聚联苯撑乙烯及聚喹吖啶酮类电流变材料的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电流变流体是一种新颖的智能材料,具有重要的学术研究价值和广泛的应用前景,是功能材料最活跃的研究领域之一。本论文对电流变效应的特点、历史起源及其理论模型和应用进行了文献综述。从分子设计的原理出发,合成了两类电流变流体分散相材料及两种分散介质材料。考察了各材料的合成及电流变效应; 探讨了这些材料组成的电流变流体体系中,材料的相关性能与其电流变效应的关系。
    考察了2-甲氧基-5-辛氧基-1,4-双氯甲基苯及4,4’-双氯甲基-1,1’-联苯这两个聚合物前体中所涉及的芳烃的氯甲基化反应; 同时,对4,4’-双甲酰基-1,1’-联苯及4,4’-二氰甲基-1,1’-联苯的合成条件进行了优化。采用Gilch 方法,经4,4’-双氯甲基-1,1’-联苯的自缩合反应,合成了PBPV; 采用Wittig反应,以2-甲氧基-5-辛氧基-1,4-双氯甲基苯及4,4’-双甲酰基-1,1’-联苯等为原料,“一锅”法合成了PMOBPV; 采用Knoevenagel 反应,以4,4’-双甲酰基-1,1’-联苯及4,4’-二氰甲基-1,1’-联苯等为原料合成了CNPBPV。对三种联苯撑乙烯类聚合物的合成过程进行了优化,聚合物的分子结构、热性质、粒子形貌及介电性质等均得到了测试表征。
    分别以对苯二胺、间苯二胺和2,5-二氧环己二甲酸二甲酯等为原料,经缩合、氧化、环化等反应,合成了平面梯形聚合物聚喹吖-[2,3-b]-啶-7,14[5,12] -二酮(PTQA)及聚喹吖-[2,3-b]-啶-12,14[5,7]-二酮(PCQA)。对两种喹吖啶酮聚合物的合成过程进行了探讨,优化了合成条件; 聚合物的分子结构、热性质、粒子形貌及介电性质等均得到了测试表征。
    分别以氯代甲苯和溴苯、氯苄等为原料,经溴化反应及F-C 反应合成了两种电流变流体的分散介质材料溴化氯代甲苯(BCT)和对溴二苯甲烷(BDPM)。两种有机液体的分子结构及相关物化性质均得到了测试表征。
    系统研究了PBPV、PMOBPV及CNPBPV三种联苯撑乙烯类聚合物分散在硅油中形成的电流变流体的稳定性及流变性质。结果表明,由于三种共轭聚合物具有适当的电导率和介电常数,因此显示出较好的电流变效应。粒子浓度为30wt%的PBPV,PMOBPV及CNPBPV三种聚合物的硅油体系室温下的屈服应力分别达802.3 Pa ( 2kV/mm ) 、1301.4 Pa (3kV/mm) 及1827Pa(3kV/mm); 电流密度分别为100μA/cm~2(2kV/mm)、28.7μA/cm~2(3kV/mm)及34μA/cm~2(3kV/mm); 体系的屈服应力随电场强度增强而增大,符合:τ_y ∝E~ n ,指数n分别为1.88,1.9,及1.58; 各聚合物悬浮体
Electrorheological fluid (ERF) is a novel type of smart materials, which is of remarkable academic interest and extensive potential application. It has become one of the most active research fields in functional materials. In this dissertation, the nature of the ERF and its theoretical model as well as its development and application has been extensively reviewed. Two types of novel conjugated polymers and two dispersing-medium materials were designed and synthesized according to the molecular design principles. The ER properties of these novel smart materials have been intensively studied. The relationship between the ER effect of these novel materials and their related properties was discussed.
