低温流体空化特性数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着载人航天、深空探测等大型航天活动的开展,对液体运载火箭的推力要求越来越高,大推力要求会使液体运载火箭中流经推进系统的低温流体推进剂产生空化现象,从而严重影响液体运载火箭的性能和可靠性。因此,准确预测低温流体空化是大推力液体运载火箭的关键技术之一。掌握低温流体空化特性及其机理具有重要的理论意义和工程应用价值。低温流体空化问题是一种温度接近饱和温度的流体空化问题,与常温流体空化的不同主要在于热力学效应的影响程度不同。本文针对低温流体空化问题,考虑低温流体的热力学效应,采用数值模拟方法对低温流体的定常和非定常空化流动特性开展了研究,主要研究工作如下:
     基于Rayleigh-Plesset汽(气)泡动力学方程,考虑温度的影响,结合两相间的热扩散方程和汽泡热平衡方程,推导得到热力学效应项,并对Zwart空化模型的质量输运源相进行修正,建立了考虑热力学效应的修正空化模型,对液氮绕水翼空泡流动进行定常数值模拟,其计算结果与试验数据吻合较好,验证了该模型的有效性。
     基于均质平衡流理论,以商用软件FLUENT12.0为研究平台,通过自定义函数方法在能量方程中加入源相,考虑汽化潜热的影响,同时引入低温流体物性参数随温度的变化函数。模拟了液氮绕圆头型水翼空泡流动,对比分析了三种空化模型对空化热力学效应的敏感程度,认为Zwart空化模型适合模拟低温流体空化,并分析了Zwart空化模型中蒸发和凝结系数对低温流体空化特性的影响,给出更适合模拟低温流体空化的蒸发和凝结系数;
     模拟了液氮绕不同翼型的定常和非定常空泡流动,分析了三种湍流模型及入口湍流粘度比对低温流体空化特性的影响,Realizable k-湍流模型在低温流体定常和非定常空泡流动模拟中,不受入口湍流粘度比的影响,适用于模拟低温流体空化特性。选取合适的数值计算方法,并利用试验数据验证了数学模型和数值计算方法的有效性,形成了一套计算低温流体空化特性的数值模拟方法。
     基于本文形成的数值模拟方法,对液氮、液氢绕二维圆头型水翼定常空泡流动进行数值模拟,研究了液氮和液氢两种低温流体介质热力学效应对空化特性的影响程度,并对其影响机理进行了分析,得出液氢的空化热力学效应强于液氮;研究了来流速度、来流温度和远场压强对低温流体空化特性的影响,得到了压强分布、温度分布、液相体积分数分布和空泡长度随流动参数的变化规律,得出在同一流体介质中,各流动参数也会影响热力学效应。
     通过对液氢绕二维NACA0015翼型非定常空泡流进行数值模拟,研究不同温度下,空泡的演变过程和空泡周期性脱落的规律,得到了温度对空泡形态、空泡流场结构、流体动力特性的影响规律,揭示温度对非定常空泡流场影响的机理。同时研究了来流空化数、翼型攻角及其组合参数对空泡形态、温度分布以及升力系数和阻力系数的影响规律。
With the manned space, deep space exploration and other large aerospaceactivities, increasingly demand for liquid rocket high-thrust, high-thrustrequirements would lead to a cryogenic fluid flowing through the liquid carrierrocket propulsion systems propellant cavitation phenomenon, which can seriouslyaffect the performance and reliability of the liquid carrier rocket. Therefore,accurate prediction of cryogenic cavitation is one of the key technologies forhigh-thrust liquid rocket. Characteristics and mechanis m of cryogenic cavitationhave important theory significance and engineering application value. Thecryogenic cavitation question is a temperature close to the saturation temperature ofthe fluid cavitation problems, with the type of room-temperature fluid cavitationmainly lies in the different degree of thermodyna mic effects. For cryogeniccavitation issues, to consider cryogenic fluid thermodynamic effect, by nu mericalsimulation carried out a study of cryogenic fluid steady and unsteady cavity flowcharacteristics, the main research work are as follows:
     Based on Rayleigh-Plesset bubble dynamics equation, consider the influenceof temperature, combined with the two phases of the thermal diffus ion equation andthe bubble thermal equilibrium equation, derived thermodynamic effect terms,phase correction and Zwart cavitation model mass transport source, establishconsidering the thermodynamic effect correction cavita tion model and numericalsimulation of the unsteady cavity flow of liquid nitrogen around the hydrofoil, thecalculated results agree well with the experimental data to verify the validity of themodel.
