电流变效应及流变光学特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
外加电场导致固液分散体系的结构与流变性质的变化称为电流变效应。电流变体是由粒径为微米或亚微米级的易极化粒子分散于低介电系数的液体绝缘介质中形成的复合悬浮体。电流变体在外加电场作用下能在毫秒级时间内发生明显的、可逆的流变响应,从而被认为是“有可能使诸多工业部门发生变革的一种智能材料”,它是材料科学和液态物理等领域的一大研究热点和学科前沿。本论文在研究双相复合悬浮液电流变效应机理,及场致微结构变化特征的基础上,首次对电流变体流变光学特性进行了较深入的理论分析,并对电流变体的光学调控特性进行测试,从而首次提出并设计了光学特性动态可调的电流变体灵巧窗(electrorheological fluids-based smart window,ERFSW)智能结构,为电流变体应用研究提出了一条新思路,开拓了电流变体在灵巧窗智能结构等方面的应用。本文所得到的一些有益和有创新意义的结果可归结如下:
     1.在简要评述现有电流变效应模型及机理的基础上,按非均匀介质对双相复合悬浮液的电流变效应进行理论分析,研究了电流变效应频率诱导特性;基于复合系统渗透压的计算,采用统计热力学唯象理论,讨论了电流变效应的相分离特征,获得了与实验吻合的临界参数;首次将定向渗流模型应用于电流变体临界体积浓度的分析,得出一个描述电流变流体特征而不随外加电场变化的临界体积百分数为0.37。最后提出了作为进行电流变体专家系统设计基础的变量方程的研究设想。
     2.实验研究了不同方式电场诱导电流变体微结构变化特征。通过光学显微观察,对金属及SiO_2电介质微粒的电流变体中悬浮微粒的电致成链结构进行分析,采用分形理论讨论了电流变体场致相分离结构特征,并表征了体系分形维数,得出了电场诱导电流变体聚集体的分形维数为1.78,从而证实了场致受限扩散凝聚(EDLA)生长方式对电流变效应的适应性。同时得出,分形维数(D_f)与外加电场性质无关,但随微粒的体积百分数增加而趋近于DLA生长模式的特征值1.8。
     3.在场致纤维理论基础上,考察短距离排斥力和流体动力学阻力,建立了基本模型,并对电流变效应进行二维计算机仿真分析;以库仑定律为理论基础,对电流变效应进行了三维计算机仿真分析;详细讨论了电流变体结构参数及外加电场对电流变体场致成链状况的影响。采用有序参数量化了电流变体微粒电场诱导成链的结构特征。仿真结果表明,电流变体的电致成链过程可分为三个阶
    
     中文摘要
     段,即快速生长阶段,缓慢生长阶段和稳定阶段;在成链过程中,小尺寸的微
     粒链和大尺寸的微粒链分别是流体的结构和其稳定性的重要决定因素。
    4.复合悬浮体的场致相分离特征赋予了电流变体的流变光学特性。本论文首次
     较深入地分析了电流变流体光散射特性并用于制作衍射光栅及三维光学晶体
     材料的可能性;在分析电流变体双折射及双色性的基础上,着重分析了场致
     微结构变化对光透射特性的影响,首次提出将电流变体用于制作电控透光灵;
     巧窗的结论,并设计出其模型。
    5.在评述即流体测试技术的基础上,针对其双折射、旋光及光透射特性,建’
     立廉价、可靠的电流变体光学特性的测试技术和系统,使获得的数据有较好
     的重复性及与相关文献的可比性。
     6.选择、设计并制备了一系列悬浮微粒,配制了多种电流变体,实验测试
    了电流变体的双折射、旋光特性,重点考察了透光可调特性,获得了从红外到可
    见光区域透射率频谱。研究ER i体材料组成、外加电场及添加剂对其光学特性
    的影响,得到一系列有实用价值的实验结果。其中,首次采用基于钛酸四丁酯的
    凝胶一水热法制备了长径比为 4:l的椭球状锐钛矿型 TIOZ微粒。外加直流电场
    E=300V/mm前后,Sic。系ER流体ATGjJ31.66%;Tio。系ER流体太阳自透过率变
    化值OTG 为 37.84%;Tio。包覆石墨系 ER流体凸TG为 44.48%;纺锤形*。系 ER
    流体的 ATG为 45.24“氮代 Tio。系 ER流体的 ATG可达 52.0儿此结果高于普通
    ECSW对光的调控水平(约 40%),在国内外未见报道。
The change of structure and rheologic properties in a dispersing system of solid-liquid under an external electric field is called as electrorheological (ER) effect. Electrorheological fluids( ER fluids) is a composite suspension of polarizable solid particles with a radium of u m dispersed in an unpolarizable continuous medium. ER fluids, as a kind of smart material, possibly be revolutionary in several areas of industry and technology due to their attractive features of rapid(within ms order),reversible and dramatic changes in rheologic properties upon applied electric field of kilo-voltage per millimeter order. In this dissertation, on the basis of researches on the mechanisms of electrorheological effect and the change in microstructure of composite dispersion under the applied electric field. The theoretical analysis to rheo-optic characteristics of an electrorheological fluid under an electric field is first conducted systematically. The light-controlling properties of an electrorheological fluid is ev
    aluated and an intelligent structure of electrorheological fluids-based smart windows (ERFSW) is proposed and designed at the first time. And thus give an developing application of electrorheological fluids in smart windows. Some helpful and new results were obtained as follows.