    In the synthesis of the conjugated polymers precursors, 2-methoxyl-5-octyloxy-1,4-dichloromethylbenzene and 4,4’-bischloromethyl-1,1’-biphenyl, the reaction conditions of chloromethylation reaction were thoroughly investigated. Meanwhile, 4,4’-diformyl-1,1’-biphenyl and 4,4’-dicyanomethyl-1,1’-biphenyl were synthesized and the reaction conditions were optimized. The conjugated polymer, polybiphenylenevinylene (PBPV) was synthesized based on the self-condensation reaction of 4,4’-bischloromethyl-1,1’–biphenyl via Gilch method; Poly(2-methoxyl-5-octyloxylphenylene-1,4-vinylene-biphenylene-4,4’-vinylene) (PMOBPV) was synthesized based on the “one-pot method ”of 2-methoxyl-5-octyloxy-1,4-dichloromethylbenzene with 4,4’-diformyl-1,1’-biphenyl via Wittig reaction; Polybiphenylene-4,4’-vinylene-1-cyano (CNPBPV) was synthesized based on the Knoevenagel reaction of 4,4’-diformyl-1,1’-biphenyl with 4,4’-dicyanomethyl-1,1’-biphenyl. All polymer synthetic conditions were optimized; the molecular structure, thermal properties, morphology and dielectric properties of these resulting polymeric particles were characterized.
    Plane ladder-like polymers, polyquin (2,3-b) acridine-7,14 (5,12) dione (PTQA) or polyquin (2,3-b) acridine-12,14 (5,7) dione (PCQA) was synthesized based on the condensation reaction of 1,4-phenylenediamine or 1,3-phenylenediamine with dimethyl 2,5-dioxocyclohexane-1,4-dicarboxylate, subsequently cyclization and dehydrogenation. The reaction conditions were thoroughly investigated. The molecular structure, thermal properties,
    morphology and dielectric properties of the resulting polymers were characterized. Bromochlorotoluene (BCT) was synthesized based on the bromonization reaction of chlorotoluene with Br2; Bromodiphenylmethane (BDPM) was synthesized based on the Friedel-Crafts reaction of bromobenzene with chlorobenzyl. The molecular structure and physical properties related to the ER effect were characterized. The stability and rheological properties of the PBPV, PMOBPV or CNPBPV suspensions in silicon oil were intensively investigated. The results show that, due to proper conductivity and dielectric properties of the dispersed materials, these polymeric suspensions can be polarized to form fabricated chains under electric field, which leads to good ER activity with low current density: The yield stress reaches up to 802.3 Pa (2kV/mm), 1354.2 Pa (3kV/mm) and 1919.2Pa (3kV/mm) under the current density of only 100 μA/cm2 (2kV/mm), 28.7 μA/cm2 (3kV/mm)and 34 μA/cm2(3kV/mm) respectively for 30 wt.% polymer-based ER fluids at room temperature; the yield stress of these suspensions increases with the electric field strength, and shows the relationship as τy ∝E n, where n equals to 1.88,1.9,1.58 respectively for PBPV, PMOBPV and CNPBPV-based systems; The yield stress linearly increases with the particle concentration, and has a maximum as increasing the employed temperature. The apparent viscosity of the ER fluids increases with the electric field strength, while decreases with the shear rate, i.e., shear-thinning effect. The results also show that the difference in molecule structure of the dispersed materials leads to the difference in ER activity. The conductivity of the dispersed materials has only effect on the current density of the ER Fluid. Moreover, it is the difference in dielectric constant of the dispersed-phase materials that contributes to the difference in yield stress of the ER fluids. The rheological properties of the suspensions of PTQA and PCQA in BDPM were also studied. The results show that, these systems exhibit excellent ER activity under electric field. Under 3kV/mm electric field, the yield stress of 30 wt% PTQA and PCQA suspensions reaches up to 6.0 and 4.0 kPa under the current density of only 21.7 and 14.3 μA/cm2 respectively at room temperature. The yield stress linearly increases with squared electric field strength and the particle concentration, has a maximum as increasing the employed temperature.
    The apparent viscosity of the ER fluids increases with the electric field strength, while decreases with the shear rate, i.e., shear-thinning effect. The excellent ER activity and the difference in these two systems are attributed to the novel molecular structure as well as the difference in the molecular regularity. The influence of the dispersing phase on the stability and rheological properties of PTQA-base suspension was investigated. The results show that, the sedimentation rate of the ERF depends on the density difference between the dispersing particles and the medium, as well as the viscosity of the medium. The yield stress of the ERF is proportional to the dielectric constant of the medium which is in well agreement with the dielectric loss model.
