立式捏合机设计研究与性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混合操作是固体火箭发动机制造的重要工序,而立式捏合机是完成固体推进剂混合工艺的关键设备。针对固体推进剂混合特性及混合要求,本学位论文采用理论研究与工程实践相结合的办法,以立式捏合机为研究对象,综合运用微分几何学、流变学以及随机过程理论等数理手段,以计算机数值模拟以及工程实验分析为研究工具,进行了立式捏合机混合机理与设计方法及有关关键技术研究。
     首先,详细分析了固体推进剂混合特性以及混合要求,提出立式捏合机设计过程中需要解决的几个关键问题。分析立式捏合机的工作原理,确定了立式捏合机性能分析与评价指标,为后一步研究工作的进行奠定基础。
     其次,分析立式捏合机桨叶的运动特性,确定立式捏合机桨叶三维造型方法;运用计算流体力学理论和有限元分析工具,建立立式捏合机混合过程有限元分析物理与数学模型,确定数值模拟的边界条件,完成混合过程的数值模拟;对压力场、速度场以及粘度分布场等模拟结果进行分析,由此确定立式捏合机混合过程数字分析与预测方法。
     再次,通过理论分析与数值模拟,深入研究了搅拌桨叶传动比、螺旋角以及设备的混合间隙等关键结构参数对立式捏合机混合性能的影响,提出这些参数的选用范围与设计准则。研究结果表明:搅拌桨叶公转与自转角速度比值越小,立式捏合机的混合性能越好;当空心桨叶螺旋角取42°~48°范围内的值时,立式捏合机具有最佳的混合性能;混合间隙值越小,搅拌桨壁面和混合锅锅壁对物料的拖拽作用越明显,设备的混合能力越强;各类间隙相等时,立式捏合机具有较好的混合性能。
     接着,改变转向、转速、固体组分含量等工艺参数条件,进行立式捏合机混合过程数值模拟与分析,研究它们与设备混合性能的关系,通过混合均匀性工艺实验,研究工艺参数与被混物料混合均匀性的关系,并对部分仿真结果进行了验证,由此提出设计与制造过程中相关问题的解决手段。研究结果表明:非周期性地调整搅拌桨叶转向,有助于提高立式捏合机的混合效率,改善被混物料的混合均匀性;转速越高,立式捏合机的混合能力越强,混合效率越高,产品的混合均匀性越好,但对设备工作能力要求越高;适当增大固体组分含量有助于改善立式捏合机的混合性能。
     最后,对立式捏合机系统可靠性分析、评估与改善方法进行了系统、深入的研究。在假定可靠性信息确定的前提下,以立式捏合机及其子系统的结构与功能分析为基础,建立系统与子系统的可靠性分析方法,并以状态监测子系统为例对该方法进行验证与分析。由于立式捏合机系统及其零部件在试验数据匮乏以及可靠性信息存在不确定性,论文提出一种基于贝叶斯理论、考虑统计不确定性影响的零部件与系统可靠性评估方法,工程实例表明该方法具有一定的先进性。在上述研究的基础上,提出立式捏合机可靠性、安全性改善方法与手段。工程实例表明,文中所提的系统可靠性分析与评估方法对立式捏合机可靠性设计与分析具有指导意义。
     本课题的研究为立式捏合机的设计、制造与使用提供理论依据和指导方法,不仅对固体推进剂混合设备技术的发展和完善具有重要的理论意义,而且将这些研究成果直接应用生产实践具有重要的现实意义和实用价值。
Mixing operation is an important procedure of solid propellant manufacture, and the vertical kneading mixer is the key device to fulfill this procedure. In this dissertation, according to differential geometry, rheology, stochastic process theory and computational fluid dynamics (CFD), some key techniques existing in the design of vertical kneading mixers and performance analysis are systematically investigated by combining theoretical analysis with engineering practice.
     Firstly, some crucial problems existing in the design process of the vertical kneading mixers are proposed by analyzing the material characteristic of solid propellant and its mixing requirements. Then, the configuration and operating mechanism of the device are investigated. On the basis of the results mentioned above, methods and indices to analyze and evaluate the performance of the vertical kneading mixers, namely torque, pumping capacity, mixing efficiency, reliability and etc, are also presented.
     Secondly, methods to numerically simulate and analyze the fluid field in the mixing tank of the vertical kneading mixers are proposed by means of application geometry, rheologic theoretic and finite element methods. The methods include developing 3D modeling process of the kneading blades by analyzing the transmission characteristics of the self-rotating speed and the planetary revolution speed of them, establishing the physical and mathematical models of the flow field in the mixing tank of vertical kneading mixers, determining the boundary conditions of numerical simulation, and deeply investigating the characteristics of velocity field, flow pattern, pressure distribution and viscosity distribution of the mixing field numerically simulated by means of CFD software such as ANSYS CFX10.0.
