The convex and concave dies are both insert type structure. Hydraulic system to drive the forming device was designed. A displacement and speed sensor was applied to display the injection velocity and displacement.
     The slurry making process using rotating gas bubble stirring was investigated. The results show that in order to obtain non-dendritic semi-solid slurry, the melt should be cooled from above liquidus to semi-solid zone, and then has a temperature between 5℃to 20℃below liquidus temperature, and gas bubble stirring should be imposed simultaneously. The optimum parameters of the rotating gas bubble stirring under the experimental conditions are as flow:gas flow rate 2 L/min, stirring time 3 min, rotation speed 200 r/min, and holding time 60 s. The microstructure uniformity in the crucible was examined. The results show that average grain size in the top of the crucible is smaller than in the bottom, and the non-dendritic grains in the edge of the crucible are rounder than in the middle.
     The slurry making processes using mechanical vibration and combination of gas bubbling and mechanical vibration were studied. The results show that in order to obtain semi-solid slurry with non-dendritic grains, the melt should be cooled from above liquidus to semi-solid zone, and mechanical vibration should be exerted simultaneously. The optimal vibration time is 5 min. In the chosen vibration parameter range, the bigger the amplitude and frequency, the better the mechanical vibration effect. As for the vibration velocity, the most refined non-dendritic grains can be obtained at the vibration velocity of 150 mms-1, and the most spherical non-dendritic grains can be got at the vibration velocity of 80 mms1. The optimal vibration acceleration is 8000 mms-2. The vibration in vertical direction can be simplified as harmonic forced vibration of one freedom system. The formula of mechanical vibration on melt particle was deduced. The results show that the vibration effect is proportional tof3×A2, that is, the product of the vibration velocity f×A and vibration acceleration f2×A. Integrated slurry making process is a combination of the optimal rotating gas bubble stirring process and mechanical vibration process. Compared with the single process, more refined and spherical non-dendritic grains are obtained, with the average grain size of 64.5μm, and grain roundness of 0.67.
     Microstructure and mechanical properties of liquid and semi-solid metal casting in permanent mold were investigated. The results show that mechanical properties of semi-solid specimens are higher than the liquid casting in permanent mold, except for the tensile strength of the semi-solid specimen corresponding to the integrated slurry making process. Microscopic cavities and holes are easy to be induced in the semi-solid slurry by the mechanical vibration. Stomata are caused in the specimen, especially when the rotating gas bubble stirring is exerted, which will deteriorate mechanical properties of the specimen. There are no impure particles assemble together or distribute in the tensile fractures in the semi-solid specimen, because of the stirring and convection effect in the slurry making process. And high levels of impurities can be tolerated in the semi-solid specimen without deterioration of the mechanical properties. Impurity particles exist in the tensile fractures of the liquid specimen, and the elongation is lower.
     Effect of rheological casting and forging parameters on microstructure and mechanical properties of the semi-solid specimen were studied. The results show that higher injection pressure and shot velocity are both beneficial to the filling ability of the specimen, but stomata are produced when the shot velocity is too fast. The optimal injection pressure is 40 MPa, and the optimal shot velocity is 92 mm/s. The optimal mechanical properties of semi-solid die-casting are tensile strength of 189 MPa, and elongation of 12.6%. Semi-solid billet has different mechanical properties when forged at different temperature and solid fraction. It is equivalent to liquid forging when the semi-solid billet is forged with the solid fraction lower than 0.5, with its mechanical properties about the same with semi-solid die-casting. When the semi-solid billet is forged at the solid fraction of 0.5, mechanical properties are deteriorated, with the tensile strength of 170.3 MPa, and elongation of 6.9%. When forged at the solid fraction higher than 0.5, the mechanical properties are also close to semi-solid die-casting. The optimal mechanical properties can be obtained, when the semi-solid billet is hot forged in the solid state, with the tensile strength of 194.7 MPa, and elongation of 14.3%. An optimal forging ratio exists in the semi-solid forging process. The best mechanical properties can be obtained at the forging reduction of 4 mm, with the tensile strength of 197.0 MPa, and elongation of 11.3%, corresponding to the forging ratio of 10%. Casting hole class defects in the semi-solid billet can be eliminated after forging, and specimen with denser microstructure is obtained. Solid grains are dense in the middle of the billet, and grains are elongated at the edge of the billet.
     The mechanism of semi-solid forging and liquid segregation were investigated. When forged at high liquid fraction, semi-solid slurry can be regarded as single-phase fluid with solid grains suspending in liquid, whose rheological model can be assumed to be Newtonian fluid. Through the formula derivation, the relationship between apparent viscosity of the semi-solid slurry and ratio of height to diameter of the billet, and pressure, and strain was obtained. The result shows that the apparent viscosity of the billet in the forging or compression processes is proportional to the square of the height to diameter ratio, and the pressure, and inversely proportional to the strain of the billet. When forged at high solid fraction, semi-solid billet should be considered as two-phase body, whose deformation model can be assumed to be porous materials. The total stress imposed on the billet is the sum of the stress imposed on the solid part and liquid part. In the case of a fixed total stress, the higher the solid fraction is, the bigger the stress on the solid grains is, and the solid grains are easy to be deformed. The liquid segregation in the billet is mainly formed in the rheological die-casting process, in which a pressure gradient exists in the filling stage of the semi-solid slurry. The relationship between liquid segregation and pressure gradient, liquid fraction, viscosity, number of seepage paths, and tortuosity factor of the seepage paths are obtained, through the formula derivation. The liquid segregation is proportional to the pressure gradient. The results show that, there is no liquid segregation in billet with dendritic microstructure, and Al and Si contents have no difference between the edge and central of the billet. Obvious liquid segregation exists in billet with spherical microstructure, and Al element decreases from the central to the edge of the billet, while Si element increases slightly, proving the existence of the liquid segregation.