引文
[1] 姚康德, 成国祥. 智能材料[M]. 北京: 化学工业出版社,2002: 1.
    [2] 王国建, 刘琳. 特种与功能高分子[M]. 北京: 中国石化出版社,2004: 10.
    [3] 吴孟强. 电流变效应及流变光学特性的研究[D]. 成都: 电子科技大学, 2002.
    [4] T. C. Halsey. Electrorheological fluids[J]. Science, 1992, 258: 761-766.
    [5] F. E. Filisko. Progress in electrorheology[M]. K. O. Hovalka, F. E. Filisko (eds). Plenum Press, New York, 1995. 104-106.
    [6] T. C. Halsey, J. E. Martin, D. Adolf. Rheology of electro-rheological Fluids[J]. Phys. Rev. Lett., 1992, 68: 1522.
    [7] J. M. Sun, R.Tao. Shear flow of one-component polarization fluid in a strong electric field[J]. Phys. Rev. E, 1996, 53: 3732.
    [8] 何天白, 胡汉杰. 跨世纪的高分子科学-功能高分子与新技术[M]. 北京:化学工业出版社,2001:
    [9] T. C. Jordan, M. T. Shaw. Electrorheology[J]. IEEE Trans. Electr. Insul.. 1989, 24: 849-878
    [10] P. D. Olmsted. Two-state shear diagrams for complex fluids in shear flow[J]. Europhys. Lett.. 1999, 48: 335-339.
    [11] Z. Cheng, W. B. Russel, P. M. Chaikin. Controlled growth of hard-sphere colloidal crystals[J]. Nature, 1999 401 (6756): 893-895.
    [12] P. N. Puse, W. Vanmegen. Phase-behavior of concentrated suspensions of nearly hard colloidal spheres[J]. Nature, 1986, 320 (6060): 340-342.
    [13] S. Cutillas, A. Meunier, E. Lemaire, et al. Phase separation and turbidity of electrorheological fluids[J]. Int. J. Mod. Phys. B, 1996, 10 (23-24): 3093-3101.
    [14] 魏宸官. 电流变技术-机理·材料·工程应用[M]. 北京: 北航出版社, 2003: 21-22.
    [15] D. L. Hartsock, R. F. Novak, G. J. Chaundy. Electrorheological fluid requirements for automotive devices[J]. J. Rheol., 1991, 35: 1305-1326.
    [16] S. B. Choi, Y. K. Park, C. C. Cheong. Active vibration control of intelligent composite laminate structures incorporating an electro-rheological fluid[J]. J. Intel. Mater. Syst. Struct., 1996, 7: 411-419.
    [17] D. L. Hartsock, R. F. Novak, G. J. Chaundy. ER fluid requirements for automotives[J]. J. Rheol., 1991, 35(7): 1305-1326.
    [18] K. Yutaka, Y. Shinichi. Control valve by making use of an electro-rheological fluid [J]. Trans. Jap. Soc. Mech. Eng. Part C, 1997, 63 (608): 1192-1199.
    [19] S. B.Choi, C. C. Cheong, J. M. Jung, et al. Position control of an ER valve-cylinder system via neural network controller[J]. Mechatronics, 1997, 7 (1) : 37-52.
    [20] M. Whittle, R. J. Atkin, W. A. Bullough. Dynamics of an electrorheological valve[J]. Int. J. Mod. Phys. B, 1996, 10 (23-24) : 2933-2950.
    [21] S. Morishita, Y. K. An, On dynamic characteristics of ER fluid squeeze film damper[J]. JSME. Int. J. C-MECH. SY., 1996, 39 (4): 702-707.
    [22] C. Wolff. Closed loop controlled ER-actuator[J]. Int. J. Mod. Phys. B, 1996, 10 (23-24): 2867-2876.
    [23] J. L. Nikolajsen, M. S. Huque. An electro-viscous damper for rotor application[J]. Trans. ASME. J. of Vib. Acoust., 1990, 112: 440-443.
    [24] 孟光, 殷达章. 电流变阻尼器用于转子振动控制的实验研究[J]. 航空动力学报. 1996, 11(3): 265-268
    [25] 赵晓鹏, 唐宏. 电流变液与压电陶瓷复合的自适应阻尼器[P]. CN: 2318453, 1999. 5.
