悬跨海底管线动力响应试验与数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着海洋油气资源开发的飞速发展,海底管线的应用日渐增多。为探索海底管线在海洋环境条件下的灾变过程和损伤机理,并为其安全评估提供理论基础和科学依据,本文通过物理模型试验和数值模型计算,对悬跨弹性海底管线动力响应开展相关研究。
     海底管线动力响应与海底管线失稳、强度破坏、疲劳损伤等密切相关,掌握海底管线动力响应规律是准确进行海底管线安全评估的基础。本文基于水弹性模型比尺,设计了一套近壁悬跨弹性海底管线动力响应试验研究方案,并针对海底管线服役期间常见海洋环境,开展平底固床、冲蚀固床上悬跨海底管线在规则波、不规则波、水流作用下的动力响应物理模型试验研究,给出了平底固床上悬跨海底管线动力响应受悬跨高度、波浪条件、水流条件的影响规律,以及冲蚀固床上悬跨海底管线动力响应受冲坑长度、波浪条件、水流条件的影响规律,可为认识悬跨海底管线灾变过程、损伤机理和评估悬跨海底管线的安全提供科学依据。在数值研究方面,本文利用三维弹性动力学方程,结合莫里森方程,较好地模拟了规则波浪作用下近壁悬跨弹性海底管线动力响应过程,结合不可压缩流体N-S方程和连续方程,进行管线及其内部流体的三维流固耦合数值计算,基于数值计算结果探讨内流管线系统的动力特性和管内流体特征。该数值方法对于进一步研究管内复杂流体对管线系统的动力特性影响、管线振动过程中管内复杂流体的变化具有重要意义。
     海底管线动力响应对管线安全不利,为有效地减小不利环境荷载条件下海底管线的动力响应幅度,工程中通常是在管线上布置扰流器附件,但目前为止,对扰流器减振的作用机理还不完全清楚。本论文最后部分以海底管线扰流器减振为背景,利用无量纲化的N-S方程和质量-弹簧系统对平行翼板或螺旋翼板剖面开展二维圆柱涡激振动流固耦合数值计算的探索性研究。将任意拉格朗日-欧拉(ALE)和主从(leader-follower)网格控制方法共同应用到圆柱涡激振动研究中,有效地保证了圆柱大位移运动时流体网格的质量。并对低雷诺数下有、无扰流翼板圆柱的涡激振动进行了多组数值计算,对多种翼板圆柱的尾流场涡旋形式、动力响应、升力和阻力系数进行了比较与分析,探讨了扰流翼板对圆柱涡激振动的影响机理,分析结果表明:翼板圆柱响应幅度、升力和阻力系数受翼板布置形式影响很大,且振幅大小明显地依赖于升力系数和圆柱振动的相位差。
Submarine pipelines have been more widely used with the rapid development of offshoreoil-gas exploitation. To provide theoretical foundation and scientific basis for disaster process,damage mechanism and safe assessment of submarine pipelines in an offshore environmentalcondition, investigations have been conducted on dynamic response of submarine suspendedelastic pipeline, based on model tests and numerical simulation.
     Dynamic response of submarine pipeline plays an important role on destabilization,strength fracture and fatigue damage. Understanding the regularity of dynamic response ofsubmarine pipeline is the basis of assessing the safe of submarine pipeline validly. In thispaper, experiments have been conducted on the dynamic response of elastic submarinepipelines suspended over flat or typical erosion beds in waves or currents of common marineenvironment for coastal or offshore submarine pipeline in service, based on the hydroelasticsimilitude criteria. A rather reasonable program and method are established for experiment ofdynamic response of submarine pipeline suspended over sea beds. The strain amplitudes andvibration frequencies are analyzed and discussed on the model pipeline over flat or typicalerosion beds in waves or currents, providing scientific basis for understanding disasterprocess and damage mechanism, and assessing safe of submarine pipelines. In the numericalstudy, three-dimensional elastodynamics equations and Morison equation are applied tosimulate the time histories of dynamic response of submarine pipelines suspended over flatbeds sucessfully. The three-dimensional interaction of pipeline and internal flow isnumerically simulated by applying the iterative computation to the fluid-structure interfacesand using the elastodynamic equation and the incompressible fluid N-S equation andcontinuity equation. Based on the numerical results, the features of pipeline dynamicresponses and internal flows are analyzed and discussed for various internal flow velocities.This method could provide a basis to study the fluid-structure interaction of pipeline andcomplex internal fluid.