引文
[1]田荣璋.铸造铝合金.长沙:中南大学出版社,2006
    [2]刘宗昌,任慧平,郝少祥.金属材料工程概论.北京:冶金工业出版社,2007
    [3]朱祖芳.铝合金阳极氧化与表面处理技术.北京:化学工艺出版社,2010
    [4]潘复生,张津,张喜燕,等.轻合金材料新技术.北京:化学工业出版社,2008
    [5]罗守靖,陈炳光,齐丕骧.液态模锻与挤压铸造技术.北京:化学工业出版社,2006
    [6]詹远光.Al-Si系铸造高强度铝合金的制备技术研究:[博士伦文].北京:北京交通大学,2007
    [7]阙玉琦,黄大鹏,张绍军,等.电站核岛大型铸锻件制造工艺评定方法研究的意义.热加工工艺,2010,10(1):56-58
    [8]李强,李远发,罗守靖,等.AZ91D镁合金铸锻双控成形与压铸制件宏观缺陷及力学性能的对比研究.特种铸造及有色合金2008年年会专刊,2008,(03):388-391
    [9]Kang C G, Choi J S, Kim K H. The effect of strain rate on macroscopic behavior in the compression forming of semi-solid aluminum alloy. J Mater Process Technol, 1999,88(1/3):159-168
    [10]Bowles A L, Griffiths J R, Davidson C J. Magnesium Technology. TMS,2001
    [11]罗守靖,杜之明.半固态金属加工(SSP)分类及新发展.热加工工艺论文汇编.北京:机械工业出版社,1999
    [12]罗守靖.压铸、挤压铸造(液态模锻)及半固态加工的适应性分析.特种铸造及有色合金,2007,27(8):600-602
    [13]梁修斌译.采用铸锻混合工艺生产汽车发动机零件.热加工工艺,1989,4:10
    [14]张长春,孔维一,胡凌云.铸锻联合工艺生产农机复杂锻件的应用研究.农业机械学报,1996,27(2):128-132
    [15]Spencer D B, Mehrabian R, Flemings M C. Rheological Behavior of Sn-15 Pct Pb in the Crystallization Range. Metall Mater Trans B,1972,3(7):1925-1932
    [16]Mehrabian R and Flemings M C. Die Casting of Partially Solidified Alloys. Trans of the AFS,1972,80:173-182
    [17]Flemings M C, Riek R G, Young K P. Rheocasting. Mater Sci Eng A,1976,25: 103-117
    [18]蒋鹏,贺小毛.半固态成形的工艺概况与模具材料选用.模具技术,2:54-83
    [19]Cho S H, Kang C G, Lee S M. The surface characteristics of Al-7%Si aluminum alloy manufactured by thixo/rheoforming process through nanoindentation/atomic force microscopy. Mater Sci Eng A,2008,488(1-2):72-83
    [20]Atkinson H V. Modelling the Semisolid Processing of Metallic Alloys. Prog Mater Sci,2005,50(3):341-412
    [21]Wang J L, Su Y H, Tsao C-Y A. Structural Evolutions of Conventional Cast Dendritic and Spray-Cast Non-Dendritic Structures during Isothermal Holding in the Semi-Solid State. Scripta Mater,1997,37(12):2003-2007
    [22]Vives C. Elaboration of semisolid alloys by means of new electromagnetic process. Metall Mater Trans B,1992,23:189-206
    [23]Flemings M C. SSM:some thoughts on past milestones and on the path ahead. Proceedings of the Sixth International Conference on Semi-Solid Processing of Alloys and Composites, Italy,2000
    [24]Apelian D. A roadmap for semi-solid processing. Proceedings of the Sixth International Conference on Semi-Solid Processing of Alloys and Composites, Italy, 2000
    [25]Witulski A, Winkelman A, Hirt G. Thixoforming of aluminium components for lightweight structures. Proceedings of the Fourth International Conference on Semi-Solid Processing of Alloys and Composites, UK,1996
    [26]Lou W R and Suery M. Microstructural evolution during partial remelting of Al-Si7Mg alloys. Mater Sci Eng A,1995,203(1-2):1-13
    [27]Kopp R, Neudenberger D, Winning G. Different concepts of thixoforging and experiments for rheological data. J Mater Process Technol,2001,111 (1-3):48-52
    [28]Kopp R, Winning G, Kallweit J, et al. Comparison of thixocasting and thixoforging using a unique demonstrator part. Proceedings of the Sixth International Conference on Semi-Solid Processing of Alloys and Composites, Italy,2000
    [29]Kopp R, Neudenberger D, Wimmer M, et al. Thixoforging—basic experiment and optimized tool design. Proceedings of the Fifth International Conference on Semi-Solid Processing of Alloys and Composites, USA,1998
    [30]谢水生.金属半固态加工技术的发展及应用.20007年中国压铸、挤压铸造、半固态加工学术年会专刊,2007:20-28
    [31]康永林,毛卫民,胡壮麒.金属材料半固态加工理论与技术.北京:科学出版社,2004
    [32]毛卫民,白月龙,高松福.半固态AlSi7Mg铝合金的新型流变成形.材料研究学报,2006,20(5):469-473
    [33]Flemings M C. Behavior of metal alloys in the semisolid state. Metall Trans B, 1991,22(3):269~293
    [34]Chiarmetta G and Zanardi L. Production of structural components by thixoforming aluminimum alloys. Proceedings of the Third International Conference on Semi-solid Processing of Alloys and Composites, Japan,1994
    [35]Kiuchi M and Sugiyama S. Mashy-state extrusion, rolling and forging. Proceedings of the Third International Conference on Semi-Solid Processing of Alloys and Composites, Japan,1994
    [36]吴秀铭.21世纪最有发展前景的现代金属加工新技术--半固态金属加工.有色金属工业,2000,7:38-39
    [37]王羽,胡建华,龙安.半固态成形技术及其应用.中国机械工程,2006,17:223-226
    [38]崔建忠,路贵民,刘丹,等.半固态浆制备技术的新进展.哈尔滨工业大学学报,2000,32(4):110-113
    [39]Kim N S and Kang C G. An investigation of flow characteristics considering the effect of viscosity variation in the thixoforming process. J Mater Process Technol, 2000,103:237-246
    [40]Anacleto de Figueredo. Science and Technology of Semi-Solid Metal Processing. Illinois:North American Die Casting Association Publication,2001
    [41]Fan Z, Fang X, Ji S. Microstructure and mechanical properties of rheo-diecast (RDC) aluminium alloys. Mater Sci Eng A,2005,412(1-2):298-306
    [42]崔成林,毛卫民,赵爱民,等.半固态触变压射成形过程模拟及验证.北京科技大学学报,2001,23(3):237-239