    [26] Y. Akagami, K. Asari. ER fluid finishing using rotating electrode[J]. J. Intel. Mater. Syst. Struct., 1999, 10: 753–756.
    [27] D. Michael, M. Symans. Semi-active control systems for seismic protection structures: a state-the-art review[J]. Eng. Struct., 1999, 21: 469-487.
    [28] L. Yanju, L. Jinsong, W. Dianfu. Adaptive optical properties of ER fluid incorporating composite particles[J]. Opt. Laser Eng., 2000, 34 (1) : 47-53.
    [29] X. P. Zhao, C. R. Luo, Z. D Zhang. Optical characteristics of electrorheological and electromagnetorheological fluids[J]. Opt. Eng., 1998, 37 (5) : 1589-1592.
    [30] M. J. Espin, A. V. Delgado, J. D. G. Durán. Optical properties of dilute hematite/silicone oil suspensions under low electric fields[J]. J. Colloid Interf. Sci., 2005, 287 (1) : 351-359.
    [31] Q. Zhao, X. P. Zhao, Tunable "optical activity" in electrorheological fluids[J]. Phys. Lett., A, 2005, 334 (5-6) : 376-381.
    [32] http://www. bhkaec. org. hk/confere/is_02. htm
    [33] X. Wen, Ink jet printing apparatus and method using timing control of electronic waveforms for variable gray scale printing without artifacts[P] US: 6102513, 2000, 8.
    [34] K. Nakatsuka, T. Atarashi. Multilayer coated powder[P]. EP: 0913432, 1999, 05.
    [35] R. Tao. Apply the electrorheological effect to produce three-dimensional photonic crystals for laser applications[J]. Int. J. Mod. Phys. B, 1999, 13 (14-16): 2189-2196.
    [36] P. Taylor, D. Poller, A. Sianaki, et al. Advances in an electrorheological fluid based tactile array[J]. Displays, 1998, 18: 135-141.
    [37] T. Hao, Dynamic-field-induced oscillatory dc current in colloidal crystallite[J]. J. Phys. Chem. B, 1998, 102: 1-3.
    [38] US Department of Energy. Electrorheological Fluids, A Research Needs Assessment Final Report[R]. Washington DC: US Government Printing Office. 1993.
    [39] T. C.Jordan, M. T. Shaw. Electrorheology[J]. IEEE T. Electr. Insul. 1989,24 (5): 849-878.
    [40] A. W. Duff. The viscosity of polarized dielectrics[J]. Phys. Rev (Series I), 1896, 4: 23-38.
    [41] L. Onsager, R. M. Fuoss. Irreversible processes in electrolytes: diffusion, conductance and viscous flow in arbitrary mixtures of strong electrolytes[J]. J. Phys. Chem., 1932, 36: 2689-2778.
    [42] W. M. Winslow. Induced fibration of suspensions[J]. J. Appl. Phys., 1949,20(12): 1137-1140.
    [43] W. M. Winslow. Method and means for translating electrical impulses into mechanical force[P]. US: 2417850, 1947, 4.
    [44] W. M. Winslow. Field responsive force transmitting compositions[P]. US: 3047507, 1962, 7.
    [45] D. L.Klass, T. W. Martinek. Electroviscous fluids. I. Rheological properties[J]. J. Appl. Phys., 1967, 38: 67-74.
    [46] D. L. Klass, T. W. Martinek, Electroviscous fluids. Ⅱ. Rheological properties[J]. J. Appl. Phys., 1967, 38: 75-80.
    [47] D. L. Klass. Electroviscous and method of using same[P]. US: 3385793, 1968, 5.
    [48] H. Uejiman, Dielectric mechanism and rheological properties of electro-fluids[J]. Jan. J. Appl. Phys., 1972, 11(3): 319-325.
    [49] J. E. Stangroom, I. Harness. Fluid compositions[P]. GB: 2153372, 1985, 8,
    [50] J. E. Stangroom, Electrorheological fluids[J]. Phys. Technol., 1983, 14: 290-296.
    [51] H. Block. Polymer in Solution[M]. W. C. Forsman(ed.), New York: Pleunum Press, 1986: 113-114
    [52] H. Block, J. P. Kelley. Electro-rheology[J]. J. Phys. D. Appl. Phys., 1988, 21(12): 1661-1677.