     Thirdly, the selecting ranges and design rules of some key structural parameters are proposed by investigating their influence on the vertical kneading mixers via numerical simulation and theoretical analysis. The influence of the ratio of the planetary revolution speed to the self-rotating speed of the hollow kneading blade is studied at first, the studied results show that better mixing performance can be achieved if the speed ratio is designed to be lower enough. The helix angle of the kneading blade is then investigated, and the results illustrate that the preferable torque characteristic, higher pumping capacity and steady shearing rate can be achieved when the value of the helix angle of the hollow kneading blade is chosen between 42°and 48°. Also, the investigation of the mixing clearance shows that small mixing clearance can improve the mixing performance of the vertical kneading mixers, and that the lowest power consumption can be achieved if diversified mixing clearances have the same value when the other parameters are determined.
     Furthermore, to investigate the relationship of the processing parameters and the mixing performance of the vertical kneading mixers, numerical simulation models diversified with different processing parameters which include rotating direction of the kneading blades, rotation speed, and solid constituent proportion in the mixtures, are established. The mixing uniformity experiments are then designed to investigate the influence of the processing parameters on the mixing uniformity of the mixture, and some simulating results can be validated by them. Research results show that favorable mixing efficiency can be achieved if the rotating directions of the kneading blades are altered non-periodically, and that the mixing uniformity of the mixture and the mixing efficiency of the devices arise when the rotation speed is increased. Also, it is advantageous for improving the mixing performance of the mixing devices to increase the solid constituent proportion in the mixtures properly.
     Finally, methods and techniques to analyze, evaluate, and optimize the system reliability of the vertical kneading mixer are studied in detail. On the assumption that all reliability data , for example, the life cycle of a component, are determinate, a method to analyze the system reliability of the devices and their sub-systems is established, and this procedure is illustrated by using it to solve the reliability problem of the condition monitoring system for the vertical kneading mixers. Nevertheless, in the engineering practice, the test data of the vertical kneading mixers and their components are deficient and the reliability estimate information is uncertain. With consideration of this matter, reliability estimate methods of the vertical kneading mixer and its components are proposed by means of reliability mathematics and Bayesian methods. Application cases are used to illustrate these procedures. In addition, methods to enhance the reliability and safety of the vertical kneading mixer are presented due to forenamed studies. Engineering applications indicate that the system reliability analyzing, estimating and optimizing methods proposed in this dissertation are significant for reliability design of the vertical kneading mixer.
     The achievements of this dissertation provide significant theoretic foundation and guidance for the development of the optimum design, manufacture and operation of the vertical kneading mixer. Also, it is practical and valuable to apply these achievements to the solid propellant mixing processes.
引文
[1] Edward L, Paul, Victor A. A., and Suzanne M. K. Handbook of industrial mixing: science and practice. New York: John Wiley & Sons, 2004
    [2]王凯,冯连芳.混合设备设计.北京:机械工业出版社,2000
    [3] Davidson著,杨宝贵等译.固体推进剂制造、处理、储存和运输.北京:国防工业出版社,1972
    [4] Mazer, A. A. Design and analysis of mixing machine: [Doctoral Dissertation]. USA:The University of Arizona,1990
    [5] Missile technology control regime annex handbook. www.fas.org/nuke/control/ mtcr/text/mtcr_handbook
    [6]易朋兴.捏合机供水系统的自动调温研究. [硕士学位论文].武汉:华中科技大学,2003
    [7] Natalia Vladimirova and Roberto Mauri. Mixing of viscous liquid mixtures. Chemical Engineering Science, 2004, 59: 2065~2069
    [8] Louis Fradette, Philippe A. Tanguy, Francois Betrand, et al. CFD phenomenological model of solid-liquid mixing in stirred vessels. Computers and Chemical Engineering, 2007, 31: 334~345
    [9] Nagata, S. Mixing: principles and applications. New York: John Willey & Sons,1972
    [10]陈志平,章序文,林兴华等编著.搅拌与混合设备设计选用手册.北京:化学工业出版社,2004
    [11] Parker, N. H. How to select double-arm mixers, Chem. Engi.,1965,72(18):125~129
    [12] Irving, H. F., and R. L. Saxton. Mixing of high viscosity materials, in mixing: theory and practice, Vol. II, V. W. Uhl and J. B. Gray, eds.,Acadamic Press,New York,1967
    [13] Bakker, A., and L. E. Gates. Properly choose mechanical agitators for viscous liquids. Chemical Eng. Prog.,1995,91(12):25~30
    [14] Nijman, Gerard. Continuous mixing, a challenging opportunity. KGK Kautschuk Gummi Kunststoffe,2004,57(9):430-436
    [15] Cervenka. C. A. The development of a continuous mix process for ASRM propellantproduction. AIAA-1993-2056
    [16] Muscato, R. et al. Continuous processing of composite propellant program live processing. IHTR #2227,Indian Head Division Naval Surface Warfare Center,Indian Head, Maryland,15 November,1999.