    [43]Kopp R and Shimahara H. State of R&D and future trends in semi-solid manufacturing. Proceedings of the Seventh International Conference on Semi-Solid Processing of Alloys and Composites, Japan,2002
    [44]Sigworth G K. Rheological properties of metal alloys in the semi-solid state. Canadian Metallurgical Quarterly,1996,35(2):101-122
    [45]Nussbaum A I. Semi-solid forming of aluminum and magnesium. Light Metal Age, 1996,10(6):6-22
    [46]Kirkwood D H. Semisolid metal processing. Int Mater Rev,1994,39(5):173-189
    [47]徐骏,田战峰,曾怡丹,等.铝合金半固态加工技术的应用研究.特种铸造及有色合金,2007,27(8):603-607
    [48]Kim W Y, Kang C G, Kim B M. Deformation behavior of wrought aluminum alloys in incremental compression experiment with a closed die. J Mater Process Technol, 2007,191(1):372-376
    [49]Kang C G, Yoon J H, Seo Y H. The upsetting behavior of semi-solid aluminum material fabricated by a mechanical stirring process. J Mater Process Technol,1997, 66(12):30-38
    [50]Masuk E P U, Moller H, Curle U A, et al. Influence of surface liquid segregation on corrosion behavior of semi-solid metal high pressure die cast aluminium alloys. Trans Nonferrous Met Soc China,2010,20:s837-s841
    [51]Govender G and Moller H. Evaluation of surface chemical segregation of semi-solid metal cast aluminium alloy A356. Solid State Phenomena,2008, 141-143:433-438
    [52]Moller H, Curle U A, Masuku E P. Characterization of surface liquid segregation in SSM-HPDC aluminium alloys 7075,2024,6082 and A201. Proceedings of the 11th International Conference on Semi-solid Processing of Alloys and Composites, China,2010
    [53]Liu D, Atkinson H V, Kapranos P, et al. Effect of heat.treatment on structure and properties of thixoformed wrought alloy 2014. Proceedings of the 7th International Conference on Semi-Solid Processing of Alloys and Composites, Japan,2002
    [54]Kang C G and Lee S M. The effect of forging pressure on liquid segregation during direct rheoforging process of wrought aluminium alloys fabricated by electromagnetic stirring. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2008,222(12):1673-1684
    [55]Cho W G and Kang C G. Mechanical properties and their microstructure evaluation in the thixoforming process of semi-solid aluminum alloys. J Mater Process Technol,2000,105(3):269-277
    [56]Suey M and Flemings M C. Effect of strain rate on deformation behavior of semi-solid dendritic alloys. Metall Trans A,1982,13(10):1809-1819
    [57]Chayong S, Atkinson H V, Kapranos P. Thixoforming 7075 aluminium alloys. Mater Sci Eng A,2005,390(1-2):3-12
    [58]Ehrheim M and Kopp R. Automated process to produce a near-net-shape workpiece by open die forging. Proceeding of the Fourth International Conference on Technology of Plasticity, Beijing,1993
    [59]Hirai K, Somekawa H, Takigawa Y, et al. Suprplastic forging with dynamic recrystallization of Mg-Al-Zn alloys cast by thixo-molding. Scripta Mater,2007, 56:237-240
    [60]Petrov P, Perfilov V, Stebunov S. Prevention of lap formation in near net shape isothermal forging technology of part of irregular shape made of aluminium alloy A92618. J Mater Process Technol,2006,177(1-3):218-223
    [61]唐靖林,曾大本.半固态加工技术的发展和应用现状.兵器材料科学与工程,1998,21(3):56-65
    [62]张奎,徐骏,石力开.铝合金半固态加工新技术.2001年全国铜铝加工高新技术发布与研讨会,2001
    [63]张新建,乐启炽,崔建忠.金属半固态成形工艺及其新分类方法.第二届全国塑性加工学术年会,北京,2002
    [64]杨浩强,谢水生,李雷,等.阻尼冷管法制备半固态浆料过程的数值模拟与参数优化.中国有色金属学报,2006,16(3):488-494
    [65]乐启炽,张建新,崔建忠,等.AZ91D镁合金近液相线铸造半固态坯料的部分重熔.金属学报,2002,38(12):1266-1272
    [66]张发云,闫洪,周天瑞,等.AZ61合金半固态二次加热工艺及组织演变.塑性工程学报,2006,13(4):100-103
    [67]闫洪,张发云,揭小平,等.AZ61镁合金在形变诱导法中的组织演变.中国机械工程,2005,16(8):719-722
    [68]王武孝,程健杰,蒋百灵,等.AZ91D合金SIMA形变组织与共晶熔化激活能的研究.特种铸造及有色合金,2005,25(4):205-207
    [69]徐跃,康永林,王朝辉.AZ91D镁合金半固态浆料近液相线法制备工艺.有色金属,2005,57(4):1-5
    [70]徐跃,康永林,王朝辉.AZ91D镁合金半固态浆料制备的研究.特种铸造及有色合金,2004,5:12-14
    [71]李元东,郝远,阎峰云.SIMA法制备AZ91D镁合金非枝晶组织锭料.甘肃工业大学学报,2002,28(4):34-38
    [72]管仁国,邢振环,王超,等.新型倾斜板技术制备半固态铝合金坯料和浆料.特种铸造及有色合金,2007,27(1):31-34
    [73]曾怡丹,石力开,张志峰,等.液流混合处理对半固态A357浆料组织的影响.特种铸造及有色合金,2007,27(4):253-255
    [74]Wannasin J, Martinez R A, Flemings M C. Grain refinement of an aluminum alloy by introducing gas bubbles during solidification. Scripta Mater,2006,55(2): 115-118
    [75]Wannasin J, Martinez R A, Flemings MCA novel technique to produce metal slurries for semi-solid metal processing. Solid State Phenom,2006,116-117: 366-369
    [76]邹莹,董选普,张洁,等.气流搅拌镁合金半固态铸造新技术.铸造,2008,57(3):215-218
    [77]Wannasin J, Canyook R, Burapa R, et al. Evaluation of solid fraction in a rheocast aluminum die casting alloy by a rapid quenching method. Scripta Mater,2008,59: 1091-1094
    [78]Taghavi F, Saghafian H, Kharrazi Y H K. Study on the ability of mechanical vibration for the production of thixotropic microstructure in A356 aluminum alloy. Mater Des,2009,30(1):15-121