     Based on the theory of homogeneous equilibrium flow, with commercialsoftware FLUENT12as research platform, through user define function method areadded to the source in the energy equation, considering the effect of latent heat ofvaporization, while the introduction of cryogenic fluid physical parameters changewith the function of temperature. To simulate the flow around cylindrical hydrofoilcavitation of liquid nitrogen, comparison and analysis of the sensitivity of threekinds of cavitation cavitation model thermodynamic effect, think Zwart cavitatio nmodel suitable for the simulation of cryogenic fluid cavitation, and analyze theeffects of evaporation and condensation coefficient Zwart cavitation model oncavitation characteristics of cryogenic fluid, gives more suitable for the simulationof cryogenic fluid cavitation evaporation and condensation coefficient;
     Simulate the liquid nitrogen around different hydrofoil in steady and unsteady cavitating flow, analyzes the influence of three kinds of turbulence models andentrance turbulence viscosity ratio of cryogenic cavitation characteristics,Realizable k-turbulence model for steady and unsteady cavitating flow simulationin the cryogenic fluid, is not affected by the entrance turbulence viscosity ratio,application in the simulation of low temperature fluid cavitation characteristics.Select the appropriate numerical calculation method, and verified the validity of themathematical model and numerical calculation method using experimental data, hasformed a set of numerical simulation method for calc ulation of cavitationcharacteristics of cryogenic fluid
     Based on the numerical simulation method, liquid nitrogen and liquidhydrogen around2D cylindrical hydrofoil unsteady cavitating flow numericalsimulation, cryogenic cavitating flow of the two cryogenic fluid medium cavitationthermodynamic effect, comparative analysis of two the degree of influence of thethermodynamic effect of cryogenic fluid medium, and its impact mechanism foranalys is, liquid hydrogen cavitation thermodynamics effect is stronger than liquidnitrogen. To study the effects of flow velocity, flow temperature and the far fieldpressure on cavitation characteristics of cryogenic fluid, the pressure distribution,temperature distribution, liquid volume fraction distribution and cavity length varieswith the flow parameters are obtained, obtained in the same fluid medium, the flowparameters will also affect the thermodynamic effects.
     Numerical simulation of unsteady cavity flow around a2D NACA0015hydrofoil with liquid hydrogen, the study of various temperature, the evolution ofvacuolar and the law of vacuoles periodic shedding of temperature on vacuolarmorphology, bubble flow fieldstructure and dynamic properties of water, to revealthe mechanis m of the effect of temperature on unsteady cavity. Stream cavitationnumber and hydrofoil angle of attack on the the liquid hydrogen unsteady cavityflow. At the same time, research influence of flow cavitation number, attack angleand the combination of parameters on the cavity shape, tempera ture distribution andthe lift coefficient and drag coefficient.