    1 .Upon brief reviewing current mathematical and physical models and mechanisms for electrorheological effect, the theoretical analysis of the dielectric relaxation of electrorheological fluids and the frequency-inducing characteristics for electrorheological effect are conducted. Based on statistical thermodynamic analysis and osmotic pressure calculating of an electrorheological fluid complex system, phenomenological theory is adopted to evaluated phase reparation characteristics. Thus critical factors corresponding to experimental results are introduced. For the first time, the oriented percolation model is applied to analyzed the critical particle concentration of 0.37 and which is characterized an electrorheological fluid and independent to the external electric field. At Last, expert system design configuration is proposed on variable function.
    2.The characteristics of microstructure variation induced by different space electric fields are investigated experimentally. Electrorheological fluids based on metal and silica particles dispersed in silicone oil respectively are observed by means of an optic microscope. The fractal theory is adopted to characterize phase separation of
    
    
    electrorheological fluids and the fractal dimension (Df) of an electrorheological fluid of 10% particles in silicone oil is determined as 1.78. Thus it is testified that particle chains developing process is due to electric field induced diffusion limited aggregation (EDLA) and the fractal dimension is independent to the strength of electric field but the fractal dimension of particle aggregates of Electrorhelogical fluid is up to 1.8 as characterized by diffusion limited aggregation (DLA) with the increase of particle volume concentration.
    3.On the basis of induced fibrillation theory, a mathematical model is developed to conduct a computer two-dimensional simulation under the consideration of short range repel and hydrokinetic obstruction. Another three-dimensional simulation model is based on the Coulomb law An ordering parameter is used to characterize the formation of particle chains. The results indicated that in the course of particles chains formation, low or high dimensions of the particle chains are decisive factors of the structure and the stability of an electrorheological fluid, respectively.
    4. The rheo-optic characteristics of composite suspension are due to its phase separation induced by an electric field. Light-scattering properties are in-depth analyzed and it is supposed that using an electrorheological fluid to constitute a network in an application to three-dimensional photonic crystal scattering gratings. The electric field induced birefringence and dichroism are accessed and dependence of change in mi
引文
[1] Jordan T.C., Shaw M.T., Electrorheology, IEEE Trans. Electr.Insul. 1989,24:849-878.
    [2] Halsey T.C., Electrorheological fluids, Science. 1992,258: 761-766.
    [3] Davis L.C., J.M.Ginder, in: K.O.Havelka, F.E.Filisco (Eds), Progress in Electrorheology, Plenum, New York, 1995,. 107-114
    [4] Choi Ung-su. Electrorheological properties of chitosan suspension, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999,157:193-202
    [5] Block H., Kelly J. P.. Electrorheology. J Phys D, 1988,21:1661-77
    [6] Olmsted PD. Two-state shear diagrams for complex fluids in shear flow. Europhys Lett 1999,48:335-339.