    [79]Pillai R M, Biju Kumar K S, Pai B C. A simple inexpensive technique for enhancingdensity and mechanical properties of Al-Si alloys. J Mater Process Technol,2004,146(3):338-348
    [80]Chirita G, Stefanescu I, Soares D, et al. Influence of vibration on the solidification behaviour and tensile properties of an Al-18wt%Si alloy. Mater Design,2009, 30(5):1575-1580
    [81]Form G W and Wallace J F. Typical microstructure of cast metals. Trans AFS,1960, 68:145-156
    [82]Fisher T P. Effects of vibrational energy on the solidification of aluminium alloys. Brit. Foundryman,1973,66(3):71-84
    [83]Abd El Azim AN. Effect of low frequency mechanical vibration on the structure of aluminum-silicon eutectic alloys. Mater Sci Forum,1981,7:118-120
    [84]Motegi T and Ohno A. Solidification Processing. The Institute of Metals, Sheffield, 1988
    [85]Kocatepe K and Burdett C F. Effect of low frequency vibration on macro and micro structures of LM6 alloys. J Mater Sci,2000,35:3327-3335
    [86]Numan Abu-Dheir, Marwan Khraisheh, Kozo Saito, et al. Silicon morphology modification in the eutectic Al-Si alloy using mechanical mold vibration. Mater Sci Eng A,2005,393:109-117
    [87]Kocatepe K. Effect of low frequency vibration on porosity of LM25 and LM6 alloys. Mater Design,2007,28(6):1767-1775
    [88]Wu S S, Xie L L, Zhao J E, et al. Junwen Nakae Formation of non-dendritic microstructure of semi-solid aluminum alloy under vibration, Scripta Mater,2008, 58(7):556-559
    [89]Zhao J W, Wu S S, Xie L Z, et al. Effects of vibration and grain refiner on microstructure of semisolid slurry of hypoeutectic Al-Si alloy. Trans Nonferrous Met Soc China,2008,18:842-846
    [90]Campbell J. Effects of vibration during solidification. Int Mater Rev,1981,2(1): 71-108
    [91]Wu S S, Wu X P, Xiao Z H. A model of growth morphology for semisolid metals. Acta Mater,2004,52(12):3519-3524
    [92]Limmaneevichita C, Pongananpanya S, Kajornchaiyakul J. Metallurgical structure of A356 aluminum alloy solidified under mechanical vibration:An investigation of alternative semi-solid casting routes. Mater Design,2009,30(9):3925-3930
    [93]Deepak S, Diran A, Mark A M, et al. Semi-Solid Metal Casting Process of Hypoeutectic Aluminum. US,6880613 B2,2005-04-19
    [94]Dobatkin V I, Belov A F, Eskin G I, et al. Pattern of crystallization of metallic materials (scientific discovery, Registration No.271), Vestn. Akad. Nauk SSSR, 1984,139(1):139
    [95]Abramov V, Abramov O, Bulgakov V, et al. Solidification of aluminum alloys under ultrasonic irradiation using water-cooled resonator. Mater Lett,1998,37(1-2): 27-34
    [96]Jian X, Xu H, Meek T T, et al. Effect of power ultrasound on solidification of aluminum A356 alloy.2005, Mater Lett,59(2-3):190-193
    [97]Eskin G I. Ultrasonic Treatment of Light Alloy Melts. Gordon and Breach Science Publishers,1998
    [98]赵君文,吴树森,谢礼志.超声波振动制备ZL101铝合金半固态浆料.特种铸造及有色合金,2007,27(11):846-849
    [99]谢水生,李兴刚.半固态加工技术在镁合金零部件生产中的应用.世界有色金属,2005,2:39-48
    [100]刘政,胡咏梅.稀土细化剂对ZL101半固态组织影响的研究.铸造,2008,57(6):596-599
    [101]郑志强,熊新根,陈克燕,等.稀土元素对ZL101合金中a相生长过程的影响.特种铸造及有色合金,2008,28(3):171-172
    [102]Shahrooz N, Omid L, Reza G, et al. Microstructure and rheological behavior of grain refined and modified semi-solid A356 Al-Si slurries. Acta Mater,2006,54: 3503-3511
    [103]Easton M A, Kaufmann H, Fragner W. The effect of chemical grain refinement and low superheat pouring on the structure of NRC castings of aluminium alloy Al-7Si-0.4Mg. Mater Sci Eng A,2006,420:135-143
    [104]李元东,陈体军,马颖,等.添加0.5%富铈混合稀土AZ91D镁合金半固态组织的形成.中国有色金属学报,2007,17(2):320-325
    [105]郑志强,熊新根,陈克燕,等.稀土元素对ZL101合金中a相生长过程的影响.特种铸造及有色合金,2008,28(3):171-172
    [106]Wang K K, Hsuan P, Nan W, et al. Method and Apparatus for Injection of Semi-Solid metals:US,5501266.1996-03-26
    [107]Flemings M C. Behavior of Metal Alloys in the Semisolid State. Metall Mater Trans A,1991,22 (5):957-981
    [108]James A Y. Commercial development of the semi-solid rheocasting process. Metallurgical Science and Technology,2003,21(1):10-15
    [109]Fan Z, Ji S, Bevis M J. Twin-Screw Rheomolding-A New Semi-Solid Processing Technology. Proceedings of the Sixth International Conference on the Processing Semi-Solid Alloys and Composite, Italy,2000
    [110]Seo P K, Lee S M, Kang C G. A New Process Proposal for Continuous Fabrication of Rheological Material by Rotational Barrel with Stirring Screw and Its Microstructural Evaluation. J Mater Process Technol,2009,209(1):171-180
    [111]Haghayeghia R, Zoquib E J, Greenc N R, et al. An Investigation on DC Casting of A Wrought Aluminium Alloy at Below Liquidus Temperature by Using Melt Conditioner. J Alloys Compd,2010,502(2):382-386
    [112]肖泽辉,罗吉荣,吴树森,等.AZ91D半固态流变压铸成形的研究.热加工工艺,2004,2:41-42
