压电-金属复合结构合成射流驱动器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成射流技术是一种全新的流场主动控制方法,它通过驱动隔膜的周期振动改变驱动器腔体体积,从而在出口处形成射流,其特点是在驱动器吹出和吸入流体的一个周期内,出口净质量流量为零,但净动量不为零。它能够以局部很小的能量输入实现全局大尺度的流场控制,因此被认为是流场控制的突破性技术,成为流场控制领域的一个重要研究方向,同时在航空航天等领域也具有重要的应用前景。
     本文立足于合成射流技术的基础性研究,通过数值仿真和试验着重研究了合成射流产生的机理和发展演化过程。探索了一种旨在提升驱动器的驱动能力的新型半钹形压电-金属复合结构隔膜。此外,为了有效地分析和处理试验中得出的非稳态流场信号,采用了一种新的信号分析处理方法。具体的研究内容有:
     第一,基于二维不可压缩RANS方程建立数值模型,研究了现有几种湍流模型在描述合成射流现象时的适用性。分别应用这些模型数值模拟合成射流流场,并与试验结果进行对比,确定了最佳模型。第二,利用选定的湍流模型数值仿真了合成射流的产生机理、射流和涡对的运动演化过程,研究了射流速度场在时间和空间上的分布特性、合成射流驱动器输出射流速度与腔体结构参数、出口形状以及出口的倾斜角度等的关系,为驱动器腔体结构的优化设计提供了参考。第三,为了提高振动隔膜的驱动能力,提出了一种新型的半钹形压电-金属复合结构振动隔膜。使用商业有限元软件ANSYS建立了隔膜的有限元分析模型,分析了隔膜的动态特性,并通过仿真对隔膜结构及其尺寸进行了研究。此外,还提出了另一种新型半钹形双隔膜驱动器。通过对隔膜的试验测试表明半钹形隔膜的位移变形量达到传统平板形隔膜的2.6倍。第四,制作了几种半钹形隔膜以及传统平板形隔膜合成射流驱动器,并对其进行了试验测试,利用总压管测速、热线测速法以及粒子图像测速法测量了合成射流的流场分布特性。对驱动器的腔体尺寸进行了优化,验证了数值仿真研究的正确性。试验结果也表明半钹形隔膜能够达到提升驱动器出口速度的目的,因而增强了驱动器的驱动能力。最后,将Hilbert-Huang变换引入到流场的信号处理中。对热线风速仪所测射流瞬时速度信号进行HHT分析和处理,其结果具有清晰的物理意义,从而表明HHT可以有效地应用于流场信号的分析与处理中。
     本论文的研究得到了国家自然科学基金的资助(项目号:90405008)。
The synthetic jet technology is a new method of active flow control. The jet is synthesized at the outlet of the actuator cavity through its volume variations caused by periodic membrane oscillations. Within a cycle of the fluid in and out of the cavity, the net mass flux is zero but the net momentum is non-zero. Controlling the flow in relatively large area can be realized by a small, localized energy input. Thus the technology, regarded as a breakthrough in flow control, has become an important research direction in the areas of active flow control and will be found applications in aerospace engineering.