    [7] John C.H. and Thomas H. V.S.. Response times of electrorheological fluids. J. Appl. Phys., 1991,70(3) : 1207-1211
    [8] Katsikopoulos P.V., Zukoski C.F., in: R.Tao,G.D.Roy(Eds.),Proceedings the 4th International Conference on Electrorheological Fluids: Electrorheological Fluids, World Scientific, Singapore, 1994,251.
    [9] Davis L.C., Ginder J.M., in: K.O.Havelka, F.E.Filisco (eds), Progress in Electrorheology, Plenum, New York, 1995,. 107-114
    [10] Zukoski C.F., Electrorheological(ER) Fluids, A Research Needs Assessment, Final Report, Report No. DE-AC02-91ER30172, U.S.Depaetment of Energy, Government Printing Office: Washington DC, 1993
    [11] Winslow W. M.. Method and means for translating electrical impulses into mechanical force. U.S. Patent 2417850, 1947
    [12] Winslow W. M..Induced vibration of suspension. J. Appl. Phys., 1949,20: 1137-1140
    [13] Bretherton F.P., The motion of rigid particles in a shear flow at low Reynolds number, J. Fluid Mech. 1962,14:284-304
    [14] Klass D.L., Martinek T.W., Electroviscous fluids. I .Rheological properties, J. Appl. Phys. 1967,38:67-74.
    [15] Serge G., Silberberg A., Behavior macroscopic rigid spheres in Poiseuille flow, Part 2, Experimental results and interpretation, J. Fluid Mech.,1962,14:136-157.
    [16] Sprecher A.F., Carlson J.D., Conrad H., Electrorheology at small strains and strain rates suspensions silica particles in silicone oil, Mater.Sci.Eng., 1989,95:187-197.
    [17] Marshall L., Zukoski F., Goodwin J.W., Effect electric field on the rheology of non-aqueous concentrated suspension, J. Chem.soc.Faraday Trans. 1989,85:2785-2795
    [18] Stevens N.G., Sproston J.L.,Stanway R., On the mechanical properties of electro-rheological fluids. J. Appl. Mech., 1987,54: 456-458
    [19] Stangroom J. E. Electrorheological fluids. Phys. Technol., 1983,14:290-296
    [20] Conway, B.E. and Dobry-Duclaux, A., in "Rheology. Theory and applications"Vol.3. Academic Press, New York, 1960.
    [21] Hernandez F.J.R., Reina E. R., Merino A.I.G., The influence of a dynamic stern layer on the primary electroviscous effect, 1998, 206:334-337
    [22] Hunter.R.J., in "Zeta Potential in colloid science." Academic Press, London, 1981.
    
    
    [23] Deinega Yu, F. and Vindogradov G.V., Electric fields in the rheology of disperse systems, Rheol. Acta, 1984,23:636-51
    [24] Rubio H. F.J., Gomez M. A.I., Ruiz R. E., electroviscous effect in dilute suspensions of alumina, J.Colloid Interface Sci. 2000,222:103-106
    [25] Klass, D.L., Martinek, T. W. Electroviscous fluids. Ⅱ. Electrical Properties. J. Appl. Phys., 1967,38,1:75-80.
    [26] Uejima H.. Dielectric mechanism and rheological properties of electro-fluids.JP. J. Appl.Phys., 1972, 11(3) :319-325
    [27] Block H. and J. P. Kelly. U.K.Patent, 2170510A, 1985
    [28] Makatun, F. F. Z..Response of electrorheological fluids-filled laminate composites to forced vibration.J.Coll.surf. Sci., 1983,34(3) : 342-350
    [29] Gamota D.R.,Filisko F.E., Dynamic mechanical studies electrorheological materials: moderate frequencies. J. Rheol.,1991,35:399-425
    [30] Wen, W. J., Lu K.Q. Frequency dependence of metal-particle/insulating oil electrorheological fluids.Appl. Phys.Lett., 1995,67(15) :2147-2149
    [31] Davis L.C..The metal-particle/insulating oil system: An ideal electrorhrological fluid. J. Appl. Phys., 1993,73:680-683
    [32] Shigeru F., Keishi N.. Effect of electric field on the rheology of ferroelectric liquid crystal MORA-8. J. Molecular Liquids, 2001,90:131-137
    [33] Block H., Kelly J.P. Puerdo-spectral analysis of the stability of pressure-driven flow of a Giesekus fluid, J.Non-Newtonian Fluid-Mech. 1987,26:135-142.