    [113]Kenny M P, Courtois J A, Evans R D, et al. Semisolid Metal Casting and Forging. Metals Handbook, ASM International, Metals Park, Ohio,1988
    [114]Midson S P. The commercial status of semi-solid casting in the USA. Proc 4th Int Conf on Semi-Solid Alloys and Composite, England,1996
    [115]Liu Z, Mao W M, Zhao Z D. Effect of pouring temperature on semi-solid slurry of A356 Al alloy prepared by weak electromagnetic stirring. Trans Nonferrous Met Soc China,2006,16(1):71-76
    [116]Bai Y L, Xu J, Zhang Z F, et al. Annulus Electromagnetic Stirring for Preparing Semisolid A357 Aluminum Alloy Slurry. Trans Nonferrous Met Soc China,2009, 19(5):1104-1109
    [117]Kang C G, Bae J W, Kim B M. The grain size control of A356 aluminum alloy by horizontal electromagnetic stirring for rheology forging. J Mater Process Technol, 2007,187-188:344-348
    [118]Yong K P, Kyonka C P, Courtois J. Fine Grained Metal Composition. US,4415374, 1983-10-28
    [119]Martinez R A. A New Technique for the Formation of Semisolid Structures. M. S. Thesis, Massachusetts Institute of Technology,2001
    [120]Martinez R A. Formation and Processing of Rheocast Microstructures. Ph.D. Thesis, Massachusetts Institute of Technology,2004
    [121]毛卫民,白月龙,陈军.半固态合金流变铸造的研究进展.特种铸造及有色合金,2004,2:4-8
    [122]Haga T and Kapranos P. Simple Rheocasting Processes. J Mater Process Technol, 2002,130-131:594-598
    [123]Shibata R. SSM Activities in Japan. Proc.5th Int. Conf. on Semi-solid Processing of Alloys and Composites, USA,1998
    [124]武晓峰,张广安,周岐.机械振动对倾斜冷却板法制备亚共晶铝合金半固态组织的影响.铸造,2009,58(10):1002-1008
    [125]Young K P, Kyonka C P, Courtois J A. Fine Grained Metal Composition.1982, United States patent no.4415374
    [126]Saklakoglu N, Saklakoglu I E, Tanoglu M, et al. Mechanical Properties and Microstructural Evaluation of AA5013 Aluminum Alloy Treated in the Semi-Solid State by SIMA Process. J Mater Process Technol,2004,148(1):103-107
    [127]姜巨福,彭秋才.单巍巍,等.新SIMA法制备AZ91D半固态坯.特种铸造及 有色合金,2005,25(12):740-743
    [128]赵祖德,单巍巍,罗守靖.等径道角挤压法制备半固态MB15-RE镁合金坯.特种铸造及有色合金,2006,26(11):707-709
    [129]刘旭波.半固态铝合金浆料制备技术和装置研究:[博士学位论文].南昌:南昌大学,2007
    [130]Guo H M and Yang X J. Preparation of semi-solid slurry containing fine and globular particles for wrought aluminum alloy 2024. Trans Nonferrous Met SOC China,2007,17(4):799-804
    [131]Xia K and Tuasig G. Liquidus Casting of a Wrought Aluminum Alloy 2618 for Thixoforming. Mater Sci Eng A,1998,246(1-2):1-10
    [132]梁博,徐骏,曾怡丹,等MSMT法制备铝合金半固态浆料组织控制的研究.铸造技术,2008,29(11):1518-1521
    [133]Chen T J, Ma Y, Hao Y, et al. Structural Evolution of ZA27 Alloy during Semi-Solid Isothermal Heat Treatment. Trans Nonferrous Met Soc China,2001, 11(1):98-102
    [134]Yurko J A, Martinez R A, Flemings M C. The Spheroidal Growth Route to Semi-Solid Forming. Proceedings of the Eighth International Conference on Semisolid Processing of Alloys and Composites, Cyprus,2004
    [135]Flemings M C, Yurko J A, Martinez R A. Solidification processes and microstructures. A symposium in Honor of Wilfried Kurz as held at the 2004 TMS Annual Meeting, North Carolina,2004
    [136]Jackson K A, Hunt J D, Uhlann D R, et al. On the origin of the equiaxed zone in casting. Transaction of the Metallurgical Society of AIME,1966,236(8):149-157
    [137]Martinez R A and Flemings M C. Evolution of particle morphology in semisolid processing. Metall Mater Trans A,2005,36(8):2205-2210
    [138]Potzinger R, Kaufmann H, Uggowitzer P J. Magnesium new rheocasting-a novel approach to high quality magnesium casting. Proceeding of the Sixth International Conference on Semisolid Processing Alloy Composition, Italy,2000
    [139]Kelton K F. Time-dependent nucleation in partitioning transformations. Acta Mater, 2000,48(8):1967-1980
    [140]Ohno A. Solidification—The separation theory and its practical applications. Springer-Verlag Press, Germany,1987
    [141]Turbull D. Formation of crystal nuclei in liquid metals. J Appl Phys,1950,21(10): 1022-1028
    [142]张景新,张奎,刘国钧,等.电磁搅拌制备半固态材料非枝晶组织的形成机制.中国有色金属学报,2000,10(4):511-515
    [143]Flemings M C. Solidification processing. McGraw-Hill Book Company,1974
    [144]李涛.半固态显微组织形成演化与流变性的实时观察研究:[博士学位论文].西安:西北工业大学,2003
    [145]郭洪民.半固态铝合金流变成形工艺与理论研究:[博士学位论文].南昌:南昌大学,2007
    [146]Shibata R, Kaneuchi T, Souda T, et al. Formation of spherical solid phase in die casting shot sleeve without any agitation. Proceedings of the 5th Internationa Conference on Semi-Solid Processing of Alloys and Composites, USA,1998
    [147]王怀国,张景新,张奎,等.AZ91D镁合金的半固态加工研究.特种铸造及有色合金,2003,4:10-13
    [148]李东南,罗吉荣,肖泽辉,等.AZ91D镁合金成形组织的研究.中国铸造装备与技术,2003,1:21-23
    [149]刘艳华.基于炮弹壳的流变挤压铸造研究.中国铸造装备与技术,2008,5:22-24
    [150]白月龙,毛卫民,高松福,等.流变压铸工艺参数对半固态A356铝合金充填性的影响.北京科技大学学报,2006,28(7):645-649
    [151]Fan Z. Development of the rheo-diecasting process for magnesium alloys. Mater Sci Eng A,2005,413/414:72-78