引文
[1]柯乃普.空化与空蚀[M].水利水电科学研究院(译).水利出版社.1981:1~2
    [2]黄继汤.空化与空蚀原理及应用[M].清华大学出版社,1991
    [3] R. B. Scott, Cryogenic Engineering[M], D Van Nostrand Co., New York1959
    [4] R. F. Barron, Cryogenic Systems[M], McGraw-Hill Book Co., New York1966
    [5] M. McClintock, Cryogenics[M], Reinhold Publishing Co., New York1964
    [6] R. W. Vance, ed., Applied Cryogenic Engineerin g[M], John Wiley and Sons.New York1963
    [7] G. P.萨顿, O.比布拉兹,著.火箭发动机基础[M].洪鑫,张宝炯,译.科学出版社,2003:181~183
    [8]李亚裕.液体推进剂[M],中国宇航出版社.2001:26~30
    [9] Tokumasu T, Kamijo K, Matsumoto Y. A numerical study of thermodynamiceffects of sheet cavitation. In: Proceedings of ASME FEDSM02, Montreal,Quebec, Canada,2002
    [10] Matsuyama K, Ohigashi H, Ito T, et al. H-IIA rocket engine development [J].Mitsubishi Juko Giho,2002,39(2):8~11
    [11] Sibok Y, Newman B. Influence of control on flexible aircraft crack growth [C].American Control Conference, Proceedings of the2000. Chicago, June2000:053~3057
    [12] Shyy W, Wu J, Utturkar Y, Tai CF. Interfacial dynamicsbased model andmultiphase flow computation[C]. Proceedings of the ECCOMAS2004Congress, Finland,2004
    [13] Utturkar Y, et al., Recent progress in modeling of cryogenic cavitation forliquid rocket propulsion[J]. Progress in Aerospace Sciences,2005.41(7):558~608
    [14] Lemmon E.W., McLinden M.O., Huber M. L. Reference Fluid Thermodynamicand Transport Properties. NIST Standard Database23, version7.02002
    [15] Sonntag R E, Borgnakke C, Wylen G J. Fundamentals of thermodynamics[M].John Wiley and Sons, Inc2004
    [16] Utturkar, Y, S. Thakur, W. Shyy. Computational modeling of thermodynamiceffects in cryogenic cavitation [C]. American Institute of Aeronautics andAstronautics Inc., Reston, VA20191, United States.2005
    [17] Brennen C E. Hydrodynamics of Pump [M]. Oxford University Press, NewYork,1994
    [18] Brennen C E. Cavitation and Bubble Dynamics [M]. Oxford University Press,New York,1995
    [19] Utturkar, Y., Wu, J., Wang, G., Shyy, W. Recent Progress in Modeling ofCryogenic Cavitation for Liquid Rocket Propulsion [J]. Progress in AerospaceSciences2005,41(7):558~608
    [20] Goel, T, Zhao, J., Thakur, S., Haftka, R. T., Shyy, W., Zhao, J. SurrogateModel-Based Strategy for Cryogenic Cavitation Model Validation andSensitivity Evaluation [J], Numer. Meth. Fluids58,969~10072008
    [21] Hosangadi A., V. Ahuja, Numerical study of cavititaion in cryogenic fluids [J].Journal of Fluids Engineer, Transaction of the ASME,2005.127(2):267~281
    [22] Sarosdy L R, Acosta A J. Note on observations of cavitation in differentfluids[J]. Journal of Basic Engineering,1961,83:399
    [23] Royce D. Moore and Robert S. Ruggeri, Venturi Scaling Studies onThermodynamic Effects of Developed Cavitation of FREON-114,1968, NASATN D-4387
    [24] J. Hord, D. K. Edmonds, D.R. Millhiser, Thermodynamic Depressions withinCavities and Cavitation in Liquid Hydrogen and Liquid Nitrogen,1968,NASA CR-72286
    [25] R.S. Ruggeri, R.D. Moore. Method of Prediction of Pump CavitationPerformance for Various Liquids, Liquid Temperatures and RotationSpeeds.NASA Technical Note,1969,NASA TN D-5292
    [26] J. Hord, L. M. Anderson, W. J. Hall, Cavitation in Liquid Cryogens I–Venturi,1972, NASA CR-2045