    [17] Indian Head Division Naval Surface Warfare Center. Closed Loop Energetics with VOC Emission Reduction. ESTCP #PP-9704,Indian Head,MD 20640-5035,USA,July,2002
    [18]王正方,翟瑞清.立式捏合机搅拌桨的设计.固体火箭技术,1993,1:65~69
    [19]许章忠霍岳西.立式混合机桨叶运动轨迹分析.宇航学报,1996,17(3):104~107
    [20] Mandelbrot B. The fractal geometry of nature. San Francisco:W.H. Freeman,1982
    [21] Mozzio, F. J, and J. M. Ottino. Coagulation in chaotic flows. Phys. Rev. A,1988,38(9):2516~2524
    [22] Leong, C. W., and J. M. Ottino. Experiments on mixing due to chaotic advection in a cavity. J. Fluid Mech.,1989,209:463~499
    [23] Swanson, P. D., and J. M. Muzzio. A comparative computational and experimental study of chaotic mixing of viscous fluids. J. Fluid Mech.,1990,213:227~249
    [24] Muzzio, F. J. and P. D. Swanson. The statistics of stretching and stirring in chaotic flows. Phys. Fluids A,1991,3(5):822~834
    [25] Franjione, J. G.., and J. M. Ottino. Feasibility of numerical tracking of material lines and surfaces in chaotic flows. Phys. Fluids,1987,30:3641~3643
    [26] Metcalfe, G.., and J. M. Ottino. Autocatalytic processes in mixing flows. Phys. Rev. Letter,1994,72(18):2875~2878
    [27] Souvaliotis, A., S. C. Jana, and J. M. Ottino. Potentialities and limitations of mixing simulations. AIChE J.,1995,41(7):1605~1621
    [28] Michel Hénon. Surla topology deslignes decourant dansuncas particulier. C. R. Acad. Sci., Paris,1966,A262:312~314
    [29] Kresta S. M., and P. E. Wood. Prediction of the three dimensional turbulent flow in stirred tanks. AIChE J.,1991,37:448~460
    [30] Fokema, M. D., S. M. Kresta, and P. E. Wood. Importance of using the correct impeller boundary conditions for CFD simulations of stirred tanks. Can. J. Chem. Eng.,1994,72:177~183
    [31] Luo, J. Y., R. I. Issa, and A. D. Gosman. Prediction of impeller induced flows in mixing vessels using multiple frames of reference. Inst. Chem. Symp. Ser.,1994,136:549~556
    [32] Ranade, V. V., and S. M. S. Dommei. Computational snapshot of flow generated by axial impellers in baffled stirred vessels. Trans. Inst. Chemical Engineering,1996,74:512~527
    [33] Bakker, A., L. Oshinowo, and E. M. Marshall. The use of large eddy simulation to study stirred vessel hydrodynamics. In: proceeding of the 10th European Conference on Mixing. Delft, The Netherland, 2000: 247~254
    [34] Roussinova, V. T., B. Grgic, and S. M. Kresta. Study of macro-instabilities in stirred tanks using a velocity decomposition technique. Chem. Eng. Res. Des. 2000, 78: 1040~1052
    [35] Bakker, A., A. Haidari, and E. M. Marshall. Modeling stirred vessels using large eddy simulation. In: proceeding of the 18th Biennial North American Mixing Conference, Pocono Manor, PA, USA, 2001
    [36] Roussinova, V.T., S. M. Kresta, R. J. Weetman. Low frequency macro-instabilities in a stirred tank: scale-up and prediction based on large eddy simulations. In: proceeding of the 18th Biennial North American Mixing Conference, Pocono Manor, PA, USA, 2001
    [37] Oshinowo, L., A. Bakker, and E. M. Marshall. Mixing time: a CFD approach. Presented at MixingⅩⅦ, Bnff, Alberta, Canada, 1999
    [38] Oshinowo L. M., E. M Marshall, A. Bakker, and A. Haidari. Benefits of CFD in modeling solids suspension in stirred vessels. In: Proceeding of AIChE Annual Meeting. Los Angeles, USA, 2000
    [39] Avalosse, T., Y. Rubin. Analysis of mixing in co-rotating twin screw extruders through numerical simulation. In: proceeding of 15th Polymer Society Conference, Hertogenbosch, The Netherlands, 1999
    [40] Tanggy, P. A., F. Thibault, C. Dubois, and A. Ait-Kadi. Mixing hydrodynamics in a double planetary mixer. Chem. Eng. Res. Des. 1999, 77(4): 318~324
    [41] Zhou, G., P. A. Tanguy, and C. Dubois. Power consumption in a double planetary mixer with non-Newtonian and viscoelastic materials. Chem. Eng. Res. 2000, 78(3): 445~453