     This dissertation aims at the fundamental research on synthetic jet technology. Emphasizes have been placed on the mechanism of the formation and evolution of synthetic jet via numerical simulations and experiments. To enhance the driving ability of the actuator, a new half cymbal piezoelectric-metal composite membrane is explored. Besides, to effectively process the non-stationary signal of the synthetic jet recorded during the experiment, a new signal processing method is employed. The detailed research is including:
     Firstly, a two dimensional incompressible RANS model is established. Several existing viscous models are studied for the suitability to describe the synthetic jet phenomena. Numerical simulations are conducted by utilizing these viscous models, and the simulated results are compared with experiment data to determine the best suitable model. Secondly, the formation mechanism and the evolution process of the synthetic jet are simulated numerically with the chosen model. The behavior of the time and spatial distributions of the jet velocity are investigated. Relationships of the output velocity with the cavity geometry, the outlet shape, as well as the tilt angle between the outlet centerline and the wall are studied to provide a reference for the optimization design of the actuator cavity structure. Thirdly, a new kind of half cymbal piezoelectric-metal composite membrane (HCPCM) is proposed in order to improve the driving ability of the membrane. A finite element model of the HCPCM has been established and its dynamic behaviors are analyzed by using the commercial FE software ANSYS. The membrane structure is optimized based on the finite element simulations. Besides, another new kind of actuator with dual HCPCM is also proposed. Experiments have been performed. Experimental results reveal that the displacement of the HCPCM is approximately 2.6 times larger than that of conventional plane membrane. Fourthly, based on the gathered information, several synthetic jet actuators with HCPCM and traditional plane membranes are manufactured and tested. The jet flow field is measured by using the pitot anemometer, Hot Wire Anemometer (HWA) and Particle Image Displacement Velocimetry (PIV). The optimized geometry of the actuator is also determined by the experiments. Measured data verify the correctness of the simulations. Results also reveal that the HCPCM does raise the synthetic jet velocity at the outlet and thus enhance the driving ability of the actuator. Finally, Hilbert-Huang Transform (HHT) is introduced into the signal analysis of fluid field. Signals of the instantaneous jet velocity are collected by using the HWA and are then processed with HHT. The processed results provide clear physical meanings of the jet. It may conclude that HHT is an effective method for the processing of signals in the flow field.
     The research is financially supported by the National Science Foundation of China (No: 90405008).
引文
[1] http://www.ae.uiuc.edu/m-selig/ads/coord_database.html
    [2] Ahmad, K.A. Watterson, J.K. J.S. Cole et al. Sub-Boundary Layer Vortex Generator Control of a Separated Diffuser Flow. AIAA, 2005-4650.
    [3] Bacher E.V., Smith C.R. A Combined Visualization-Anemometry Study of the Turbulent Drag Reducing Mechanisms of Triangular Micro-Groove Surface Modificaions. AIAA, 85-0548.
    [4] Walsh, M.J. Turbulent Boundary Layer Drag Reduction Using Riblets. AIAA paper 82-0169.
    [5] Walsh, M.J. Riblets as a Viscous Drag Reduction Technique. AIAA, 21; 4, 485
    [6] Walsh. M.J. Drag Characteristics of V-Groove and Transverse Curvature Riblets. Viscous Drag Recuction, Progress in Astronautics and Aeronautics, Vol.72, G.R. Hough editor.
    [7] Wassen E., Kramer F., Thiele F. Turbulent Drag Reduction by Oscillating Riblets. AIAA, 2008-4204
    [8] Viswanath P.R. Riblets on Airfoils and Wings: A Review. AIAA, 99-3402
    [9] Bushnell D. M., Hefner J. N. Viscous Drag Reduction in Boundary Layers. AIAA, 1990, Vol. 123, Washington D.C.
    [10] Cui Y.D., Lim T.T., Tsai H.M. Effects of Forebody Slot Blowing on Vortex Breakdown and Load over a Delta Wing. AIAA, 2007-882.
    [11] Linda D.K. Active Flow Control Technology. ASME Fluids Engineering Division Technical Brief.
    [12] Chester Lee, Guang Hong, Ha Q.P. et al. A piezoelectrically actuated micro synthetic jet for active flow control. Sensors and Actuators A. 2003, 108: 168-174.
    [13] Chen Y., Liang S., Aung K. et al. Enhanced Mixing in a Simulated Combustor Using Synthetic Jet Actuators. AIAA, 99-0449.
    [14] Rinehart C., McMichael J. M., Glezer A. Transitory Flow and Force Development on a Body of Revolution Using Synthetic Jet Actuation. AIAA, 2003-0618.
    [15]罗小兵,李志信,过增元.一种新型无阀微泵的原理和模拟.中国机械工程. 2002,13(15):1261-1263.
    [16]明晓.钝头体尾流的特性及控制. [博士学位论文].南京,南京航空航天学院,1988.
    [17] Smith B. L., Glezer Ari. Vectoring and Small-Scale Motions Effected in Free Shear Flows Using Synthetic Jet Actuators. AIAA, 97-0213.