    [27] J. Hord. Cavitation in Liquid Cryogens II–Hydrofoil,1973, NASA CR-2156
    [28] J. Hord, Cavitation in Liquid Cryogens III–Ogives,1973, NASA CR-2242
    [29] D.H. Fruman, I. Benmansour, R. Sery. Estimation of the Thermal Effects onCavitation of Cryogenic Liquids. Proc. Cavitation and Multiphase Forum.1991:93~96
    [30] Fruman D H, Reboud J L, Stutz B. Estimation of thermal effects in cavitationof thermosensible liquids[J]. International journal of heat a nd mass transfer,1999,42(17):3195~3204
    [31] J. P. Franc, E. Janson, P. Morel, C.et al. Visualizations of Leading EdgeCavitation in an Inducer at Different Temperatures. Fourth InternationalSymposium on Cavitation. Pasadena, Canada,2001:124~130
    [32] J. P. Franc, C. Rebattet, A. Coulon. An Experimental Investigation of ThermalEffects in a Cavitating Inducer. Fifth International Symposium on Cavitation.Osaka, Japan,2003:63~71
    [33] Franc J P, Rebattet C, Coulon A. An experimental investigation of thermaleffects in a cavitating inducer[J]. Transactions of the ASME-I-Journal ofFluids Engineering,2004,126(5):716~723
    [34] Rapposelli E, Cervone A, Testa R, et al. Thermal Effects on CavitationInstabilities in Helical Inducers [C],40thAIAA/ASME/SAE/ASEE JointPropusion Conference and Exhibit,11~14July2004, Florida,2004~4021
    [35] Ishimoto, J., M. Onishi, and K. Kamijo, Numerical and rimenta l study on thecavitating flow characteristics of pressurized liquid nitrogen in a horizontalrectangular nozzle.Journal of Pressure Vessel Technology-Transactions of theAsme2005.127(4):515~524
    [36] Cervone A, Testa R, Bramanti C, et al. Thermal Effects on CavitationInstabilities in Helical Inducers [J], Journal of Propuision and Power,2005,21(5):893-899
    [37] Cervone A, Bramanti C, Rapposelli E, et al. Thermal Cavitation Experimentson aNACA0015Hydrofoil. ASME128,326~3312006
    [38] Yoshida Y, Kikuta K, Watanabe M, et al. Thermodynamic Effects on CavitationPerformances and Cavitation Instabilities in an Inducer [C]. Proceedings of6thInternational Symposium on Cavitation,2006, Wageningen,19(1):14~21
    [39] Gustavsson J P R, Denning K C, Segal C. Hydrofoil cavitation under strongthermodynamic effect [J]. Journal of Fluids Engineering,2008,130:091303
    [40] Gustavsson J P R, Denning K C, Segal C. Incipient Cavitation Studied UnderStrong Thermodynamic Effect [J]. Journal of AIAA.2009,3(47):710~716
    [41] Niiyama K, Hasegawa S I, Tsuda S, et al. Thermodynamic effects on cryogeniccavitating flow in an orifice[J].2009
    [42] Yuka I, Naoya O, Yoshiki Y, et al. Numerical Invetigation of ThermodynamicEffect on Unsteady Cavitation in Cascade. CAV2009, Paper No.78,Proceedings of the7th International Symposium on Cavitation, August17~22,2009, Ann Arbor, Michigan, USA
    [43] Huang D G, Zhuang Y Q. Temperature and cavitation [J]. Proceedings of theInstitution of Mechanical Engineers, Part C: Journal of MechanicalEngineering Science,2008,222(2):207~211
    [44]曹潇丽.低温流体汽蚀的CFD模拟及实验研究[J].浙江大学硕士论文,2011:52~60
    [45] Deshpande M, Feng J, Merkle C L. Cavity flow predictions based on the Eulerequations[J]. Journal of fluids engineering,1994,116(1):36~44.