    [34] Jordan T. C., Shaw M.T. and McLeish T-C.B. Viscoelastic response of electrorheological fluids Ⅱ: Field strength and strain dependence. J Rheol 1992;36:441-63.
    [35] Gast A. P., Zukoski J.N.. Influence of the particles of the particle configuration on electrorheological effect. J.Electrost.,1997, 40/41: 573-578
    [36] Stangroom J.E., Harness I., U.K.Patent 1570234,1977
    [37] Adriani P.M., Gast A. P. Effect of particle size distribution on the rheology of dispersed system. Phys. Fluids, 1988, 31(10) :2757-2763
    [38] Ota M., Miyamoto, T.. Optimum particle size distribution of an electrorheological fluid. J. Appl. Phys., 1994, 76(9) :5528-5531
    [39] See H., Tamura H., Doi M.. The role of water capillary forces in electro-rheological fluids. J.Phys. D: Appl. Phys., 1993,26:746-752
    [40] Tamura H., See H, Doi M., Electrorheology at small strains and strain rates of suspensions of silica particles in silicone oil. J. Phys. D: Appl. Phys., 1993,26:1181-1 186
    [41] Akatsuka T., Yoshimura R., Toyama J., A preliminary parametric study of electrorheological dampers. Nihon Reoroji Gakkaishi, 1992,2092: 91-95
    [42] Duan X., Luo W., Wu W.. New theory for improving performance of electrorheological fluids by additives. J. Phys. D: Appl.Phys., 2000,33( 23) : 3102-106
    [43] Kim Young Dae. A Surfactant Bridge Model for the Nonlinear Electrorheological Effects of Surfactant-Activated ER Suspensions. J. colloid interf. sci., 2001,236(2) :225-232
    [44] Kim Y. D., Klingenberg, D. J.. Two Roles of Nonionic Surfactants on the Electrorheological Response. J. Colloid Interf. Sci., 1996,183(2) :568-578
    [45] Chin B. D., Park O. O..Dispersion Stability and Electrorheological Properties
    
    of Polyaniline Particle Suspensions Stabilized by Poly(vinyl methyl ether). J. colloid interf. Sci., 2001,234(2) : 344-350
    [46] Pavlinek V., Saha P., Quadrat O.,et al.. Rheological Behavior of Poly(methylmethacrylate) Dispersions Stabilized by a Diblock Copolymer. 2. Positive and Negative Electrorheological Effect. Langmuir, 2000,16(3) : 1447-1449
    [47] Deinega Y. F., Vindogradov G.V.Electric fields in the rheology of disperse systems. Rheol. Acta, 1984,23:636-651
    [48] Marshall L., Zukoski C.F., Goodwin J.W.. Effects of electric fields on the rheology of non-aqueous concentrated suspensions. J.Chem.Soc.,Farad. Trans., 1989, 185: 2785-2795
    [49] Wen W. J., Ma H. R., Tam W. Y., et al.. Frequency-induced structure variation in electro-rheological fluids. Appl. Phys. Lett., 2000, 77923) :3819-3822
    [50] The effect of a time-dependent electric field on the dynamic performance of an electro-rheological fluid in squeeze. J.Phys. D: Appl. Phys., 2000,33(22) : 2995-3003
    [51] Stevens N.G., Sproston J.L., Stanway R.. Finite element formulation of a sandwich beam with embedded electro-rheological fluids. J.Electrostat. 1985,17:181-190
    [52] Chen T J, Zitter R N, Tao R. . Laser diffraction determination of the crystalline structure of an electrorheological fluid. Phys. Rev. Lett., 1992,68:2555-25558