    [18] Douglas R. S., Amitay M., Valdis Kibens et al. Modification of Lifting Body AerodynamicsUsing Synthetic Jet Actuators. AIAA, 98-0209.
    [19] Amitay M., Smith B. L., Glezer A. Aerodynamic Flow Control Using Synthetic Jet Technology. AIAA, 98-0208.
    [20] Amitay M., Kibens D. et al. Control of Internal Flow Separation Using Synthetic Jet Actuators. AIAA 2000-0903.
    [21] Matthew D. Z., Jacquelynn M. G., Pitt V., Pavlos P. V et al. Frequency-and- Amplitude -Independent Flow Controller for Sharpe-Edged Wings. AIAA, 2002-0969.
    [22] Chris Rinehart, James M. McMichael, Ari Glezer. Transitory Flow and Force Development on a Body of Revolution Using Synthetic Jet Actuation. AIAA, 2003-0618.
    [23] Liang Y. C., Taya M., Kuga Y. Design of membrane actuators based on ferromagnetic shape memory alloy composite for synthetic jet actuator. Smart Structures and Materials 2004: Smart Structures and Integrated Systems, Porc. Of SPIE Vol. 5390.
    [24] Smith B. L., Glezer A. The formation and evolution of synthetic jets. Physics of Fluids, 1998, Vol.10 No.9 2281-2297.
    [25] Yair Guy., McLaughlin T. E., Morrow J. A. Velocity Measurements in a Synthetic Jet. AIAA, 2001-0118.
    [26] Yair Guy, McLaughlin T. E., Alberston J. A. Effect of Geometric Parameters on the Velocity Output of a Synthetic Jet Actuator. AIAA, 2002-0126.
    [27] Hall J. K., Addington G. A. Flow Control on a Reduced-Order Two-Dimensional Cylinder Model. AIAA, 2001-4348.
    [28] Michael Amitay, Glezer Ari. Controlled transients of flow reattachment over stalled airfoils. International Journal of Heat and Fluids Flow, 2002, 23, 690-699.
    [29] Kotapati R. B., Rajat Mittal, Olaf Marxen et al. Numerical Simulations of Synthetic Jet Based Separation Control in a Canonical Separated Flow. AIAA, 2007-1308.
    [30] Seifert A., Pack L. G. Oscillatory Excitation of Unsteady Compressible Flows over Airfoils at Flight Reynolds Numbers. AIAA, 99-0925.
    [31] Chen F. J., Yao C., Beeler G. B et al. Development of Synthetic Jet Actuators for Active Flow Control at NASA Langley. AIAA, 2000-2405.
    [32] Sellers W. L., Jones III, G. S., M. D. Moore. Flow Control Research at NASA Langley in Support of High-Lift Augmentation. AIAA, 2002-6006.
    [33] Anders S. G., W. L.Sellers III, A. E. Washburn. Active Flow Control Activities at NASA Langley. AIAA, 2004-2623.
    [34] Whitehead J. A., Gursul I. Interaction of Synthetic Jet Propulsion with Wing Aerodynamics at Low Reynolds Numbers. AIAA, 2004-93.
    [35] Jabbal M., Zhong. S. The near wall effect of synthetic jets in a boundary layer. International Journal of Heat and Fluid Flow, 2008, 29, 119-130.
    [36] Deck S., Hallard R., Guillen P. Numerical Simulations of Steady and Unsteady Separated Nozzle Flows. AIAA, 02-0406.
    [37] Travnicek Z., Tesar V., Wang A. B. Enhancement of synthetic jets by means of an integrated valve-less pump Part II. Numerical and experimental studies. Sensors and Actuators A, 2005, 125, 50-58.
    [38] Barrett R., Corpening J., Reasonover C. Airfoil drag elimination and stall suppression via piezoelectric dynamic tangential synthetic jet actuators. Smart Structures and Materials 2005: Smart Structures and Integrated Systems, Proc. Of SPIE Vol. 5764.