    [46] Chen Y, Heister S D. A numerical treatment for attached cavitation[J]. Journalof fluids engineering,1994,116(3):613~618
    [47] Ventikos Y, Tzabiras G. A numerical method for the simulation of steady andunsteady cavitating flows[J]. Computers&fluids,2000,29(1):63~88
    [48] Leroux J B, Coutier-Delgosha O, Astolfi J A. A joint experimental andnumerical study of mechanisms associated to instability of partial cavitationon two-dimensional hydrofoil[J]. Physics of fluids,2005,17:052101
    [49] Pouffary B, Fortes-Patella R, Reboud J L. Numerical Simulation of CavitatingFlow Around a2D hydrofoil: a barotropic approach[C], Fifth InternationalSymposium on Cavitation, Osaka, Japan.2003
    [50] Oliver C D, Astolfi J A. A numerical prediction of the cavitation flow on atwo-dimensional symmetrical hydrofoil with a single fluid model[C]. Fifthinternational symposium on cavitation, Osaka, Japan, Cav03-OS-1-013,2003
    [51] Katz J. Cavitation phenomena within regions of flow separation[J]. Journal ofFluid Mechanics,1984,140:397~436
    [52] Kubota A, Kato H, Yamaguchi H, et al. Unsteady structure measurement ofcloud cavitation on a foil section using conditional sampling technique[J].Journal of fluids engineering,1989,111(2):204~210
    [53] Kubota A, Kato H, Yamaguchi H. a new modeling of cavitating flows: anumerical study of unsteady cavitation on a hydrofoil section[J]. Journal ofFluid Mechanics,1992,240(1):59~96
    [54] Merkle C L, Feng J, Buelow P E O. Computational modeling of the d ynamicsof sheet cavitation[C],3rd International Symposium on Cavitation, Grenoble,France.1998,2:47~54
    [55] Kunz R F, Boger D A, Stinebring D R, et al. A preconditioned Navier–Stokesmethod for two-phase flows with application to cavitation prediction[J].Computers&Fluids,2000,29(8):849~875
    [56] Singhal A K, Athavale M M, Huiying L, et al. Mathematical basis andvalidation of the full cavitation model[J]. Journal of Fluids Engineering,2002,124(3):617~624
    [57] Senocak I, Shyy W. Interfacial dynamics‐based modelling of turbulentcavitating flows, Part‐1: Model development and steady‐statecomputations[J]. International journal for numerical methods in fluids,2004,44(9):975~995
    [58] Senocak I, Shyy W. Interfacial dynamics‐based modelling of turbulentcavitating flows, Part‐2: Time‐dependent computations[J]. Internationaljournal for numerical methods in fluids,2004,44(9):997~1016
    [59] Senocak I, Shyy W. Evaluation of cavitation models for Navier–Stokescomputations. ASME Paper FEDSM2002-31011,2002
    [60]刘德民,刘树红,吴玉林等.基于修正空化质量传输方程的水轮机空化的数值模拟.工程热物理学报,2011,32(12):2048~2051
    [61]杨琼方,王永生,张志宏.改进空化模型和修正湍流模型在螺旋桨空化模拟中的评估分析.机械工程学报,2012,48(9):178~185
    [62]王柏秋,王聪,黄海龙,张嘉钟.空化模型中的相变系数影响研究[J].工程力学,2012,29(8):378~384
    [63] WANG Bai-Qiu, WANG Cong, HUANG Hai-Long, ZHANG Jia-Zhong. Study ofthe phase-change coefficients of the cavitation model in cavitation flow fieldsgenerated from cone cavitator [J]. Journal of Harbin Institute Of Technology (NewSeries),2012,19(4):1~8
    [64]王柏秋.水下高速航行体非定常空化流场数值计算[D].哈尔滨:哈尔滨工业大学博士学位论文,2013:19~21
    [65]王柏秋,王聪,黄海龙,董磊,张嘉钟.考虑空泡界面相变作用的空化模型及应用[J].哈尔滨工业大学学报,2013,45(1):30~34
    [66] H A Stahl, A J Stepanoff, Thermodynamic Aspects of Cavitation in CentrifugalPumps [J]. Trans. ASME,1956,(78):1691-1693
    [67] J W Holl, M L Billet, D S Weir. Thermodynamic Effects on DevelopedCavitation. ASME J. Fluids Eng.1975,(4):507–516
    [68] A Hosangadi, V Ahuja. Numerical Study of Cavitation in Cryogenic. Journalof Fluids Engineering.2005,(127):267~280