    [53] Halsey, T. C. .Martin, J. E.. Electrorheological Fluids. Scientific American, 1993, 269(4) : 58-60
    [54] Halsey T.C., Toor W.. Structure of electrorheological fluids. Phys. Rev. Lett., 1990, 65: 2820-2823
    [55] Klingenberg D.J., Zukoski C.F.. Studies on the steady-shear behavior of electrorheological suspensions. Langmuir, 1990,6:15-24
    [56] Klingenberg D. J. , Zukoski C. F.,Hill, J. C.. Kinetics of structure formation in electrorheological suspensions.J.Appl. Phys., 1993,73(9) :4644-4647
    [57] Tao R., Sun J.M.. Electric field induced solidification theory of electro-rheology fluids. Phys. Rev. Lett., 1991,67:398-400
    [58] Davis L. C. Polarization forces and conductivity effects in electrorheological fluids. J. Appl. Phys., 1992,72(4) : 1334
    [59] Martin J. E., Odinek J.. Light scattering studies of the electrorheological transition. J.Non-crystal1. Solids, 1994,172/174(2) : 1135-1138
    [60] Shulman Z. P., Korobko E. V., Yanovski Y. G.. Effects of electric fields on the rheology of non-aqueous concentrated suspensions. J. Non-Newtonian Fluid Mech., 1989, 33:181-189
    [61] Block H., Kelly J.P., Qin A., et al.. Materials and mechanisms in electrorheology. Langmuir, 1990,6:6-14
    [62] Deinega Y F.Vinogradov G V. Electrorheological properties of silica suspensions. Rheol. Acta, 1984,23: 636-641
    [63] Conrad H, Chen Y. Electrorheological properties of semiconducting polymer-based suspensions.Polymer Preprints, 1994,35(2) : 317-324
    [64] Conrad H, Sprecher A F. Characteristics and mechanisms of electrorheological fluids. J. Stat. Phys., 1991,64(5/6) : 1073-91
    [65] Conrad H, Sprecher A F, Choi Y, et al.. The temperature dependence of the electrical properties and strength of electrorheological fluids. J. Rheol., 1991,35(7) : 1393-1410
    
    
    [66] Stanway R., Sproston J.L., Elwahed A.K..AppIications of electrorheological fluids in vibration control-A survey, Smart Materials and Structures, 1996(5) :464-482
    [67] Cheng D.C.H., Richmond R.A.. Some observations on the rheological behavior dense suspensions, Rheol.Acta, 1978,17:446-453.
    [68] Andhi M.V.,Thompson B.S., Choi S.B., A new generation innovative ultra-advanced intelligent composite materials featuring electro-rheological fluids: an experimental investgatiion. J. Composite Mater., 1989,23:1232-55
    [69] Tao.R. and Q.Jiang 1994, electrorheological fluid mechanisms ,properties,technology and applications.R.Tao world scientific.Singapore
    [70] Bullough WA.Liquid state force and displacement divices.Mechatronics 1991,1:1-10
    [71] Petek NK.An electronically controlled shock absorber using electro-rheological fluid. SAE Technical Paper Series 920275 1992,Warrendale, PA, U.S.A
    [72] Bullough W A. Application of Electrorheological fluids for a third machine age. Adv. Mater. Opt. Electronics., 1992, 1:159-163
    [73] Carlson D, Duclos TG. ER fluids, clutches and brakes-fluid property and mechanical considerations. Proc. 2nd Intl Conf on ER Fluids 1990, aleigh,NC,U.S.A., 353-367.