    [152]Kang Y L, Xu Y, Wang Z H. Study on microstructure and mechanical properies of rheo-die casting semi-solid A356 aluminum alloy. Solid State Phenomena,2006, 116-117:453-456
    [153]Xiao Z H, Luo J R, Wu S S, et al. Performing for semi-solid slurry produced by twin-screw stirring mixer and rheo-diecasting process of AZ91D alloy. Journal of Wuhan University of Technology-Materials Science Edition,2004,19(4):81-85
    [154]Fan Z. Semisolid metal processing. Int Mater Rev,2002,47(2):1-37
    [155]Midson S P. Rheocasting processes for semi-solid casting oaluminum alloy. Die Casting Engineer,2006,50(1):48-51
    [156]Joratad J L. SSM processes-an overview. Proceedings of the 8th Internationa Conference on Semi-Solid processing of Alloys and Composites, Cprus,2004
    [157]白月龙,毛卫民,汤国兴.半固态A356铝合金浆料的充填行为及组织分布.材料研究学报,2006,20(6):602-606
    [158]孙永忠,邢书明,张琳,等.铝合金半固态熔体流变压铸的气孔缺陷与防止.2007年中国压铸、挤压铸造、半固态加工学术年会专刊,372-373
    [159]田战峰,徐骏,杨必成,等.铝合金零件半固态压铸技术应用研究.新技术新工艺,2007,2:63-65
    [160]Wannasin J, Junudon S, Rattanochaikul T, et al. Development of the gas induced semi-solid metal process for aluminum die casting application. Solid State Phenomena,2008,141-143:97-102
    [161]Bai Y L, Mao W M, Gao S F, et al. Filling ability of semi-solid A356 aluminum alloy slurry in rheo-diecasting. Journal of University of Science and Technology Bejng,2008,15(1):48-52
    [162]吴树森,万里,安萍,等.高硅铝合金的半固态压铸成形技术.金属加工,2010,9:29-32
    [163]路贵民,赵大志,王平,等.A356铝合金半固态成形的数值模拟.东北大学学报自然科学版,2007,28(3):353-356
    [164]Kang C G. and Bae J W. Numerical simulation of mold filling and deformation behavior in rheology forming process. International Journal of Mechanical Sciences,2008,50(5):944-955
    [165]Bai Y L, Mao W M, Xu J, et al. Numerical simulation on rheo-diecasting mould filling of semi-solid key-shaped component. Trans Nonferrous Met Soc China, 2008,18(3):682-685
    [166]Jae C C, Hyung J P, Byung M L. Finite element analysis of compression holding step in semi-solid forging and experimental confirmation. J Mater Process Technol, 1998,80-81:450-457
    [167]白月龙,毛卫民,徐宏,等.半固态A356铝合金流变压铸充填过程的数值模拟.特种铸造及有色合金,2008,28(6):428-431
    [168]郑鹏,白应龙,石立开.A357铝合金半固态流变压铸数值模拟.特种铸造与有色合金,2010,30(1):43-46
    [169]Moschini R. Manufacture of automotive components by semi-liquid forming process. Proceedings of the Second International Conference on Semi-solid Processing of Alloys and Composites, USA,1992
    [170]Young K P and Fitze R. Semi-solid metal cast aluminium automotive components. Proceedings of the Third International Conference on Semi-solid Processing of Alloys and Composites, Japan,1994
    [171]Kim H H and Kang C G. Study of the microstructure and mechanical properties of A16061 aluminum alloys rheo-forged by vacuum pump. Mater Sci Eng A,2008, 497(1-2):309-321
    [172]Kang C G and Choi J S. Effect of gate shape and forging temperature on the mechanical properties in the injection forging process of semi-solid aluminum material. J Mater Process Technol,1998,73 (1-3):251-263
    [173]Kenney M P and Courtois J A. Casting. American Society of Metals, Metals Park, OH,1988
    [174]Chiarmetta G, Thixoforming of automobile components. Proceedings of the Fifth International Conference on Semi-solid Processing of Alloys and Composites, USA, 1998
    [175]Yoshida C, Moritaka M, Shinya S, et al. Semi-solid forging of aluminum alloys. Proceedings of the Second International Conference on Semi-Solid Processing of Alloys and Composites, USA,1992
    [176]Chen C P and Tsao YA C. Semi-solid deformation of A356 Al alloys. Proceedings of the Fourth International Conference on Semi-Solid Processing of Alloys and Composites, England,1996
    [177]Han D S, Durrant G, Cantor B. Semi-solid deformation of 2014 Al alloys. Proceedings of the 5th International Conference on Semi-Solid Processing of Alloys and Composites, USA,1998
    [178]Kang C G and Choi J S. Effect of gate shape and forging temperature on the mechanical properties in the injection forging process of semi-solid aluminum material. J Mater Process Technol,1998,73(1-3):251-263
    [179]Kang C G and Seo P K. The effect of gate shape on the filling limitation in the semi-solid forging process and the mechanical properties of the products. J Mater Process Technol,2003,135(2/3):144-157
    [180]王平,郑连辉,赵大志,等.ZL116合金的半固态模锻成形组织与性能.稀有金属,2006,30:140-143
    [181]Jung H K, Kim H G, Kang C G. A study on quantitative formability assessment of rheological materials based on the microstructural characterization with a moderate control of the process. J Mater Process Technol,2007,182(1-3):220-228
    [182]Kim H H and Kang C G. Vacuum-assisted rheo-forging process of A356 aluminum alloys. International Journal of Machine Tools & Manufacture,2008,48(15): 1626-1636