    [69] Reboud J L, Sauvage-Boutar E, Desclaux J. Partial cavitation model forcryogenic fluids[C], Cavitation and Multiphase Flow Forum, Toronto, Canada.1990
    [70] Delannoy Y, Kueny J L. Cavity flow predictions based on the Eulerequations[C], ASME Cavitation and Multi-Phase Flow Forum.1990,109:153~158
    [71] Delannoy Y, Reboud J L. Heat and mass transfer on a vapor cavity[J].ASME-PUBLICATIONS-FED,1993,165:209~209
    [72] Deshpande M, Feng J, Merkle C L. Numerical modeling of the thermodynamiceffects of cavitation[J]. Journal of fluids engineering,1997,119(2):420~427
    [73] Tokumasu T, Sekino Y, Kamijo K. A new modeling of sheet cavitationconsidering the thermodynamic effects[J]. Energy,2003,2(2):3
    [74] Furukawa A. Steady analysis of the thermodynamic effect of partial cavitationusing the singularity method[J]. Journal of Fluids Engineering,2007,129:121
    [75] Horiguchi H, Furukawa A. Analysis of thermodynamic effects on cavitationinstabilities[J]. Journal of Fluids Engineering,2007,129:1123
    [76] Lertnuwat B, Sugiyama K, Matsumoto Y. Modeling of the Thermal BehaviorInside a Bubble[J]. cav2001: sessionB6.002,2001
    [77] Rapposelli E, d’Agostino L. A barotropic cavitation model withthermodynamic effects[C],5th International Symposium on Cavitation.2003
    [78] Tani N, Tsuda S, Yamanishi N, et al. Development and validation of newcryogenic cavitation model for rocket turbopump inducer[J].2009
    [79] Park W, Ha C, Merkle C. Multiphase flow analysis of cylinder using a newcavitation model[J].2009
    [80] Hosangadi A, Ahuja V, Ungewitter R J, et al. Analys is of thermal effects incavitating liquid hydrogen inducers[J]. Journal of pro pulsion and power,2007,23(6):1225~1234
    [81] Tseng C C, Shyy W. Modeling for isothermal and cryogenic cavitation[J].International Journal of Heat and Mass Transfer,2010,53(1):513~525
    [82] Tseng C C, Wei Y, Wang G, et al. Modeling of turbulent, isothermal andcryogenic cavitation under attached conditions[J]. Acta Mechanica Sinica,2010,26(3):325~353
    [83] Goel T, Zhao J, Thakur S, et al. Surrogate Model-Based Strategy for CryogenicCavitation Model Validation and Sensitivity Evaluation[J].2006
    [84] Goel T, Thakur S, Haftka R T, et al. Surrogate model‐based strategy forcryogenic cavitation model validation and sensitivity evaluation[J].International journal for numerical methods in fluids,2008,58(9):969~1007
    [85] Zhang X B, Qiu L M, Qi H, et al. Modeling liquid hydrogen cavitating flowwith the full cavitation model[J]. International Journal of Hydrogen Energy,2008,33(23):7197~7206
    [86] Zhang X B, Qiu L M, Gao Y, et al. Computational fluid dynamic study oncavitation in liquid nitrogen[J]. Cryogenics,2008,48(9):432~438
    [87] Zhang X B, Wu Z, Xiang S J, et al. Modeling cavitation flow of cryogenicfluids with thermodynamic phase-change theory[J]. Chinese Science Bulletin,2013,58(4~5):567~574
    [88] Cao X L, Zhang X B, Qiu L M, et al. Validation of full cavitation model incryogenic fluids[J]. Chinese Science Bulletin,2009,54(10):1633~1640
    [89]李翠,厉彦忠.低温流体经过弯管时的空化现象分析[J].低温工程,2008(002):4~9
    [90]季斌,罗先武,吴玉林,等.考虑热力学效应的高温水空化模拟[J].清华大学学报:自然科学版,2010(2):262~265
    [91]张瑶,罗先武,许洪元,等.热力学空化模型的改进及数值应用[J].工程热物理学报,2010(010):1671~1674
    [92]曹海涛.低温条件下空化流动特性数值研究[D].哈尔滨工业大学,2010
    [93]时素果,王国玉,胡常莉.热力学效应对液氮空化流动的影响[J].北京理工大学学报,2012,32(5):484~487
    [94]时素果,王国玉,马瑞远.低温流体空化特性的数值计算研究[J].工程力学,2012,29(5):61~67
    [95]时素果,王国玉,胡常莉,等.热力学效应对空化流动结构影响的实验研究.中国科技论文在线
    [96]时素果,王国玉,权晓波,等.滤波器湍流模型在低温流体空化流动数值计算中的应用.兵工学报,2012,33(4):451~458
    [97]时素果,王国玉.一种修正的低温流体空化流动计算模型[J].力学学报,2012,44(2):269~277