    [74] Bullough WA, Johnson AR, Hosseini-Sianaki A, et al.. The electro-rheological clutch: design, performance, characteristics and operation. Proc Instn. Mech. Engrs., J. systems and Control Engr., 1993,207:87-95
    [75] Whittle M., Atkin R.J. and Bullough W.A., Fluid dynamic limitations on the performance an electrorheological clutch. J.Non-Newtonian Fluid.Mech., 1995,57:61-81
    [76] Eetel N K, Romstadt D L, Lizell M B, et al.. Demonstration of an automotive semi-active suspension using electrorheological fluid. SAE Technical Paper Series 950586,1995
    [77] Ondoh Y., Yokota S.A., Control valve by making use of an electro-rheological fluid. In: Proceedings of the 2nd Asian Control Conference, Seoul, Korea, 1997: 307-310
    [78] Stanway R., Sproston J.L., Elwahed A.K.. Applications of electrorheological fluids in vibration control-A survey, Smart Materials and Structures, 1996(5) :464-482
    [79] Taylor P.M., Hosseini-S A., Varley C.J.. Surface feedback for virtual environment systems using eiectrorheological fluids, Int. J. Modern Phys. B, 1996,10(23,24) : 3011-3018
    [80] Choi.Y, Sprecher A.F.,Conrad H..Response electrorheological fluids-filled laminate composites to forced vibration, J. Intell. Mater Systems Structures, 1992,3:17-29
    [81] Kohl M, Durr S, Just E, et al.. Development of electrorheological microactuators. In: Borgmann H, editor.Proceedings of the ACTUATOR 98, Bremen,Germany,1998:430-433
    [82] Nakano M. A novel semi-active control automotive suspension using an electrorheological shock absorber. Proceedings the 5th International Conference on ER Fluids, MR Suspensions and Associated Technology 1996,Sheffield,U.K.
    [83] Choi S H, Choi YT,Choi S B, et al..Performance analysis an engine mount featuring ER Fluids and piezoactuators.International J. Modern Phys. B 1996, 10 (23&24) 3143-3157.
    [84] Hartsock D. L., Novak R. F., Chaundy G. J. Electrorheological fluid requirements for automotive devices. J. Rheol., 1991, 35: 1305-1326
    [85] Gebhard U.,Gunther R., Just E., Ruther P., Fluidic driven linear motor fabricated by the LIGA process. In: Proceedings the MST 96,Potsdam,Germany, 1996:609-614
    [86] Choi S B.Cheong C C.Kim G W.Feedback control tension in a moving tape using an ER
    
    brake actuator. Mechatronics ,1997,7:53-66
    [87] Choi S B, Park Y K,Cheong C C. Active vibration control of intelligent composite laminate structures incorporating an electro-rheological fluid. J. Intell. Mater. Syst.Struct., 1996,7(4) : 411-419
    [88] Y.Akagami, K. Asari, ER fluid finishing using rotating electrode, J. Intell. Mater. System Struct., 1999, 10:753-756
    [89] Michael D. Symans, M. Semi-active control systems for seismic protection structures: a state-the-art review. Engineering Structures, 1999:21:469-487.
    [90] Taylor P.M., Hosseini-S A., Varley C.J.. An experimental investigation into the application of electrorheological fluids in tactile display systems, in: Proc. 5th International Conf. On Adaptive Surfaces, Sendai, Japan, 1994:407-19
    [91] Randall C. A., Miller D. V., Adair J. H.et al..Processing of electroceramic-polymer composites using the electrorheological effect. J. Mater. Res. 1993,8(4) : 899-904
    [92] Park O.O., Electrohydrodynamics of rigid macromolecules with permanent and induced dipoled moments. J. Rheology, 1988,32(5) : 511-531
    [93] Adriani P. M., Gast A. P.. Priodictions of birefringence and dichroism of hard sphere suspensions in combined electric and shear field. J.Chem. Phys., 1989, 91(10) :6282-6289
    [94] Ginder J., Elie D.. Dielectric and optical probes of electrorheological fluid structure. Presentation to Electrorheological Fluids Conference, Carbondale, Illinois, Oct. 15-16, 1991
    [95] Tada H., Saito Y., Hirata M., et al.. A novel switchable glazing formed by electrically induced chains of suspensions. J. Appl. Phys., 1993, 73(2) : 489-493.
    [96] Lampert C.M. and Granqvist G.. Eds.Large-area homogenics: Materials and devices for transmittance control. Bellingham, WA: Opt. Engr. Press., 1990: 22-50
    [97] Tao R. and Jiang Q. Electrorheological fluid mechanisms, properties, technology and applications. R.Tao, eds, world scientific .Singapore, 1994
    [98] Tamura M, See H.. Layered model of electrorheological fluid under flow, Rheol. Acta, 1996, 35:233-241.