    [183]Gunasekera J S. Development of a constitutive model for mushy (semi-solid) materials. Proceedings of the Second International Conference on Semi-Solid Processing of Alloys and Composites, USA,1992
    [184]Kumar P, Martin C L, Brown S. Predicting the constitutive flow behavior of semi-solid metal alloy slurries. Proceedings of the Third International Conference on Semi-Solid Processing of Alloys and Composites, Japan,1994
    [185]Kang C G and Yoon J H. A compression behavior of semi-solid material and finite element analysis considering flow of liquid phase. Trans KSME,1996,20(12): 3715-3725
    [186]Kang C G, Choi J S, Kang D W. A filling analysis of the forging process of semi-solid aluminum materials considering solidification phenomena. J Mater Process Technol,1998,73(1-3):289-302
    [187]张颂阳,耿茂鹏,谢水生,等.半固态铸轧成形技术的最新研究.南昌大学学 报工科版,2006,28(4):339-343
    [188]张颂阳,耿茂鹏,张莹,等.半固态镁合金铸轧试验研究.铸造,2006,55(1):27-29
    [189]张颂阳,耿茂鹏,谢水生,等.AZ91D镁合金半固态铸轧工艺因素对组织的影响.轻合金加工技术,2006,34(7):21-24
    [190]张莹,耿茂鹏,饶磊,等.镁合金半固态双辊板带流变成形研究.铸造技术,2005,26(8):706-708
    [191]李元东,郝远,陈体军,等.AZ91D镁合金半固态挤压铸造的研究.热加工工艺,2004,1:7-11
    [192]刘艳华,熊洪淼,郭洪民,等.半固态A356铝合金流变挤压铸造工艺.特种铸造及有色合金,2008,28(2):122-124
    [193]罗守靖,杜之明,霍文灿.半固态合金加工技术若干问题的思考.特种铸造及有色合金(2001年中国压铸、挤压铸造、半固态加工学术年会论文集),181-185
    [194]Liu D, Atkinson H V, Kapranos P, et al. Microstructural evolution and tensile mechanical properties of thixoformed high performance aluminium alloys. Mater Sci Eng A,2003,361 (1/2):213-224
    [195]Curle U A. Semi-solid near-net shape rheocasting of heat treatable wrought aluminum alloys. Submitted for the 11th International Conference on Semi-solid Processing of Alloys and Composites, China,2010
    [196]Masuku E P, Govender G, Ivanchev L, et al. Rheocasting of Al-Cu alloy A201 with different silver contents. Solid State Phenomena,2008,141-143:151-156
    [197]Kitamura K, Ando Y, Hironaka K, et al. Die casting of aluminum alloy in semi-solid state. Proceedings of the Third International Conference on Semi-Solid Processing of Alloys and Composites, Japan,1994
    [198]Vaneetveld G., Rassili A, Pierret J C, et al. Conception of tooling adapted to thixoforging of high solid fraction hot-crack-sensitive aluminium alloys. Trans Nonferrous Met Soc China,2010,20:1712-1718
    [199]Boyer H E. Metals handbook desk. Ohio:Asm Intl,1984
    [200]Vaneetveld G, Rassili A, Lecomte-beckers J, et al. Thixoforging of 7075 aluminium alloys at high solid fraction. Trans Tech Publications,2006,116/117:762-765
    [201]Jorstad J L, Pan Q Y, Apelian L Y D. Solidification microstructure affecting ductility in semi-solid-cast products. Mater Sci Eng A,2005,413-14(25): 186-191
    [202]Gabathuler J P. Quality and properties of thixoforming suspension components for the automotive industry. Proc of the conference 4th International Conference on Semi-Solid Processing of Alloys and Composites, UK,1996
    [203]Chiarmetta G. Thixoforming of automobile components. Proc of the conference 4th International Conference on Semi-Solid Processing of Alloys and Composites, UK, 1996
    [204]Wendinger B. Findings and experiences in thixoforming of aluminium alloys. Proc of the conference 4th International Conference on Semi-Solid Processing of Alloys and Composites, UK,1996
    [205]Garat M. Blais S, Pluchon C, et al. Aluminum semi-solid processing:From the billet to the finished part. Proc of the conference 5th International Conference on Semi-Solid Processing of Alloys and Composites, USA,1998
    [206]Klaus S, Andreas W, Jens B. Thixoforging of aluminium and brass. University of Stuttgart, Institute for Metal Forming Technology
    [207]Noll, T, Friedrich B, Hufschmidt M, et al. Evaluation and modelling of chemical segregation effects for thixoforming processing. Adv Eng Mater,2003,5(3): 156-160
    [208]Kang C G and Jungials H K. A study on solutions for avoiding liquid segregation phenomena in thixoforming process:Part I. Constitutive modelling and finite element method simulations for die design. Metall Mater Trans B,2001,32(1): 119-127
    [209]Kang C G and Jung H K. A study on solutions for avoiding liquid segregation phenomena in thixoforming process:Part II. Net shape manufacturing of automotive scroll component. Metall Mater Trans B,2001,32(1):129-136
    [210]Hufschmidt M, Modigell M, Petera J. Modelling and simulation of forming processes of metallic suspensions under non-isothermal conditions. Journal of Non Newtonian Fluid Mechanics,2006,134(1/3):16-26
    [211]Seo P K, Kim D U, Kang C G. The effect of the gate shape on the microstructural characteristic of the grain size of Al-Si alloy in the semi-solid die casting process. Mater Sci Eng A,2007,445/446:20-30
    [212]Moller H, Curie U A, Masuku E P. Characterization of surface liquid segregation in SSM-HPDC aluminium alloys 7075,2024,6082 and A201. Trans Nonferrous Met Soc China,2010,20(3):s847-s851