    [98]时素果,王国玉,陈广豪.质量传输模型在考虑热力学效应空化流动计算中的应用评价[J].应用力学学报,2012,28(6):589~594
    [99]时素果,王国玉,赵宇,等.空化热力学效应对相间质量传输过程的影响[J].北京理工大学学报,2012,32(9):926~931
    [100]Christopher Earls Bernnen. Fundamentals of multiphase flow. CaliforniaInstitute of Technology,2003:19~51
    [101]P J Zwart, A G Gerber, T Belamri. A two-phase flow model for predictingcavitation dynamics. In Fifth International Conference on Multiphase Flow,Yokohama, Japan,2004
    [102]G H Schnerr, J Sauer. Physical and numerical modeling of unsteady cavitationdynamics. In Fourth International Conference on Multiphase Flow, NewOrleans, USA,2001
    [103]Plesset, M S, Zwick, S A. A nonsteady heat diffusion problem with sphericalsymmetry[J]. J. Appl. Phys.,1952,23(1):95~98
    [104]P. Rollet-Miet, D Laurence, J Ferziger. LES and RANS of turbulent flow intube bundles. International Journal of Heat and Fluid Flow,1999,20(3):241~254
    [105]J O Hinze, Turbulence. McGraw-Hill Publishing Co., New York,1975
    [106]Launder B E, Spalding D B. Lectures in mathematica l models of turbulence[J].1972
    [107]Yakhot V, Smith L M. The renormalization group, the-expansion andderivation of turbulence models[J]. Journal of Sc ientific Computing,1992,7(1):35~61
    [108]陶文铨.数值传热学[M].西安交通大学出版社,2001
    [109]Shih T H, Liou W W, Shabbir A, et al. A new k-eddy viscosity model forhigh reynolds number turbulent flows[J]. Computers&Fluids,1995,24(3):227~238
    [110]Versteeg H K, Malalasekera W. An introduction to computational fluiddynamics: the finite volume method,1995[J]. Harlow-Longman Scientific&Technical, London,1996
    [111]Klaus A. Hoffmann, Steve T. Chiang. Computational fluid dynamics-Volumeē.4thedition. Engineering Eduction System,2000:385~411
    [112]H K Versteeg, W Malalasekera. An introduction to computational fluiddynamics. second edition. Pearson Education Limited,2007:134~176
    [113]J. P. Van Doormal, G. G. Raithby. Enhancement of the SIMPLE Method forPredicting Incompressible Fluid Flows. Numerical Heat Transfer,1984,(7):147~163
    [114]S. V. Patanker, D. B. Spalding. A Calculation Procedure for Heat, Mass andMomentum Transfer in Three-Dimensional Parabolic Flows. Int. J. Heat MassTransfer,1972,(15):1787~1806
    [115] M Morgut, E Nobile, I Bilus, Comparison of mass transfer models for thenumerical prediction of sheet cavtation around a hydrofoil, Internation Journalof Multiphase Flow,2011,(37):620~626
    [116]Y J Wei, C C Tseng, G Y Wang, Turbulent and cavitation models fortime-dependent turbulent cavitating flows, Acta Mech Sin.,2001,27(4):473~487
    [117]Counter D O, Numerical prediction of cavitation flow on two-dimensionalsymmetrical hydrofoil and comparison to experiments[J], Journal of FluidsEngineering,2007,129(3):279~291
    [118]Saito Y, Takami R, Nakamori I, et al. Numerical analys is of unsteady behaviorof cloud cavitation around a NACA0015foil. Computational Mechanics.2007,(40):85~96
    [119]Watanabe S, Tsujimoto Y, Furukawa A, Theoretical analysis of transitiona land partial cavity instabilities, J. Fluids Eng,2001,123:692~697
    [120]Kjeldsen M, Arndt R E A, Effertz M, Spectral characteristics of sheet/cloudcavitation, J. Fluids Eng.,2000,122:481~487
    [121]Fujii A, Kawakami D T, Tsujimoto Y, et al., Effect of hydrofoil shape oncavity oscillation, J. Fluids Eng.,2007,129(6):669~674
    [122]Kawakami D T, Fujii A, Tsujimoto Y, et al., An assessment of the influence ofenvironmental factors on cavitation instabilities, J. Fluids Eng.,2008,130:031303.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700