    [99] Parthasarathy M., Klingenberg D.J., Electrorheology: mechanisms and models, Mater.Sci. Eng., 1996, R17(2) : 57-103
    [100] Adriani P.M. and Gast A.P.. A microscopic model of electrorheology. Phys. Fluids, 1988, 31(10) : 2757-2768
    [101] Tang X, Wu C, Conrad H. On the conductivity model for the electrorheological effect. J. Rheol. 1995,39(5) : 1059-1073
    [102] Chen Y, Sprecher A. R, Conrad H..Electrostatic particle-particle interactions in electrorheological fluids. J. Appl.Phys., 1991,70(11) :6796-6803
    [103] Tao R. Order parameters and phase transitions in electrorheological fluids.Intl. J. Modern Phys.. B, 1992, 6(15-16) : 2635-2643
    [104] Tao, R. ; Jiang, Q. Simulation of Solid Structure Formation in an Electrorheological Fluid. Intl. J. Modern Phys. B, 1994,8(20/21) : 2721-2730
    [105] Davis L. C. Polarization forces and conductivity effects in electrorheological fluids. J Appl. Phys., 1992,72(4) : 1334-1342
    [106] Atten, P. ; Foulc, J.-N. ; Felici, N. A Conduction Model of the Electrorheological Effect. Intl. J. Modern Phys. B, 1994,8(20/21) :2731-2740
    
    
    [107] Wu C. W., Conrad, H.. Dielectric and conduction effects in ohmic electrorheological fluids J. Phys. D, 1997,30(18):2634~2639
    [108] 刘湘辰,黄宜坚,王安民,等,电流变效应的功能原理.机床与液压,1997,3:38~41
    [109] Tanaka K, Akiyama R, Takada K. Electrorheological Effect of Anisotropic Solution of Poly(g-benzyl-L-glutamate) Induced by Stepwise Electric Fields. J. Appl. Polym.Sci. 1997, 66(6): 1079~1084
    [110] 马红孺,温维佳,谭水炎等.电介质电流变液体:基态、频率特性、水的作用和物理上限.见:陆坤权,邹宪武主编.液态物理进展(Ⅰ),武汉;武汉大学出版社,1997.215~224
    [111] Lu K. Q., Wen W. J. Frequency dependence of electrorheological fluids in an ac field. Phys. Rev. E, 1995,52:6329~6332
    [112] Eckart W.. Phenomenological Modeling of Electrorheological Fluids with an Extended Casson-Model. Continuum mechanics and thermodynamics. 2000,12(5): 341~345
    [113] Powell J A. Phenomenological Interpretation of Energy Loss and Storage Mechanisms in Electrorheological Fluids. J. Intell. Mater. Syst. Struct., 1998,9(8):679~689
    [114] 刘柏谦,吕太编著.逾渗理论应用导论,北京:科学出版社,1997.85~87
    [115] 许元泽著,吴大成主编.高分子结构流变学,成都:四川教育出版社,1985
    [116] Jullien R, Olivi T N, Hasmy A, et al.. Scalling theory and numerical simulating of aerogel sintering. J Non-Cryst Solids, 1995,188:1~10
    [117] Vicsek T. Fractal growth phenomena. Sigapore: World Scientific, 1989
    [118] Pastor S. R., Rubi J.M.. Particle cluster aggregation with dipolar interaction. Phys. Rev. E, 1995, 51:5994~6003
    [119] Davis S. W., McCausland W, McGahagan H. C., et al.. Cluster-based monte carlo simulation of ferrofluids. Phys. Rev. E, 1999,59:2424~2427
    [120] Barabasi A. L., Stanley H. E., Fractal concepts in surface growth, Cambridge University Press, 1995
    [121] Bonnecaze R. T., Brady J. F.. Dynamic simulation of an electrorheological fluid. J. Chem. Phys., 1992,96(3):2183~2202
    [122] Takimoto J. I., Riha P, Kimura H, et al.. Stochastic aspects of bridging bonds of induced structure of electro-theological fluids in shear flow. Intl. J. Modern Phys. B, 1999,13(14):1798~1805
    [123] 李洪,谭志杰,邹宪武等.外场导致的分形体的结构及偶分布函数.武汉大学学报(自然科学版),2000,46(3);353~355
    [124] See H., Doi M..Aggregation kinetics in electro-rheological fluids. JP. J. Phys. Soc., 1991, 60(8):2778~2782