    [39] Mallinson S. G., Reizes J. A., Hong G. et al. The operation and Application of Synthetic Jet Actuators. AIAA, 2000-2402.
    [40] Mallinson S. G., Kwok C. Y., Reizes J. A. Numerical simulation of micro-fabricated zero mass-flux jet actuators. Sensors and Actuators A, 2003, 105, 229-236.
    [41] Ohishi M., Ogawara K., Higuchi T. et al. Effect of DFC Parameter on Flow Control around Wings with PSJA. AIAA 2007-110.
    [42] Park S. H., Yu Y. H., Byun D. Y. RANS Simulation of a Synthetic Jet in Quiescent Air. AIAA, 2007-1131.
    [43] Agrawal A., Verma G. Similarity analysis of planar and axisymmetric turbulent synthetic jes. International Journal of Heat and Mass Transfer, 2008, 51, 6194-6198.
    [44] Donovan J. F., Kral L. D., Cary A. W. Active Flow Control Applied to an Airfoil. AIAA, 98-0210.
    [45] Roos F. W. Synthetic-Jet Microblowing for Forebody Flow-Asymmetry Management. AIAA, 98-0212.
    [46] Guo Dahai, Kral L. D., Cary A. W. Numerical Simulation of the Interaction of Adjacent Synthetic Jet Actuator. AIAA, 2000-2565.
    [47] Calkins F. T., Mabe J. H. Multilayer PVDF Actuators for Active Flow Control. AIAA, 01-1560.
    [48] Benard N., Braud P., Touchard G. et al. Detachment and attachment of an axisymmetric non-reactive jet with turbulent shear layer: Control by plasma actuator. Experimental Thermal and Fluid Science, 2008, 32, 1193-1203.
    [49]顾蕴松,明晓.应用PIV技术研究“零质量”射流的非定常流场特性.试验流体力学, 2005,19(1):83-86.
    [50]徐惊雷等.不同狭缝厚度的零质量射流PIV实验研究.推进技术,2007,28(2):162-166.
    [51]罗小兵,李志信,过增元.合成喷形成的机理分析.清华大学学报(自然科学版),2000,40(12):86-89.
    [52]罗小兵,李志信,过增元.不可压缩合成喷流场的数值模拟.工程热物理学报, 2001,第22卷,增刊:56-58.
    [53]王德全,夏志勋,罗振兵.带倾角合成射流激励器对低速主流矢量控制研究.固体火箭技术,2004,27(3):165-168.
    [54]赵宏,伍耐明,娄慧娟,杨治国.合成射流激励影响扩散燃烧NOx生成的实验研究.能源工程,2006,第6期,52-55.
    [55]郑新前,侯安平,周盛.利用合成射流控制轴流压气机中的非定常分离.第十届全国分离流、涡流和流动控制会议, 2004年,南京.
    [56]郝礼书,乔志德.合成射流用于翼型分离流动控制的研究.西北工业大学学报,2006,24(4):528-531.
    [57]郝礼书,韩忠华,乔志德等.合成射流致动器出口流场特性分析.机械设计与制造, 2006,第8期,138-140.
    [58]方昌德.流体控制技术在航空涡轮推进系统上的应用.燃气涡轮试验与研究. 2003, 16 (2): 1-6.
    [59] Morel-Fatio S. et al. UAV Performance Enhancements with Piezoelectric Synthetic Jet Actuators. AIAA, 2003-394.
    [60] Frederick T. Calkins, James H. Mabe, Josef P. Smith et al. Low Frequency (F+=1) Multilayer Piezopolymer synthetic Jets for Active Flow Control. AIAA, 2002-2823.
    [61] McCormick D.C. Boundary layer separation control with directed synthetic jets. AIAA, 2000-0519.
    [62] Gilarranz J. L., Rediniotis O. K. Compact, High-Power Synthetic Jet Actuators for Flow Separation Control. AIAA, 2001-0737.
    [63] Traub L. W., Miller A., Ukpai U. I. et al. Reconfigurable synthetic jet actuation and closed-loop flow control. AIAA, 2003-217.