    [42] Zalc, J. M., E. S. Szalai, F. J. Muzzio, and S. Jaffer. Characterization of flow and mixing in an SMX static mixer. AIChE J. 2002,48(3): 427~436
    [43] P?schel, T., and V. Buchholtz. Complex flow of granular material in a rotating cylinder. Chaos, Solitons & Fractals. 1994, 5(10): 1901~1912
    [44] McCarthy, J. J., and J. M. Ottino. Particle dynamics simulation: a hybrid technique applied to granular mixing. Powder Tech. 1998, 97: 91~99
    [45] Patrice P., N. Sommier, Anne-Marie Faugère, and P. Evesque. Dynamics of size segregation and mixing of granular materials in a 3D-blender by NMR imaging investigation. Powder Tech. 2004, 141: 55~68
    [46] Gilchrist, J. J., Geometric aspects of mixing and segregation in granular tumblers. [Doctoral Dissertation], USA: Northwestern University, 2003
    [47]何雪涛.三维摆动混合机运动学和动力学分析. [博士学位论文].北京:北京化工大学图书馆,1999
    [48] John W. Wu. Direct numerical simulation of flow over circular cylinders for large eddy simulation modeling. [Master Thesis]. Uni. Illinois at Urbana-Champaign, USA, 2001
    [49] Y. Tsuji. Activities in discrete particle simulation in Japan. Powder Tech. 2000, 113: 278~286
    [50] Wood, J. C., E. R. Whittmore, and W. L. Badger. The measurement of stirrer performance. Chem. Met. Eng.,1922,27(24):1176~1179
    [51] Shervin, C. R., D. A. Raughley, and R. A. Romaszewski. Flow visualization scale-up studies for the mixing of viscoelastic fluids. Chem. Eng. Sci.,1991,46(11):2867~2873
    [52] Rahimi, M., P. R. Senior, and R. Mann. Visual 3-D modeling of stirred vessel mixing for an inclined-blade impeller. Chem. Eng. Res. Des.,2000,78(A3):348~353
    [53] Danckwerts, P. V., and R. A. M. Wilson. Flow-visualization by means of time-reaction. J. Fluid Mech.,1963,16(3):412~416
    [54] Belevi, H., J. R. Bourne., and R. Rys. Mixing and fast chemical reactionⅡ: Diffusion-reaction model for the CSTR. Chem. Eng. Sci.,1981,36(10):1649~1654
    [55] Bourne, J. R., and P. Dell’ava. Micro-mixing and macro-mixing in stirred tank reactors of different sizes. Chem. Eng. Res. Des.,1987,65(2):180~186
    [56] Bourne, J. R., F. Kzicki, U. Moergeli, and P. Rys. Mixing and fast chemical reactionⅢ: Model-experiment comparisons. Chem. Eng. Sci.,1981,36(10):1655~1663
    [57] Bourne, J. R., F. Kzicki, U. Moergeli, and P. Rys. Mixing and fast chemical reactionⅠ:Test reactions to determine segregation. Chem. Eng. Sci. 1981, 36(10): 1643~1648
    [58] Baldyga, J., and J. R. Bourne. Interaction between mixing on various scales in stirred tank reactors. Chem. Eng. Sci.,1992,47(8):1839~1848
    [59] Villermaux, J. Mixing effects on complex reactions in a stirred reactor. Rev. Chem. Eng.,1991,7(1):51~108
    [60] Villermaux, J., L. Falk., and M. C. Fournier. Potential use of a new parallel reaction system to characterize micro-mixing in stirred reactors. AIChE Symp.Ser.,1994,299 (90):50~53
    [61] Villermaux, J., L. Falk, M, C. Fournier., and C. Detrez. Use of parallel competing reactions to characterize micro-mixing efficiency. AIChE Symp. Ser.,1992,286(88):6~10
    [62] Fournier, M. C., L. Falk and J. Villermaux. A new parallel competing reaction system for assessing micro-mixing experimental approach. Chem. Eng. Sci.,1996,51(22):5053~5064
    [63] Fournier, M, C., L. Falk, and J. Villermaux. A new parallel competing reaction system for assessing micro-mixing efficiency-determination of micro-mixing time by a simple mixing model. Chem. Eng. Sci.,1996,51(23):5187~5192
    [64] Lin, W. W. Micro-mixing effects in aerated stirred tank. Chem. Eng. Sci.,1997,52(21~22):3837~3842
    [65] Zipp, R. P., and G. K. Patterson. Experimental measurements and simulation of mixing and chemical reaction in a stirred tank. Can. J. Chem. Eng.,1998,76(3):657~669
    [66] Clifford. M. J., S. M. Cox., and E. P. L. Roberts. The influence of a lamellar structure upon the yield of a chemical reaction. Trans. IChemE.,2000,78(A):371~377