    [213]Vieira E A and Ferrante M. Prediction of rheological behaviour and segregation susceptibility of semi-solid aluminium-silicon alloys by a simple back extrusion test. Acta Mater,2005,53(20):5379-5386
    [214]Masuku E P, Moller H, Curle U A, et al. Influence of surface liquid segregation on corrosion behavior of semi-solid metal high pressure die cast aluminium alloys. Trans Nonferrous Met Soc China,2010,20:s837-s841
    [215]Loue W R, Suery M, Querbes J L. Microstructure and rheology of partially remelted AlSi-alloys. Proceedings of the 2nd international conference on the semi-solid processing of alloys and composites, UK,1992
    [216]Suery M and Flemings M C. Effect of strain rate on deformation behavior on semi-solid dendritic alloys. Metall Trans A,1982,13:1809-1819
    [217]李远发.金属液态压铸锻造双控一次成型的方法.中国发明专利,ZL200410052493,申请时间2004.12.3
    [218]李远发.金属液态压铸锻造双控一次成型压铸锻造机.中国发明专利,L200520057256.2,申请时间2005.4.22
    [219]李远发,单巍巍,古辰滨.金属液态压铸锻造卧式双控成型机.实用新型专利,ZL 200820134028.4,申请时间2008.9.9
    [220]李远发.金属液态压铸锻造双控一次成型的模具.实用新型专利,ZL200420102938.6,申请时间2004.12.24
    [221]李强,李周复,李远发,等.镁合金液态铸锻双控成形技术研究.铸造,2008,57(9):895-898
    [222]李远发,苏平线.液态压铸锻造双控成形技术研究.特种铸造及有色合金, 2006,26(9):568-571
    [223]李强,李周复,张鹏,等.摩托车发动机壳体铸锻双控成型模设计.模具工业,2008,34(6):66-70
    [224]李强,李远发,罗守靖,等.AZ91D镁合金铸锻双控成形与压铸制件宏观缺陷及力学性能的对比研究.特种铸造及有色合金2008年年会专刊,388-392
    [225]李远发,李强,罗守靖,等.AZ91D镁合金铸锻双控成形组织性能研究.特种铸造及有色合金,2007,27(12):943-946
    [226]齐丕骧,齐霖.双重挤压铸造研究.2007年中国压铸、挤压铸造、半固态加工学术年会专刊,243-247
    [227]李尚健.锻造工艺及模具设计资料.北京:机械工业出版社,1991
    [228]胡亚民,华林.锻造工艺过程及模具设计资料.北京:北京大学出版社,2006
    [229]康永林,毛卫民,胡壮麟.金属材料半固态加工理论与技术.北京:科学出版社,2004
    [230]吴春苗.压铸实用技术.广州:广东科技出版社,2003
    [231]夏巨谌,李志刚.中国模具设计大典.北京:科学出版社,2002
    [232]陈祥元.压铸机,北京:国防工业出版社,1978
    [233]齐卫东.锻造工艺与模具设计.北京:北京理工大学出版社,2007
    [234]成大先.机械设计手册.北京:机械工业出版社,2004
    [235]上海煤矿机械研究所.液压传动设计手册.上海:上海人民出版社,1976
    [236]刘政,于锋波.半固态A356铝合金初生相形貌的分形特征.中国有色金属学报,2009,19(2):228-234
    [237]Wang S S, Cao F R, Wen J L. Effect of original microstructures on micro structural evolution of A2017 semi-solid alloy billets during reheating. Trans Nonferrous Met Soc China,2005,15(3):577-582
    [238]Nafisi S and Ghomashchi R. Effect of stirring on solidification pattern and alloy distribution during semi-solid-metal casting. Mater Sci Eng A,2006,437(2): 388-395
    [239]欧鹏.AZ91D镁合金半固态制浆新工艺及机理研究:[博士学位论文].沈阳:东 北大学,2002
    [240]Jiang J F and Luo S J. Reheating microstructure of refined AZ91D magnesium alloy in semi-solid state. Trans Nonferrous Met Soc China,2004,14(6): 1074-1081
    [241]董杰,路贵民,任栖锋,等.液相线铸造法非枝晶本固态组织形成机理探讨.金属学报,2002,38(2):203-207
    [242]Fedyushkin A, Bourago N, Polezhaev V, et al. The influence of vibration on hydrodynamics and heat-mass transfer during crystal growth. J Cryst Growth,2005, 275(1-2):el557-el563
    [243]Joseph W, Jonathan A D, Derek E T, et al. Process and Apparatus for Making Thixotropic Metal Slurries. US,4434837.1984-03-06
    [244]Griffiths W D and Mccartney D G The effect of electromagnetic stirring during solidification on the structure of Al-Si alloys. Mater Sci Eng A,1996,216:47-60
    [245]Wang S C, Cao F R, Wen J L. Effect of low frequency vibration on porosity of LM25 and LM6 alloys. Mater Des,2007,28(6):1767-1775
    [246]Gruzleski J E. Modification and the porosity problem. Proceedings of the second international conference on molten aluminum process, USA,1989
    [247]Modigell M and Koke J. Time-dependent theological properties of semi-solid metal alloys. Mechanics of time-dependent materials,1999,3(1):15-30
    [248]Ohnaka I. Introduction to Heat and Solidificution Analysis by Computer. Maruzen Press, Japan,1984
    [249]Dean T A. Progress in net-shape forging. Proceeding of the Fourth International Conference on Technology of Plasticity, Beijing,1993
    [250]Lashkari O, Ghomashchi R, Ajersch F. Deformation behavior of semi-solid A356 Al-Si alloy at low shear rates:The effect of sample size. Mater Sci Eng A,2007, 444(1-2):198-205
    [251]Laxmanan V and Flemings M C. Deformation of semi-solid Sn-15 Pct Pb alloy. Metall Trans A,1980,11:1927-1937
    [252]Yurko J A and Flemings M C. Rheology and microstructure of semi-solid aluminum alloys compressed in the drop-forge viscometer. Metall Trans A,2002, 33(8):2737-2746
    [253]Kim W Y, Kang C G, Kim B M. The effect of the solid fraction on rheological behavior of wrought aluminum alloys in incremental compression experiments with a closed die. Mater Sci Eng A,2007,447(1-2):1-10
    [254]Shima S and Oyane M. Plasticity theory for porous metals. International Journal of Mechanical Sciences,1976,18:285-291
    [255]Kang C G and Yoon J H. A finite element analysis on the upsetting process of semi-solid aluminum material. J Mater Process Technol,1997,66:76-84

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700