    [125] 曾向阳,黄宜坚,刘湘辰等.电流变过程地计算机仿真.首次全国电流变学术会议论文集,1995,156~163
    [126] 张璐,周铁英,陈军.电流变体中超声横波传播特性.清华大学学报(自然科学版),1996,36(12):35~39
    [127] 赵晓鹏,范吉军,高秀敏等.电流变液的微波透射调控行为.物理学报,2001,50(7):1302~1207
    [128] Zhao X. P., Luo C. R., Zhang Z. D..Optical characteristics of electrorheological and electromagnetorheological fluids. Opt. Eng., 1998, 37(5):1589~1592
    [129] Wu R, Shaw T, Weiss R.A.. Rheo-optical studies of stress-induced phase change in blends exhibiting UCST: polystyrene and polyisobutylene. J. Rheol., 1992, 36(8): 1605~1623
    
    
    [130] Stomenova M., Okubo T.. Electro-optic effect in colloidal crystals of spherical silica particles. J. Colloid lnterf. Sci., 1995, 176:267~271
    [131] Shiro M, Yasuyuki S, Seizou S, etal.. Light processing and optical devices using nano-sized droplets of liquid crystal dispersed in polymer. J. Intell. Maters. Systems Structures, 1999,10(3): 489~492
    [132] Barone J. R., Wang S.Q. Rheo-optical observations of sharkskin formation in slit-die extrusion. J. Rheol., 2001,45(1):49~60
    [133] Zavtrak S. T.. Liquid dielectric with dispersed psrticles as an active medium for an "acoustic" laser. J. Intell. Mater. Syst. Strut., 1996, 7:503~506
    [134] Wu J. Y., Shen L. K., Zhou L. W.. Nonlinear optical study of ER fluids. J. Intell. Mater. Syst. Strut., 1996, 7:565~569
    [135] Tao R..Apply the electrorheological effect to produce three-dimensional photonic crystals for laser application. Intl. J. Moden Phys., 1999, 13(14/15/16): 2189~2196
    [136] Hase M., Egashira M., Shinya N.. Development of novel method to create three-dimensional arrangements of particles using dielectrophoresis in artificially nonuniform electric field. J. Intell. Mater. Syst. Strut., 1999, 10:508~514
    [137] Onuki A, Doi M. Flow birefringence and dichroism of polymers. I.General theory and application to dilute case. J. Chem. Phys., 1986,85(2):1190~1197
    [138] Otsubo Y., Edamura K., Akashi K..Optical properties of nonaqueous suspensions in electric fields. J.Collod Interf. Sci., 1996,177:250~256
    [139] Otsubo Y. effect of electrode Pattern on the column structure and yield stress of electrorheological fluids. J.Coll. Interf. Sci. 1997,190:466~471
    [140] Carlson J. D., Bares J. E.. Optically transparent electrorheological fluids. U.S.Patent 5075021,1991
    [141] 史大椿主编.光学测量与应用光学测量.北京:机械工业出版社,1995.
    [142] Men S. Q., Xu X. Y., Lan Y. C., et al.. The electrorheological interaction between coated particles in electrorheological fluids. Intl. J. Modern Phys. B, 2001, 15(6&7):788~794
    [143] 郭洪霞,麦振洪.分散相颗粒几何因素对电流变液体反应时间的影响.物理学报,1996,45(1):73~79
    [144] 何沛,吴峰,陈祖耀等.电流变液中悬浮粒子形状对其性质的影响.中国科学技术大学学报,2000,30(2):213~217
    [145] sAnderson M.A., Rubin A.J., Adsorption of inorganics at solid-liquid interfaces, Michigan: Ann Arbor Science, 1981:183~185
    [146] 吴孟强.腈纶皂化的研究及应用.四川大学硕士论文,1995
    [147] Seyferth D, Mignami G. Preparation of titanium nitride and titanium carbonitride by procermic polymer route. J. Mater. Sci. Lett., 1988(7): 481~488.
    [148] Kamiya. K, Yo K. T, Bessho M.. Nitridation of TiO_2 fibers Prepared by the Solgel method. J. Mater. Sci,1987, 22:937~941

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700