    [53] A. P. Cast, C. F. Zukoski. Electrorheological fluids as colloidal suspensions[J]. Adv. Colloid. Interf. Sci., 1989, 30: 153-202.
    [54] H. Block, J. P. Kelly. Electrorheological fluids[P]. GB: 2170510, 1985, 8.
    [55] Y. Z. Xu,R. F. Liang. Electrorheological properties of semiconducting polymer-based suspensions[J]. J. Rheol.,1991, 35 (7): 1355-1373.
    [56] Y. Z. Xu, R. F. Liang, T. HAO. Design of high-performance dry electrorheological fluid[C]. R.Tao (ed.). Intern. Conf. on ER Fluids. Singapore: World Scientific Press, 1992: 129-141.
    [57] W. J. Wen, X. X. Huang, S. H. Yang, et al. The giant electrorheological effect in suspensions of nanoparticles[J]. Nat. Mater., 2003, 2 (11): 727-730.
    [58] W. Y. Tam, G. H. Yi, W. J. Wen, et al. New electrorheological fluid: theory and experiment[J]. Phy. Rev. Lett., 1997, 78: 2987-2990.
    [59] H. Ma, W. Wen, W. Y. Tam, et al. Dielectric electrorheological fluids: theory and experiment[J]. Adv. Phys., 2003, 52(4): 343-383.
    [60] Y. F. Deinega, G..V..Vinogradov. Electric-fields in the rheology of disperse systems[J]. Rheol. Acta, 1984, 23(6): 636-651.
    [61] H. See, H. Tamura, M. Doi. The role of water capillary forces in electrorheological fluids[J]. J. Phys. D: Appl. Phys., 1993, 26(5): 746-752.
    [62] A. E. Hamidi. Existence results to elliptic systems with nonstandard growth conditions[J]. Math. Ann and App., 2004, 300: 30-42.
    [63] C. Gehin, J. Persello, et al. Electrorheological properties and microstructure of silica suspension[J]. Colloid Interf. Sci., 2004, 273: 658-667.
    [64] H. See, T. Saito. Layered model of electrorheological fluid under flow[J]. Rheol. Acta., 1996, 35: 233-241.
    [65] Y. M. Shkel, D. J. Klingenberg. Materials parameters for electrostriction[J]. J. Appl. Phys. 1996, 80 (8): 4566-4572.
    [66] M. Parthasarathy, D. J. Klingenberg, Electrorheology: mechanisms and models[J]. Mater. Sci. Eng. R, 1996, 17: 57-103.
    [67] D. J. Klingenberg, F. Vanswol, C. F. Zukoski. The small shear rate response of electrorheological suspensions 1. simulation in the point-dipole limit[J]. J. Chem. Phys., 1991, 94(9): 6160-6169.
    [68] M. Parthasarathy, K. H. Ahn, B. M. Belongia, et al. The role of suspension structure in the dynamic-response of electrorheological suspensions[J]. Int J. Mod. Phys. B, 1994, 8(20-21): 2789-2809.
    [69] D. J. Klingenberg, F. VanSwol, C. F. Zukoski. Dynamic simulation of electrorheological suspensions[J]. J. Chem. Phys., 1989, 91 (12): 7888-7895.
    [70] L. C. Davis. Finite-element analysis of paticle–particle forces in electrorheological fluids[J]. Appl. Phys. Lett., 1992, 60(3): 319-321.
    [71] L. C. Davis. The metal-particle insulating oil system-an ideal electrorheological fluid[J]. J. Appl. Phys., 1993, 73 (2): 680-683.
    [72] P. Atten, J. N. Foulc, N. Felici. A conduction model of the electrorheological effect[J]. Int. J. Mod. Phys. B, 1994, 8 (20-21): 2731-2740.
    [73] J. N. Foulc, P. Atten, N. Felici. Macroscope model of interaction between particles in an electrorheological fluid[J]. J. Electrostatic, 1994, 33 (1): 103-112.
    [74] X. Tang, C. Wu, H. Conrad. On the conductivity model for the electrorheological effect[J]. J. Rheol., 1995, 39 (5): 1059-1073.