    [67] Ottino, J. M. Mixing and chemical reactions: A tutorial. Chem. Eng. Sci.,1994,49(24):4005~4027
    [68] Scofield, D. F., D. P. Mahoney, C. S. Marx, and C. J. Martin. Underlying geometric structure of deterministic flows. Internal report E. I. du pont de Nemours and Co.,1989
    [69] Scofield, D. F., and C. J. Martin. Mixing measurements and theory. Internal report E. I. du pont de Nemours and Co.,1990
    [70] Scofield, D. F., C. J. Martin and M. A. Pivovarov. Underlying geometry of flows. Internal report E. I. du pont de Nemours and Co.,1990
    [71] Maas, H. G., and A. Gruen. Digital photogrammetric techniques for high-resolution3-dimensional flow velocity-measurements. Opt. Eng.,1995,34(7):1970-1976
    [72] Malik, N. A., T. Dracos, and D. A. Panantoniou. Particle tracking velocimetry in 3-dimensional flows-2. Particle tracking. Expts. In fluids,1993,15(4-5):279~294
    [73] Maas, H. G., A. Gruen, and A. Papantoniou. Particle tracking velocimetry in 3-dimensional flows—1. Photogrammetric determination of particle coordinates. Expts. In Fluids,1993,15(2):133~146
    [74] Chapple, D., S. M. Kresta, A. Wall, and A. Afacan. The effect of impeller and tank geometry on power number for a pitched blade turbine. Trans. Inst. Chem. Eng. A.,2002,80:364~372
    [75] Wittmer, J. C., L. Falk, P. Pitiot, and H. Vivier. Characterization of stirred vessel hydrodynamics by three dimensional trajectography. Can. J. Chem. Eng.,1998,76(3):600~610
    [76] Barrue, H., C. Xuereb, P. Pitiot, L. Falk, and J. Bertrand. Comparison of experimental and computational particle trajectories in a stirred vessel. Chem. Eng. Tech.,1999,22(6):511~521
    [77] Fangary, Y. S., M. Barigou, J. P. K. Seville, and D. J. Parker. Fluid trajectories in a stirred vessel of non-Newtonian liquid using positron emission particle tracking. Chem. Eng. Sci.,2000,55(24):5969~5979
    [78] Lourenco, L. M., A. Krothopalli, and C. A. Smith. Particle image velocimetry, in Advances in Fluid Mechanics Measurements. German,Berlin:Springer-Verlag,1989,p.127
    [79] Adrian, R. J. Particle imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid Mech.,1991,23:261~304
    [80] Willert, C. E., and M. Gharib. Digital particle image velocimetry. Exp. Fluids,1991,10:181~193
    [81] Raffel, M., M. Willert, and J. Kompenhans. Particle Image Velocimetry:A Practical Guide. Berlin,German:Springer-Verlag, 1998
    [82] Landreth, C. C., and R. J. Adrian. Electro-optical image shifting for particle image velocimetry. Appl. Opt.,1988,27:4216~4220
    [83] Lourenco, L. M. Velocity bias technique for particle image velocimetry measurements of high speed flows. Appl. Opt.,1993,32:2159~2162
    [84] Dantec. Adaptive correlation, Dantec Product Information, Dantec Dynamics, Inc. Mahwah,NJ,2000
    [85] Keane, R. D., R. J. Adrian, and Y. Zhang. Super-resolution particle image velocimetry. Meas. Sci. Technol.,1999,6:754~768
    [86] Cowen, E. A., and S. G. Monosmith. A hybrid digital particle tracking velocimetry technique. Exp. in Fluids,1997,22:199~211
    [87] Papadopoulos, G., and K. J. Hammad. Time-resolved PIV measurements within a triple impeller stirred tank. ASME/JSME Joint Fliuds Engineering Summer meeting, FEDSM2003-45295,July 6-11,Honolulu,HI,2003
    [88] Bakker, A. K., J. Myers, R. W. Ward, and C. K. Lee. The laminar and turbulence flow pattern of a pitched bladed turbine. Trans. Inst. Chem. Eng.,1996,74:485~491
    [89] Sheng, J., H. Meng, and R. O. Fox. Validation of CFD simulations of a stirred tank using particle image velocimetry data. Can. J. Chem. Eng.,1998,76:611~625
    [90] Zalc, J. M. Computational fluid dynamic tools for investigating flow and mixing in industrial systems: the koch-Glitsch SMX static mixer and a three Rushton turbine stirred tank. [PhD Dissertation]. Rutgers,the State University of New Jersey.