    [64] Dancila D. S. et al. Development of a Wing Section with Piezoelectrically Modulated/Vectored Blowing. AIAA, 2002-1634.
    [65] Grossman K. R. et al. SparkJet Actuators for Flow Control. AIAA, 2003-57.
    [66] Santhanakrishnan A., Jacob J. D. On Plasma Synthetic Jet Actuators. AIAA, 2006-317.
    [67] Santhanakrishnan A., Jacob J. D. Effect of Plasma Morphology on Flow Control Using Plams Synthetic Jet Actuators. AIAA, 2007-783.
    [68]丁玉美,阔永波,高新波.数字信号信号处理——时域离散随机信号处理,西安电子科技大学出版社,2002:173-250.
    [69] Davis S.A., Glezer A. The Manipulation of Large- and Small-Scales in Coaxial Jets using Synthetic Jet Actuators. AIAA, 2000-0403.
    [70] Kim K. et al. Dynamic Compensator for a Synthetic-Jet-Like Compression Driver Actuator in Closed-Loop Cavity Flow Control. AIAA, 2007-880.
    [71] Mallinson S.G. et al. Analysis of hot-wire anemometry data obtained in a synthetic jet flow. Experimental Thermal and Fluid Science, 28: 265-272.
    [72] Huang N.E., Zheng S., Long S.R. et al. The Empirical Mode Decomposition and Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis. Proceedings of the Royal Society of London, Series A 455: 903-995.
    [73] Vesselin Vatchev. The analysis of the Empirical Mode Decomposition Method. USC, November 20, 2002.
    [74]熊学军,郭炳火等. EMD方法和Hilbert谱分析的应用与探讨.黄渤海海洋, 2002, 20(2): 12-21.
    [75] Feldman M., Seibold S. Damage diagnosis of rotors: application of Hilbert Transform and Multihypothesis Testing. Journal of Vibration and Control: 421-442.
    [76]李书进,虞晖,瞿伟廉.基于Hilbert-Huang变换的结构损伤诊断.武汉理工大学学报,2004,26(8):44-47.
    [77] Mao Yimei, Que Peiwen. Application of Hilbert-Huang signal processing to ultrasonic non-destrctive testing of oil pipelines. Journal of Zhejiang University SCIENCE A, 2006, Vol .7 No.2:130-134.
    [78] Yang J.N., Kagoo P.K. Damage Identification of Structures Using Hilbert-Huang Spectral Analysis. Proceeding of 15th ASCE Engineering Mechanics Conference, 2002.06.
    [79]李迎.基于Lamb波与时频分析技术的复合材料损伤检测研究. [硕士学位论文],南京,南京航空航天大学,2005.
    [80]孙亚杰.基于Lamb波与HHT分析的复合材料结构的主动监测技术研究. [硕士学位论文],南京,南京航空航天大学,2006.
    [81] Huang N. E. A New Spectral Representation of Earthquake Data: Hilbert Spectral Analysis ofStation TCU 129. BSSA 91: 1310-1338.
    [82] Loh C.H., Wu T.C., Norden E.H. Application of the Empirical Mode Decomposition Hilbert Spectrum Method to Identify Neat-fault Ground Motion Characteristics and Structural Responses. BSSA 91: 1339-1357.
    [83] Versteeg H. K., Malalasekera W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Wiley, New York, 1995.
    [84] Bradshaw P., Basco D. R. Computational Fluid Dynamics - An Introduction for Engineers Longman Scientific & Technical. Harlow England, 1989.
    [85]王福军.计算流体动力学分析—CFD软件原理与应用.清华大学出版社,北京,2004年.
    [86] Mallinson S. G., Hong G., Reizes J. A. Some Characteristics of Synthetic Jets. AIAA, 99-3651.
    [87] Fluent Inc. FLUENT User’s Guide. Fluent Inc, 2003.
    [88] Launder B. E., Spalding D. B. Lectures in Mathematical Models of Turbulence. Academic Press, London, 1972.
    [89] Hinze J.O., Turbulence. McGraw-Hill, New York, 1975.