    [75] C. Wu, H. Conrad. A modified conduction model for the electrorheological effect[J]. J. Phys. D: Appl. Phys., 1996, 29 (12): 3147-3153.
    [76] T. Hao, Y. Z. Xu,. Y. H Chen, et al. Dielectric polarization of electrorheological suspensions[J]. Chinese Physics Letter, 1995, 12 (9): 573-576.
    [77] T. Hao, Y. Z. Xu. Dielectric evidence for the material design of ER fluids[J]. Int. J. Mod. Phys. B, 1996, 10 (23-24): 2885-2893.
    [78] T. Hao, H. Yu, Y. Z. Xu. The conductivity confined temperature dependence of water-free electrorheological fluids[J]. J. Colloid Interf. Sci., 1996, 184: 542-549.
    [79] T. Hao, Y. Z. Xu. Conductive behaviors of polymer-based electrorheological fluid under zero and oscillatory mechanical fields[J]. J. Colloid Interf. Sci., 1996, 181: 581-588.
    [80] T. Hao, Y. Z. Xu. Microstructure-confined mechanical and electric properties of the electrorheological fluids under the oscillatory mechanical field[J]. J. Colloid Interf. Sci., 1997, 185: 324-331
    [81] T. Hao, Z. M. Xu, Y. Z. Xu. Correlation of the dielectric properties of dispersed particles with the electrorheological effect[J]. J. Colloid Interf. Sci. 1997, 190: 334-340.
    [82] T. Hao, A. Kawai, F. Ikazaki. Dielectric criteria for the electrorheological effect[J]. Langmuir, 1999, 15(4): 918-921.
    [83] T. Hao, A. Kawai, F. Ikazaki. The yield stress equation for the electrorheological fluids[J]. Langmuir, 2000, 16(7): 3058-3066.
    [84] T. Hao. Electrorheological suspensions[J]. Adv. Colloid Interf. Sci., 2002, 97: 1-35.
    [85] H. Ma, W. Wen, W. Y..Tam, et al. Frequency dependent electrorheological properties: origin and bounds[J]. Phys.Rev.Lett., 1996, 77: 2499-2502
    [86] J. J. Wysocki, J. Adama, W. Haas. Electroviscosity of a cholesteric liquid-crystal mixture[J]. J. Appl. Phys., 1969, 40(9): 3865-3870.
    [87] I. K.Yang, A. D. Shine. Electrorheology of a nematic poly(normal-hexylisocyanate) solution[J]. J. Rheol., 1992, 36(6): 1079-1140.
    [88] 郝田, 陈一泓, 徐懋, 许元泽. 电流变学研究进展[J]. 力学进展, 1994, 24(3): 315-335.
    [89] 许素娟. 二氧化钛包覆石墨颗粒电流变液的研究[D]. 哈尔滨: 哈尔滨工业大学, 2001.
    [90] H. Block, J. P. Kelley, A. Qin, et al. Materials and mechanisms in electrorheology[J]. Langmuir, 1990, 6: 6-14.
    [91] K. D. Weiss, J. D. Carlson, D. A. Nixon. Viscoelastic properties of magneto -rheological and electrorheological fluids[J]. J. Intel. Mat. Syst. Str., 1994, 5 (6): 772-775.
    [92] T. Hao. The Interfacial polarization-Induced electrorheological effect[J]. J. Colloid Interf. Sci., 1998, 206,: 240-246.
    [93] T. C. Jordan, K. T. Shaw, T. C. B. Mcleish. Viscoelastic response of electrorheological fluids Ⅱ; field strength and strain dependence[J]. J. Rheol., 1992, 36: 441-463.
    [94] A. P. Gast, C. F. Zukoski. Electrorheological fluid as colloidal suspensions[J]. Adv. Colloid Interf. Sci., 1989, 30 (3-4): 153-202.
    [95] R. Kanu, M. Shaw. Enhanced electrorheological fluids using anisotropic particles[J]. J. Rheol., 1998, 42 (3): 657-652.
    [96] D. V. Miller, C. A. Randall, A. S. Bhalla, et al. Electrorheological properties of BaTiO3 Suspensions[J]. Ferroelectr. Lett., 1993, 15(5-6): 141-151.