    [91] Hammad, K. J., and G. PaPadopoulos. Phase-resolved PIV measurements within a tripe impeller stirred-tank. In: FEDSM2001-18224, ASME2001 Fluids Engineering Division Summer Meeting,May 29-Jnne 1,New Orleans,LA,USA,2001
    [92] Calabrese, R. V., and C. M. Shoots. Flow in the impeller region of a stirred tank. Chem. Eng. Prog.,1989,85(5): 43~50
    [93] Sharp, K. V., and R. J. Adrian. PIV study of small-scale flow structure around a Rushton turbine. AIChE,2001,47(4):766~778
    [94] Kresta, S. M. Turbulence in stirred tanks: anisotropic, approximate, and applied. Can. J. Chem. Eng.,1998,76:563~576
    [95] Mavros, P., and C. Baudou. Quantification of the performance of agitators in stirred vessels: Definition and use of an agitation index. Chem. Eng. Res. Des.,1997,75(A8):737~745
    [96] Mavros, P., I. Naude, C. Baudou, J. Bertrand. Laser Doppler velocimetry in agitated vessels: Effect of continuous liquid stream on flow patterns. Chem. Eng. Res. Des.,1997,75(A8):763~776
    [97] Mavros, P., and C. Xuereb, J. Bertrand. Determination of 3-D flow fields in agitated vessels by Laser Doppler velocimetry: Effect of impeller type and liquid viscosity on liquid flow patterns. Chem. Eng. Res. Des.,1996,74(A6):658~668
    [98] Mavros, P., and C. Xuereb, J. Bertrand. Determination of 3-D flow fields in agitated vessels by Laser Doppler velocimetry: Use and interpretation of RMS velocities. Chem. Eng. Res. Des.,1998,76(A2):223~233
    [99] Patwardhan, A. W., and J. B. Joshi. Relation between flow pattern and blending in stirred tanks. Ind. Eng. Chem. Res.,1999,38:3131~3143
    [100] Zhou, G., and S. M. Kresta. Impact of geometry on the maximum turbulence energy dissipation rate for various impellers. AIChE J.,1996,42:2476~2490
    [101] Harvey, A. D., D. H. West, and N. B. Tufillaro. Evaluation of laminar mixing in stirred tanks using a discrete-time particle mapping procedure. Chem. Eng. Sci.,2000,55(3):667~684
    [102] Amenante, P. M., C. G. Luo, C. C. Chou, I. Fort, and J. Medek. Velocity profiles in a closed, unbaffles vessel: comparison between experimental LDV data and numerical CFD predictions. Chem. Eng. Sci.,1997,52(20):3483~3492
    [103] Takata, K., H. Ito, M. Kikuchi, and Y. Okamoto. Flow and mixing characteristics in a stirred tank with dual wide paddles. Kagaku Kogaku Ronbunshu,1996,25(2):253~258
    [104] Takashima, I., and M. Mochizuki. Tomographic observations of the flow around an agitator impeller. J. Chem. Eng. Jpn.,1971,4(1):66~72
    [105] All-Saeedi, J. N., M. O. Kirkpatrick, and R. W. Pike. Optical tomography for measurement of concentration distributions in a stirred tank. In: Proceeding of MixingⅩⅥ,Banff,Alberta,Canada,1995
    [106] Mews, D., and W. Ostendorf. Application of tomographic measurement techniques for process engineering studies. Int. Chem. Eng.,1986,26(1):11~21
    [107] Hoyle, B. S. Process tomography using ultrasonic sensors. Meas. Sci. Technol.,1996,7:272~280
    [108] Parker, D. J., and P. A. McNeil. Positron emission tomography for process applications. Meas. Sci. Technol.,1996,7(3):251~262
    [109] Mckee, S. L., R. A. Williams, F. J. Dickin, and et al. Measurement of concentration profiles and mixing kinetics in stirred tanks using a resistance tomography technique. In:Proceeding of 8th European Conference on Mixing,Inst. Chem. Eng. Symp.Ser.,1994,136:9~16