     Dynamic response of submarine pipeline is disadvantageous for pipeline safe. Tosuppress response amplitude of submarine pipeline in an unfavorable marine environment,spoiler attachments are usually applied in practice, however, suppression mechanism ofspoilers is not completely understanded. Based on submarine pipeline spoilers,two-dimensional fluid-structure numerical investigation of cylinders with various sets of fins has been conducted by applying non-dimensional N-S equation and mass-spring systemsimplification. Arbitrary Lagrangian Eulerian (ALE) method and leader-follower method areused together in these numerical simulations, availably keeping good quality of the fluiddomain mesh for large displacements of fluid-structure interface. The vortex inducedvibration for bare cylinder and cylinders with different sets of fins is numerically simulated atlow Reynolds numbers. Vibration response, lift coefficients, drag coefficients and wakevortex mode are compared and analysed for cylinders with different sets of fins. Suppressionmechanism of the fin spoilers on the cylinder response is discussed by comparing the wakecharacteristics of a finned cylinder to those of a bare cylinder. The numerical results indicatethat configuration of fins affects wake vortex mode, response amplitude, lift coefficients anddrag coefficients. Meanwhile response amplitude has a strong relationship with the phasebetween the lift force and the cylinder motion.
引文
[1] Brown, R. J. Technical Articles for State-of-the-Art of Marine Pipeline Engineering. Compiled by R.J. Brown and Associates. Zug, Houston, The Hague, Singapor, Montreal. Chapter 7, Part two, pp. 12.
    [2] 周延东.我国海底管道的发展状况与前景.焊管.1998,21(4):46-61
    [3] Sarpkaya. T., In-line and Transverse Forces on Cylinder Near a Wall in Oscillatory Flow at High Reynolds Number. J. Ship Research. 1977,21(4):200-216
    [4] Sarpkaya. T. & F. Rajabi. Hydrodynamic drag on bottom-mounted smooth and rough cylinders in periodic flow, 11th Annual OTC. Houston, 1979 no. 3761.
    [5] SarPkaya. T. & Isaacson. M. Mechanics of wave forces on offshore structures. Van Nostrand Reinhold Co., c1981.
    [6] Sumer, B.M.; Fredsoe, J; Fredsoe, J. Pressure measurements around a pipeline exposed to combined waves and current In: Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium, v 5, n pt A, Pipeline Technology, 1992, p 113-121
    [7] Sundar V.; RoopsekharK. A.P.; Schlurmann, T.; Abbasi M.R.. Probability distribution of wave forces on pipelines near a sloping boundary parallel and normal to wave direction. Coastal Engineering Journal, v 46, n 1, March, 2004, p 93-117
    [8] 李玉成,陈兵,Marchal J L J,Rigo Ph.D.波浪作用下海底管线的物理模型实验研究.海洋通报.1996,15(5):68-73.
    [9] 李玉成,张宁川,孙姎.波流共同作用下近底于母管线的水动力特征。水动力学研究与进展.1994,Ser.A,Vol.9,No.1:51-59
    [10] Yamamoto, T., Nath, J. H. and Slotta, L, S., Wave Forces on Cylinders Near Plane Boundary, Jour. Waterways etc. Div., ASCE. Vol. 100, No. ww4, PP. 345-359, 1974
    [11] Gryta, O. (Norwegian Inst of Technology); Torum, A. On wave and current forces on pipelines on the sea bed. In: Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium, v 5, n 8th, 1989, p 143-148
    [12] Lee Y G, Hong S. W. Rang K. J. A numerical simulation of vortex motion behind a circular cylinder above a horizontal Plane boundary. In: Proceedings of the Fourth International Offshore and Polar Engineering Conference, Osaka. Japan ISBN 1-880653-10-9(set); ISBN 1-880653-13-3(Ⅲ), 1994, 427-433
    [13] 李玉成,陈兵.海底管线上波浪力的大涡模拟及三步有限元数值模拟.海洋通报.1999,21(6),:87-93
    [14] 吕林.海洋工程中小尺度物体的相关水动力数值计算:(博士学位论文).大连:大连理工大学,2006.