    [90] Rahman M. M., Siikonen T. Low Reynolds number k-εmodel for near-wall flow. International Journal for Numerical Methods in Fluids, 2005, 47, 325-338.
    [91] Nagano Y., Kondoh M., Shimada M. Multiple time scale turbulence model for wall and homogeneous flows based on direct numerical simulations. International Journal of Heat and Fluid Flow, 1997, 18, 346-359.
    [92] Rahman M. W., Rautaheimo P., Siikonen T. Modifications for an explicit algebraic stress model. International Journal for Numerical Methods in Fluids, 2001, 35, 221-245.
    [93] Rahman M. M., Siikonen T. A new time scale based low Re k-εmodel. The 3rd International Conference on Computational Heat and Mass Transfer, Banff, Canada, Mohamad AA. Calgary University Press, Alberta, 2003, 754-763.
    [94] Wilcox D.C. Turbulence Modeling for CFD. DCW Industries, Inc., Canada, California, 1998.
    [95] Gilbson M. W., Luander B. E. Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer. Journal of Fluid Methods, 1978, 86, 491-511.
    [96] Patanker S.V., Spalding D.B. A calculation processure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J Heat Mass Transfer, 15:1787-7806, 1972.
    [97] Issa R.I. Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys., 62:40-65, 1986.
    [98] Xu Q.C., Yoshikawa S., Belsick J.R., Newnham R.E. Piezoelectric composites with highsensitivity and high capacitance for use at high oressures. IEEE Trans,UFFC38,1991.
    [99]周桃生,吴静,苗君等.单腔结构压电陶瓷-金属复合体研究.压电与声光,1999,21(1) 28-31.
    [100]王光灿,林宇,王丽坤等. Cymbal换能器的有限元模拟.压电与声光,2003, 25 (2):162-164.
    [101] Newnham R.E, Xu Q C. Transformed stress direction acoustic transducer. No4999819. US 1991-12.
    [102] Sugawara Y., Onitsuka K., Yoshikawa S. et al. Metal-ceramic composite actuators. J Am Ceram, 1992, Vol 75, No.4: 996-998.
    [103] Koc B., Dogan A., Fernandz J.F. et al. Accelerometer application of the modified Moonie (Cymbal) transducer. Jpn J Appl Phys, 1996, Vol.35, No.8: 4 547-4 549.
    [104]李邓化,张良莹,姚熹.关于金属端帽压电复合换能器Cymbal的研究.压电与声光,1999, 21(3):197-199.
    [105]周桃生,吴静,邝安详.压电陶瓷-金属复合体及其应用. ,压电与声光,1998,20(1): 28-33.
    [106]郭彤,李江雄,柯映林.槽钹形压电复合体换能器理论建模及有限元分析.浙江大学学报,2005,39 (4):569-573.
    [107] ANSYS Release 9.0 Documentation, ANSYS, Inc.
    [108]秦霞.用于合成射流驱动器的Cymbal型复合结构研究. [硕士学位论文],南京,南京航空航天大学,2006.
    [109]钱黄生.用于SJA的新型压电陶瓷-金属复合结构的研究. [硕士学位论文],南京,南京航空航天大学,2008.
    [110]戴昌辉等.流体流动测量.北京,航空工业出版社,1992:115-145。
    [111]吴飞雪等.粒子成像测速技术研究进展.石油大学学报(自然科学版),1996,20 (3):103-108.
    [112] LAVISION Inc, Flow Master,Advanced PIV Systems for Quantitative Flow Field Analysis, LAVISION INC.
    [113]黄长蓉. Hilbert变换及其应用.成都气象学院学报,1999,14(3):273-276。
    [114]黄大吉,赵进平,苏纪兰.希尔伯特-黄变换的端点延拓.海洋学报,2003,25(1): 1-11.
    [115] Qin S.R., Zhong Y.M. A new envelope algorithm of Hilbert-Huang Transform. Mechanical Systems and Signal Processing, 2006, Vol.20: 1941-1952.
    [116] Chen Z., Zheng S. Research on a new transform method of a vibration signal, Libration Engineering Journal 15 (2): 233-238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700