    [110] Dickin, F. J., T. Dyakowski, R. A.Williams, R. C. Waterfall, C. G. Xie, and M. S. Beck. Process tomography for improving the design and control of multiphase systems: its current status and future prospects. Presented at the ECAPT Conference,Manchester,Lancashire,England,1992
    [111] Stanley, S. J., R. Mann, and K. Primrose. Tomographic imaging in three dimensions for single-feed semi-batch operation of a stirred vessel. Trans. Inst. Chem. Eng. A.,2002,80:903~909
    [112] N. Sommier, P. Porion, and P. Evesque, B. Leclerc, and P. Tchorloff. Magnetic resonance imaging investigation of the mixing-segregation process in a pharmaceutical blender. Int. J. Pharmaceutics,2001,222:243~258
    [113] Patrice P., and N. Sommier, Anne-Marie Faugère, and P. Evesque. Dynamics of size segregation and mixing of granular materials in a 3D-blender by NMR imaging investigation. Powder Tech,2004,141:55~68
    [114]王凯编著.非牛顿流体的流动、混合和传热.杭州:浙江大学出版社,1988
    [115] [英] Patrick D. T. O’Conner等著,李莉等译.实用可靠性工程.北京:电子工业出版社,2005
    [116]杜磊,姜志荣.国外固体推进剂性能研究的新进展.推进技术,1994,3:66~73
    [117] Ramohalli K. N. R., Perez D. L., Rao K. R. K. et al. First step towards a scientific approach to the processing of propellants. Ibid,1990,31
    [118]孙恒,陈作模主编.机械原理.北京:高等教育出版社,2002
    [119]耿孝正编著.双螺杆挤出机及其应用.北京:中国轻工业出版社,2003
    [120]关英波.立式捏合机搅拌桨叶的力学数值分析. [硕士学位论文].武汉:华中科技大学,2007
    [121] Cheng, Hongfei, and Manas-Zloczower. Study of Mixing Efficiency in Kneading Discs of co-rotating twin-screw extruders. Poly. Engi. & Sci.,1997,Vol. 37(6):1082~1090
    [122]胡友民.状态监测系统可靠性研究. [博士学位论文].武汉:华中科技大学,2003
    [123]高社生,张玲霞.可靠性理论与工程应用.北京:国防工业出版社,2002
    [124]曾天翔,朱美娴,周鸣岐等编著.可靠性维修性保障性术语集.北京:国防工业出版社,2002
    [125] T. Kumaresan,Jseshtharaj B. Joshi. Effect of impeller design on the flow pattern and mixing in stirred tanks. Chem. Eng. J.,2006,115:173~193
    [126] M. Rice,J. Hall,G. Papadakis et al. Investigation of laminar flow in a stirred vessel at low Reynolds numbers. Chem. Eng. Sci.,2006,61:2762~2770
    [127] Arash Iranshahi,M. Heniche,F. Bertrand et al. Numerical investingation of the mixing efficiency of the Ekato Paravisc impeller. Chem. Eng. Sci.,2006 (61):2609~2617
    [128] Chenxu Yu,Sundaram Gunasekaran. Performance evaluation of different mixers in numerical simulation. Journal of Food Eng.,2005,71:295~303
    [129] J. Aubin,D. F. Fletcher,C. Xuereb. Design of micromixers using CFD modeling. Chem. Eng. Sci.,2005,60:2503~2516
    [130] Fabien Barailler,Mourad Heniche,Philippe A. Tanguy. CFD analysis of a rotor-stator mixer with viscous fluids. Chem. Eng. Sci.,2006,61:2888~2894
    [131] Giuseppina Montante , Michal M. , Milan Jahoda et al. CFD simulations and experimental validation of homogenization curves and mixing time in stirred Newtonian and pseudoplastic liquids. Chem. Eng. Sci.,2005,60:2427~2437
    [132] Cristian Rivera,Stephene Foucault,Mourad Heniche et al. Mixing analysis in a coaxial mixer. Chem. Eng. Sci.,2006,61:2895~2907
    [133] A. R. Khophkar,G. R. Kasat,A. B. Pandit et al. CFD simulation of mixing in tall gas-liquid stirred vessel:Role of local flow patterns. Chem. Eng. Sci.,2006,61:2921~2929
    [134]马香峰,虞洪述,吕荣寰编著.确定共轭曲面的方法及其应用.北京:机械工业出版社,1989
    [135]江体乾著.工业流变学.北京:化学工业出版社,1995
    [136]吴其晔巫静安.高分子材料流变学.北京:高等教育出版,2002
    [137]阎超编著.计算流体力学方法及应用.北京:北京航空航天大学出版社,2006
    [138]唐汉祥,吴倩,陈江.推进剂药浆混合均匀性研究.推进技术,1999,20(1):80~83
    [139]陈福连,史祖令.关于复合推进剂批次间性能差异的研究.推进技术,1993,12(2):74~81
    [140]航天科工集团某厂. 2000L-B立式捏合机假药实验报告,2002