    [15] Tsahalis, DT. Vortex-induced vibrations of a flexible cylinder near a plane boundary exposed to steady and wave-induced currents, Journal of Energy Resources Technology, Transactions of the ASME. 1984, 106: 206-213.
    [16] Tsahalis, DT. Vortex-induced vibrations due to steady and wave-induced currents of a flexible cylinder near a plane boundary, Journal of Offshore Mechanics and Arctic Engineering. 1987, 109: 12-118.
    [17] Sumer, B. M. and Fedsoe, J. Transverse vibrations of an elastically mounted cylinder exposed to an oscillating flow, ASME Journal of Offshore Mechanics and Arctic Engineering. 1988, 110: 387-394.
    [18] Chioukh, N. and Narayanan R. Oscillations of elastically mounted cylinders over plane beds in waves, Journal of Fluids and Structures. 1997, 11: 447-463.
    [19] Bryndum M. B., Bonde C., Smitt L. W., Tufa F., and Montesi M. Long free spans exposed to current and waves: model tests. Offshore Technology Conference, 1989, Paper No. 6153.
    [20] Bruschi R., Montesi M., Tufa F., Vitali L. andAccerboni E. Field tests with pipeline free spans exposed to wave flow and steady current. Offshore Technology Conference, 1989, Paper No. 6152.
    [21] Tsahalis DT, Jones WT. Vortex-induced vibrations of a flexible cylinder near a plane boundary in steady flow. Proceedings - Annual Offshore Technology Conference, Houston, USA, 1981, 1: 367-381.
    [22] Jacobsen V, Bryndum MB, Nielsen R, Fines S. Cross-flow vibrations of a pipe close to a rigid boundary. Journal of Energy Resources Technology, Transactions of the ASME, 1984: 106: 451-457.
    [23] 孟昭瑛,杨树耕,王仲捷.水下管道涡激振动的实验研究,水利学报,1994,7:43-50.
    [24] 方华灿,隋信众.海底管道管跨的流激涡旋振动的试验研究与安全可靠性分析,中国海上油气(工程),1998,10(2):20-23.
    [25] 余建星,罗延生,方华灿.海底管线管跨段涡激振动响应的实验研究[J].地震工程与工程振动,2001,21(4):93-97.
    [26] 李磊岩.海底管线悬跨段动力响应分析及其实验研究:(硕士学位论文).青岛:中国海洋大学,2004.
    [27] 李磊岩,李华军,梁丙臣,王树青,海底管线管跨段在内外流体作用下的竖向动力特性研究.中国海洋大学学报.
    [28] 蔡洪滨,黄维平.基于管道振动实验的涡激升力频谱分析.中国水运(学术版),2006,6(5):45-47.
    [29] 祖楠,黄维平.考虑流固耦合时的海底管道悬跨段非线性动力分析.中国海洋大学学报,2006,36(1):168-172.
    [30]Yang B, Gao FP, Wu YX, Li DH. Experimental study on vortex-induced vibrations of submarine pipeline near seabed boundary in ocean currents. China Ocean Engineering, 2006, 20: 113-121.
    [3l]Gao Fu-Ping, Yang Bing, Wu Ying-Xiang, Yan Shu-Ming. Steady current induced seabed scour around a vibrating pipeline. Applied Ocean Research, 2006, 28, 5: 291-298.
    [32]署恒术,黄小光.三维海底悬空管道的随机振动分析.中国海洋平台,2006,21(1):30—34.
    [33]lwan, W D., The vortex induced oscillation of non-uniform structure systems. Journal of Sound and Vibration, 1981, 79(2): 291-301.
    [34]Facchinetti M. L., de Langre E., Biolley F.. Coupling of structure and wake oscillators in vortex-induced vibrations. Journal of Fluids and Structures. 2004, 19: 123-140.