    [97] C. S. Coughlin, R. N. Capps. Particle-size effects in the electrorheological behavior of silica-poly (dimethylsiloxane) mixtures[J]. P. Soc. Photo-Opt Ins. 1994, 2190: 19-27.
    [98] Z. Tan, X. Zou, W. Zhang, et al. Influences of the size and dielectric properties of particles on electrorheological response[J]. Phys. Rev. E, 1999, 59: 3177-3181.
    [99] J. E. Stangroom, I. Harness. Electric field responsive fluids[P]. UK: 1570234, 1980, 6.
    [100]H. Conrad. Properties and design of electrorheological suspensions[J]. MRS Bull., 1998, 23: 35-42.
    [101]T. Hao. Electrorheological Fluids[J]. Adv. Mater. 2001, 13: 1847-1857.
    [102]Z. Liu, Y. Lin, X. Wen, et al. Preparation and electrorheological properties of polyquin (2,3-b) acridine-12,14 (5,7) dione-based suspensions[J]. Colloid. Surf. A., 2005, 264: 55–60.
    [103]H. Tomizawa, M. Kanbara, N. Yoshimura, et al. Electro-rheological fluid[P] EP: 0342041, 1989, 11.
    [104]Y. D. Kim, D. J. Klingenberg. Two roles of nonionic surfactants on the electrorheological response[J]. J. Colloid Interf. Sci., 1996, 183: 568-578.
    [105]H. Conrad, A. F. Sprecher, Y. Choi, et al. The temperature-dependence of the electrical-properties and strength of electrorheological fluids[J]. J. Rheol., 1991, 35(7): 1393-1410.
    [106]R. Baranwal, R. M. Laine, Preceramic polymer route to amorphous and crystalline potassium aluminosilicate powders and their electrorheological properties[J]. J. Am. Ceram. Soc., 1997, 80(6): 1436-1446.
    [107]F. E. Filisko, W. Armstrong. Electric field dependent fluids[P] EP:265252, 1988, 4.
    [108]J. Plocharski, A. Gozdalik, A. K. Maziopa, et al. Conjugated polymers as active components of electrorheological fluids[J]. Int. J. Mod. Phys. B, 2005, 19(7-9): 1090-1096.
    [109]J. Plocharski, M. Ró?ański, H. Wyci?lik. Electrorheological effect in suspensions of conductive polymers[J]. Synth. Met., 1999, 102: 1354-1357.
    [110]J. Plocharski, H. Drabik, H. Wyci?lik, et al. Electrorheological properties of polyphenylene suspensions[J]. Synth. Met., 1997, 88: 139-145.
    [111]I. S. Sim, J. W. Kim, H. J. Choi, et al. Preparation and electrorheological characteristics of poly(p-phenylene)-based suspensions[J]. Chem. Mater., 2001, 13: 1243-1247.
    [112]H. J. Choi, M. S.Cho, K. To. Electrorheological and dielectric characteristics of semiconductive polyaniline-silicone oil suspensions[J]. Physica A, 1998, 254: 272-279.
    [113]A. Gozdalik, H. Wyci?lik, J. P?ocharski. Electrorheological effect in suspensions of polyaniline[J]. Synth. Met., 2000, 109: 147-150.
    [114]H. J. Choi, J. W. Kim, K. To. Electrorheological characteristics of semiconducting poly(aniline-co-o-ethoxyaniline) suspension[J]. Polymer, 1999, 40: 2163-2166.
    [115]I. S. Lee, M. S. Cho, H. J. Choi. Preparation of polyaniline coated poly(methyl methacrylate) microsphere by graft polymerization and its electrorheology[J]. Polymer 2005, 46(4): 1317-1321.
    [116]Y. H. Cho, M. S. Cho, H. J. Choi, et al. Electrorheological characterization of polyaniline-coated poly(methacrylate) suspensions[J]. Colloid. Polym. Sci., 2002, 280 (11): 1062-1066.
    [117]U.S. Choi, Y. S. Park, S. S. Lee. Electrorheological behavior of chitosan succinate suspension as an anhydrous ER fluid[J]. Colloid surf. A, 2002, 211: 85-90.