    [141]吴世康等编译.固体火箭推进剂(译文集).北京:国防工业出版社,1976
    [142]吴玉金,叶延年.混合生产中固体推进剂的安全问题.固体火箭技术,1998,4:51~53
    [143]胡友民,杜润生,杨叔子.冗余式分层监测系统可靠性分析.机械工程学报,2003,39 (8):110~115
    [144]胡友民,杜润生,杨叔子.集中式监测可靠性分析.振动、测试与诊断,2003,23(1):6~9
    [145] Youmin Hu,Runsheng Du,Shuzi Yang. A framework of Agent-based data acquisition technology for manufacturing system. In proceeding of the TMCE 2002,Wwuhan:HUST Press,2002,439~449
    [146]易朋兴,杜润生,杨叔子等.基于Markov模型的分布式监测系统可靠性研究.机械工程学报,2005,41 (6):143~148
    [147] Yi Pengxing,Yang Shuzi,Du Runsheng et al. Distributed monitoring system reliability estimation with consideration of statistical uncertainty. Chinese Journal of Mechanical Engineering. 2005,18(4):519~525
    [148]易朋兴,刘世元,杜润生等.分布式监测系统可靠性贝叶斯评估.华中科技大学学报(自然科学版),2006,34(3):42~45
    [149] Yi Pengxing,Hu Youming,Yang Shuzi et al. System reliability analysis of redundant condition monitoring systems. In:Proceeding.of the first international symposium on digital manufacture,Wuhan,China,2006:561~564
    [150]陆传赉.工程系统中的随机过程.北京:电子工业出版社,2000
    [151]万涤生编著.可靠性评定与分析及其在机械工业中的应用.北京:中国标准出版社,1995
    [152]王少萍编著.工程可靠性.北京:北京航空航天大学出版社,2000
    [153] Liudong Xing , Leila Meshkat , Susan K. Reliability analysis of hierarchical computer-based systems subject to common-cause failures. Reliab. Eng. and Syst. Safety,2007,92:351~359
    [154] Dai Y S,Xie M,Poh K L et al. A study of service reliability and availability for distributed systems. Reliab. Eng. and Syst. Safety,2003,79:103~112
    [155]郭余庆,王岩.系统可靠性理论与应用.北京:煤炭工业出版社,1991
    [156] Okumoto K.,Goel A. L. Optimum release time for software systems. IEEE Trans. on Relia.,CH1515-6:500~503
    [157] Jin T. Complex system reliability analysis and optimization considering componentreliability estimation uncertainty:[Doctoral Dissertation]. New Brunswick Rutgers:the State University of New Jersey,2001
    [158]宋俊杰.统计信息分析.天津:南开大学出版社,1986
    [159] Zhang R.,Mahadevan S. Bayesian methodology for reliability model acceptance. Reliab. Eng. and Syst. Safety,2003,80:95~103
    [160] Guérin F.,Dumon B.,Usurau E. Reliability estimation by Bayesian method: definition of prior distribution using dependability study. Reliab. Eng. and Syst. Safety,2003,82:409~413
    [161]周源泉,翁可曦.可靠性评定.北京:科学出版社,1991
    [162] F. P. A. Coolen,P. Coolen-Schrijner,M. Rahrouh. Bayesian reliability demonstration for failure-free periods. Reliability Engineering and System Safety,2005,88:81~91
    [163] Amir Azaron , Hideki Katagiri , Kosuke Kato et al. Reliability evaluation of multi-component cold-standby redundant systems. Applied Mathematics and Computation. 2006,173:137~149
    [164] Naruemon Wattanapongskorn,David W. Coit. Fault-tolerant embedded system design and optimization considering reliability estimation uncertainty. Reliab. Eng. and Syst. Safety,2007,92:395~407
    [165]王元文,陈连.基于剩余可靠度的机械可靠性优化设计研究.机械设计与研究,2006,22(2):9~12
    [166]卢建萍.元件的选型与系统的可靠性.流体传动与控制,2006,14(1):38~42
    [167]周国义,周怀春,杨志春.以可靠性为中心的维修分析方法应用.航海工程,2006,5:47~50
    [168] Daniel A. Reeda,Charng-da Lu,Celso L. Mendes. Reliability challenges in large systems. Future Generation Computer Systems,2006,22:293~302
    [169]张兴旺,郭佩虹.环境影响及计算机设备可靠性.电子工艺技术,2002,23(3):122~125
    [170] E.P. Zafiropoulos,E.N. Dialynas. Reliability and cost optimization of electronic devices considering the component failure rate uncertainty. Reliab. Eng. and Syst. Safety,2004,84:271~284
    [171]戚发轫.载人航天技术.北京:国防工业出版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700