    [35]Matteoluca, F., Emmanuel, D. L. Coupling of structure and wake oscillators in vortex induced vibrations, Journal of Fluids and Structures, 2004, 1: 116-133.
    [36]Hirt. G. W., Amaden, A. A. and Cook, J. L. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. Journal of Computational Physics. 1974, 14 (3): 227-253.
    [37]Nomura, T. , Hughes, T. J. R. , An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body. Computer Methods in Applied Mechanics and Engineering. 1992, 95(2): 115-138.
    [38]Nomura, T., ALE finite clement computations of fluid-structure interaction problems. Computer Methods iii Applied Mechanics and Engiiiccring, 1994, 112: 291-308.
    [39]Wei, R. , Sekine, A. and Shimura, M., Numerical analysis of 2D vortex-induced oscillations of a circular cylinder. International Jounial for Numerical Methods in Fluids. 1995, 21: 993-1005.
    
    [40]蒋莉,沈孟育,求解流体与结构相互作用问题的ALE有限体积方法.水动力学研究与进展(A辑). 2000, 15(2): 148-155.
    
    [41]Newman, D. J., Karniadakis, G E. A direct numerical simulation study of flow past a freely vibrating cable. Journal of Fluid Mechanics. 1997, 344: 95-136.
    
    [42]王国兴.海底管线管跨结构涡致耦合振动的数值模拟与实验研究:(博士学位论文).青岛:巾国 海洋大学,2006.
    [43]Housner G. W. Bending Vibrations of a Pipe Line Containing Flowing Fluid, ASME Journal of Applied Mechanics, 1952,19:205-208.
    [44]Paidoussis M P, Issid N T. Dynamic stability of pipes conveying fluid. Journal of Sound and Vibration, 1974, 33(3):267-294.
    [45]申仲翰,赵强.内流对海底管线涡致振动与疲劳寿命的影响.海洋工程,1995,13(3):1-8.
    
    [46]张悉德,张玮.浸入水中输送流体管道振动微分方程的建立.青岛化工学院学报,1994,15(1):72-74.
    
    [47]杨新华,郭海燕,娄敏,傅强.考虑阻尼海底悬跨段管道的动力特性及允许悬空长度.海洋工程,2005,23(1):15.
    [48] 黄小光,署恒木,韩忠英.海底悬空管道内部流体对振动特性的影响.石油矿场机械,2006,35(1):23-26.
    [49] Semlet C, Li G X, Paidoussis M P. The nonlinear equations of motion of pipe conveying fluid. Journal of Sound and Vibration, 1994,169(5):577-599.
    [50] S. I. Lee, J. Chung, New Non-linear Modeling for Vibration Analysis of a Straight Pipe Conveying Fluid. Journal of Sound and Vibration, 2002, 254(2): 313-325.
    [51] U Lee, C H Pak, S C Hong. The dynamic of a piping system with internal unsteady flow. Journal of Sound and Vibration, 1995,182:297-311.
    [52] 张立翔,黄文虎.输流管道非线性流固耦合振动的数学建模.水动力学研究与进展,2000,15(1):116-128.
    [53] D. G. Gorman, J. M. Reese et al. Vibration of a Flexible Pipe Conveying Viscous Pulsating Fluid Flow. Journal of Sound and Vibration, 2000, 230(2): 379-392.
    [54] Paidoussis M P, Denise J P. Flutter of thin cylindrical shells conveying fluid. Journal of Sound and Vibration, 1971, 16: 459-461.
    [55] Paidoussis M P, Denise J P. Flutter of thin cylindrical shells conveying fluid. Journal of Sound and Vibration, 1972, 20:9-26.
    [56] X. M. Zhang. Parametric studies of coupled vibration of cylindrical pipes conveying fluid with the wave propagation approach. Computers and Structures, 2002, 80:287-295.
    [57] M. Amabili, F. Pellicano et al. Non-linear Dynamics and Stability of Circular Cylindrical Shells Containing Flowing Fluid. Part Ⅳ: Large-amplitude Vibrations With Flow. Journal of Sound and Vibration, 2000, 237(4):641-666.