    [118]A. K. Maziopa, M. Ciszewska, J. Plocharski. Electrorheological fluid based on polymer electrolytes[J]. Electrochimica Acta, 2005, 50: 3838-3842.
    [119]Z. w. Gao, X. P. Zhao. Electrorheological properties of inclusive complex of β-cyclodextrin [J]. Mater. Lett., 2002, 57: 615-618.
    [120]Y. Misono, K. Negita. Shear-induced particle rotation and its effect on electrorheological and dielectric properties in cellulose suspension[J]. Phys. Rev. E, 2004, 70: 061412(1-6).
    [121]U. S. Choi. Electrorheological properties of chitosan suspension[J]. Collid. Surf. A, 1999, 157: 193-202.
    [122]L. Rejon, C. Ngaleana. Rheological, electric and structural characterization of asphalene suspensions under DC electricfields[J]. Fuel, 2004, 83(4-5): 471-476.
    [123]D. J. Woo, M. H. Suh, E. S. Shin, et al. Electrorheological behavior of suspensions of a substituted polyaniline with long alkyl pendants[J]. J. Colloid. Interf. Sci., 2005, 288(1): 71-74.
    [124]L. Yanju, D. Hejun, W. Dianfu. ER fluid based on inorganic/polymer blend particles and its adaptive viscoelastic properties[J]. Colloid. Surf. A, 2001, 189 (1-3): 203-210.
    [125]杨大智.智能材料与智能系统[M]. 天津: 天津大学出版社, 2000, 259.
    [126]W. Ding, Z. K. Fan, C. X. Xu, et al. Metal core/polymer coating compounded suspension for electrorheologic fluid[J]. Acta PhyChem. Sinica, 2001, 17(6): 499-500.
    [127]B. X. Wang, X. P. Zhao. Electrorheological effect coordinated by kaolinite-carboxymethyl starch hybrid materials[J]. J. Mat. Chem., 2002, 12 (10): 2869-2871.
    [128]L. Yanju, D. Hejun, W. Dianfu. ER fluid based on inorganic/polymer blend particles and its adaptive viscoelastic properties[J]. Colloid. Surf. A, 2001, 189: 203-210.
    [129]J. Guan, Y. Ma, C. Wang, H. Xie. Study on polyaniline modified by blending and copolymerization and electrorheological fluids with high performance based on them [J]. Acta Polymerica Sinica, 1997, 3: 277-282.
    [130]C. W. Wu, H. Conrad. Multi-coated spheres: Recommended electrorheological particles[J]. J. Phys. D: Appl. Phys., 1998, 31 (22), 3312-3315.
    [131]X. P. Zhao, X. Duan. A new organic/inorganic hybrid with high electrorheological activity[J]. Int. J. Mod. Phys. B, 2002, 16 (17-18): 2454-2460.
    [132]J. E. Stangroom. Electric field responsive fluids[P]. GB: 2119392, 1983, 11.
    [133]R. Tao, J. T. Woestman, N. K. Jaggi. Electric field induced solidification[J]. Appl. Phys. Lett., 1989, 55(18): 1844-1846.
    [134]D. J. Klingenberg, C. F. Zukoski. Studies on the steady-shear behavior of electrorheological suspensions[J]. Langmuir, 1990, 6: 15-24.
    [135]G. Bossis, E. Lemaire, O. Volkova,et al. Yield stress in magnetorheological and electrorheological fluids: A comparison between microscopic and macroscopic structural models[J]. J. Rheol., 1997, 41 (3): 687-704.
    [137]T. Hao, Y. Chen, Z. Xu, et al. Percolation transition in electrorheological fluids[J]. Chin. J. Polym. Sci., 1994, 12 (2): 97-105.
    [138]V. K. Evguenia, P. S. Zinoviy. Temperature effect on ER-fluid dynamics[J]. Int. Soc. Opt. Eng., 2000, 3989: 520-524.
    [139]P. Gonon, J. N. Foulc. Temperature dependence of particle-particle interactions in electrorheological fluids[J]. J. Appl. Phys., 2000, 87 (7): 3563-3566.
    [140]黄宜坚, 朱石沙, 李之达等. 电流变学[M]. 长沙: 湖南师范大学出版社, 1996, 22, 74-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700