    [58] M. Amabili, F. Pellicano. Non-linear dynamics and stability of circular cylindrical shells conveying flowing fluid. Computers and Structures, 2002, 80: 899-906.
    [59] A. K. Misar, S. S. T. Wong et al. Dynamics and Stability of Pinned-Clamped and Clamped-Pinned Cylindrical Shells Conveying Fluids. Journal of Fluids and Structures, 2001, 15: 1153-1166:
    [60] Y. L. Zhang, D. G. Gorman et al. A Finite Element Method for Modeling the Vibration of Initially Tensioned Thin-walled Orthotropic Cylindrical Tubes Conveying Fluid. Journal of Fluids and Structures, 2001, 245(1): 93-112.
    [61] Anagnostopoulos, P., Bearman, P. W.. Response characteristics of a vortex-excited cylinder at low Reynolds numbers. Journal of Fluids and Structures, 1992, 6, 39-50.
    [62] Anagnostopoulos P.. Numerical investigation of response and wake characteristics of a vortex-excited cylinder in a uniform stream. Journal of Fluids and Structure, 1994, 8, 367-90.
    [63] Zhou, C.Y., So, R.M.C., Lam, K.. Vortex-induced vibration of an elastic circular cylinder. Journal of Fluids and Structures, 1999, 13, 165-189.
    [64] Blackburn H, Karniadakis G E. Two and three-dimensional simulations of vortex induced vibration of a circular cylinder [A]. Proceeding of the 3rd International Offshore Polar Engineering Conference [C], Singapore, 1993.
    [65] Shiels D, Leonard A, Roshko A. Flow induced vibration of a circular cylinder at limiting structural parameters [J]. Journal of Fluids and Structures, 2001, 15: 3-21
    [66] 曹丰产,项海帆.圆柱非定常绕流及涡致振动的数值计算.水动力学研究与进展,2001,16(1):111-118.
    [67] Ren An-lu, Chen Wen-qu, Li Guang-wan. An ALE method and DDM with high accurate compact schemes for vortex-induced vibrations of an elastic circular cylinder. Journal of Hydrodynamics, Ser. B, 2004,16(4): 708-715.
    [68] 王志东,周林慧.均匀流中横向振荡圆柱绕流场的数值分析.水动力学研究与进展,2005,20(2),146-151.
    [69] 赵刘群,陈兵.低雷诺数下圆柱涡激振动的二维有限元数值模拟.海洋技术,2006,25(4),117-121.
    [70] Katinas, V., Perednis, E., Svedoscius, V. Vibrations of smooth and finned tubes in crossflows of viscous fluids with different turbulence levels. Heat Transfer - Soviet Research, 1991, 23: 844-851.
    [71] Ziada, S., Jebodhsingh, D., Weaver, D.S., Eisinger, F.L. The effect of fins on vortex shedding from a cylinder in cross-flow. Journal of Fluids and Structures, 2005, 21: 689-705.
    [72] Sirisup, S., Karniadakis, G.E., Saelim, N., Rockwell, D.. DNS and experiments of flow past a wired cylinder at low reynolds number. European Journal of Mechanics B/Fluids, 2004, 23, 181-188.
    [73] Schulz, K.W, Kallinderis, Y.. Numerical prediction of the hydrodynamic loads and vortex-induced vibrations of offshore structures. Journal of Offshore Mechanics and Arctic Engineering, 2000, 122: 289-293.
    [74] Yeung, RW. Fluid dynamics of finned Bodies - From VIV to FPSO. Proceedings of the 12th International Offshore and Polar Engineering Conference, Kitakyushu, Japan, 2002, May.
    [75] Sumer, B.M. and Fredsoe, J.. The Mechanics of Scour in the Marine Environment[M]. World Scientific, 2002: 81-82.
    [76] 俞聿修.随机波浪及其在工程中的应用.大连:大连理工大学出版社,2000.
    [77] Taniguchi, S. and Miyakoshi, K.. Fluctuating fluid forces acting on a circular cylinder and interference with a plane wall, Experiments in Fluids, 1990, 9(4), 197-204
    [78] Buresti, G. and Lanciotti A.. Mean and fluctuating forces on a circular cylinder in cross-flow near a plane surface, Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41(1-3), 639-650.
    [79] Sumer, M. B. and Fredsoe, J.. Hydrodynamics around cylindrical structures, Singapore, World Scientific Publishing, 1997, Singapore.
    [80] Origill, G., Barbas, S. T., Crossley, C. W., Carter, L. W.. Current practice in determining allowable pipeline free spans. Proceeding of the 11th Offshore Mechanics and Arctic Engineering Conference, 1992, June 7-11, Calgary, Canada, Pipeline Technology, vol. 5-A, 139-145.
    [81] 竺艳蓉.海洋工程波浪力学.天津:天津大学出版社,1991.
    [82] 周伟,桂林,周林,张家祥.MATLAB小波分析高级技术.西安:西安电子科技大学出版社,2005.
    [83] 飞思科技产品研发中心.小波分析理论与MATLAB7实现.北京:电子工业出版社,2005.
    [84] Ingrid Daubechies著,李建平,杨万年译.小波十讲.北京:国防工业出版社,2004.
    [85] Bearman, P. W. Vortex trajectories in oscillatory flow, In Proceedings International Symposium around Marine Structures, Trondheim, Norway, 1985, pp. 133-153.
    [86] Chioukh, N. Wave effects on rigid and elastically-mounted horizontal circular cylinders placed above a plane bed, PhD thesis, University of Manchester Institute of Science and Technology, Manchester, U. K, 1995.
    [87] Sarpkaya, T. Forces on cylinders near a plane boundary in a sinusoidally oscillating Fluid, ASME Journal of Fluids Engineering, 1976, 98: 499-505.
    [88] Sumer, B. M., Jensen, B. L. and Fedsoe, J. Effect of plane boundary on oscillating flow around a circular cylinder, Journal of Fluid Mechanics, 1991, 225: 271-230.
    [89] Williamson, C. H. K. Sinusoidal flow relative to circular cylinders, Journal of Fluid Mechanics, 1985, 155: 141-174.
    [90] Williamson, C H K. Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds number. Journal of fluid mechanics, 1989, 206: 579-627.
    [91] Williamson, CHK. 2-D and 3-D aspects of the wake of a cylinder, and their relation to wake computations. Lectures of Applied Mathematics, 1991, 28: 719- 751. Providence, RI: American Mathematical Society..
    [92] Sarpkaya T. Hydrodynamic damping, flow-induced oscillations, and biharmonic response. ASME Journal of Offshore Mechanics and Arctic Engineering. 1995, 117: 232-38.
    [93] 白莱文斯.流体诱发振动.北京:机械工业出版社,1983,pp:296-297.
    [94] 李玉成,腾斌.波浪对海上建筑物的作用.北京:海洋出版社,2002.
    [95] 杨明华.海洋油气管道工程.天津:天津大学出版社,1994.
    [96] 克拉夫R.,彭津J.结构动力学.北京:高等教育出版社,2006,pp:29-31.
    [97] 邢至庄,孙绍述,胡玉霞.接近海底水平管的波浪力和CD,CM,CL值的试验研究.海洋工程.1990,3,24-31.
    [98] Willden R.H.J., Graham J.M.R.. Numerical prediction of VIV on long flexible circular cylinders. Journal of Fluids and Structures, 2001 15, 659-69.
    [99]Williamson, C. H. K., Govardhan, R. Vortex-induced vibrations. Annual Review of Fluid Mechanics, 2004,36, 413-455.
    [100] Govardhan R. .Williamson C. H. K. Modes of vortex formation and frequency response of a freely vibrating cylinder. Journal of Fluid Mechanics. 2000,420,85-130.
    [101] Blackburn HM, Govardhan RN, Williamson CHK. A complementary numerical and physical investigation of vortex-induced vibration. Journal of Fluids and Structure. 2001, 15: 481 - 88.
    [102] Williamson CHK, Roshko A. Vortex formation in the wake of an oscillating cylinder. Journal of Fluids and Structure. 1988, 2: 355-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700