方坯中间包钢水流动状态和传热的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着炼钢技术的不断发展,对连铸钢水的清洁度和铸坯质量的要求也越来越高。中间包作为钢液凝固之前经过的最后一个耐火材料容器,对钢的质量有重要影响。中间包冶金效果与中间包内钢液的流动模式密切相关,合理的中间包流场,对防止钢水二次氧化、延长钢水在中间包内停留时间、促进夹杂物上浮去除等都具有重要的作用。因此,对中间包内钢液的流动模式进行研究和分析,保证钢液流动状态的合理性具有相当重要的理论和实际意义。
     本论文结合昆钢7#方坯连铸机中间包的实际情况,针对中间包生产时存在的一些质量问题进行了钢水流动和传热的研究。采用物理模拟和数值模拟相结合的方式,根据相似理论,建立试验模型,进行水力学物理模拟试验;同时建立描述中间包内流体的数学模型,采用Fluent商业软件对中间包钢液的流动模式进行数值模拟计算。主要研究了不同中间包内腔结构下,钢液的流动状态,优化中间包的内腔结构参数。然后,在最优的中间包内腔结构下,优化设置单挡墙及多孔挡墙两种控流装置的结构参数,优化不同工况下长水口插入深度。
     研究结果表明:中间包未进行流动控制时,钢液在中间包内的平均停留时间比较短,夹杂物上浮的机会较小。B方案中间包的内腔尺寸较好,但仍需要对中间包内钢液的流动模式进行一定的控制。单挡墙可以有效防止大包水口流出的钢液直接流向中间包最中心水口,大大减少了钢液对最中心水口的影响。在单挡墙中间包内,2#单挡墙的控流效果最好,使用2#单挡墙可以提高活塞流区体积分数19.0%及降低死区体积分数19.7%。多孔挡墙对中间包注流区湍流的控制最为明显,并且挡墙可以较为均匀地将钢液分配到中间包的各个水口。使用3#多孔挡墙可以提高活塞流区体积分数27.5%及降低死区体积分数29.9%,它对中间包内钢液流动模式的控制效果更好。
     使用控流装置后,中间包内钢水流动状况得到了不同程度地改善,钢液的平均停留时间延长,活塞流体积分数增加,死区体积分数减小。中间包内钢液的流动模式有利于夹杂物的上浮去除。使用控流装置可以满足不同品种钢的生产需求,最终实现提高铸坯质量的目的。
With the development of steel-making technology, it becomes more and more important to improve the cleanliness and quality of casting steel. The tundish which serves as a refractory container before the steel solidification has a very important influence on steel quality. The conditions of steel flow in tundish perform a vital role in decreasing the secondary oxidation of steel, lengthening the residence time of steel and making the inclusions well folated. Therefore, it is very significant both in theory and practical application to study and analyze the flow field and temperature field of molten steel in tundish and try best to make them proper.
     In this paper, according to the fact of No.7 billet CC tundish at Kunming Iron and steel (group) Company Ltd, several production quality problems in a billet tundish had been investigated. The physical and mathematical simulation methods were used. The experiment model was built and the experiments were done based on the Frpude similarity and by similarity principle. The mathematical model, describing the flow phenomena in the tundish, was established. Meanwhile the Fluent commercial software was used to calculate the steel flow and heat transfer in tundish. By comparing the influence of different schemes of designs for tundish on fluid behavior, it was available to make sure the best inter-structure design for the tundish. With the optimized tundish, flow control devices and the immersion depth of long nozzle were all optimized.
     The results showed that the molten steel stay short time on average and the inclusions have little opportunities for floation in tundish without flow control devices. The inner structure of B program for tundish is better, but flow control devices are still needed to improve flow pattern. The simple barricade can effectively prevent the liquid steel flowing directly to the most center nozzle and greatly reduce the influence of steel injection to the most center nozzle. Using 2# simple barricade which can raise plug flow volume by 19.0% and decrease dead zone volume by 19.7% is an effective way to improve fluid flow behavior in tundish. The uses of weirs can obviously restrain the turbulent of injection zone and molten steel can also be assigned more effectively to each outlet in tundish. Using 3# weirs which can raise plug flow volume by 27.5% and decrease dead zone volume by 29.9% can further improve fluid flow behavior in tundish.
     Adding flow control devices, in varying degrees, can improve fluid flow behavior in tundish. Using suitable flow control devices can increase average residence time of moten steel, raise plug flow volume and decrease dead zone volume. The flow patterns of molten steel in tundish with flow control devices are in favor of the inclusion floating up and removment. The use of flow control devices in tundish can meet the demand of varieties steel production and ultimately improve the quality of the slab.
引文
[1]徐匡迪.中国钢铁工业的发展和技术创新[J].钢铁,2008(2):1-13.
    [2]蔡开科,程士富.连铸铸钢原理与工艺[M].北京:冶金工业出版社,1994.
    [3]蔡开科.连铸技术发展[J].山东冶金,26.(2):1-8.
    [4]殷瑞钮.关于21世纪发展连续铸钢的若干认识[A].连铸技术论文集.2001.(1):1-3.
    [5]张小平,梁爱生.近终形连铸技术[M].冶金工业出版社.2000.
    [6]Shangyi Li,Zubin Wang.Present and futnre status of the Chinese steel industry in 21st century.Iron and Steel Engineer.1999.(8):56-59.
    [7]陈雷.连续铸钢[M].北京:冶金工业出版社,1994.
    [8]张兴中.我国连续铸钢技术的发展状况和趋势[J].钢铁研究学报.2004,16(6):1-6.
    [9]贺友多,Sahai Y.不同因素对连铸机中间包流场的影响[J].金属学报,1989,25(4):B272-276.
    [10]王建军,包燕平,曲英.中间包冶金学[M].北京:冶金工业出版社.1999.
    [11]Chakraborty S Hill W[A].ISS,eds.77th Steelmaking Conf Proc[C].Warrendale PA:ISS,1994:389-395.
    [12]Chakraborty S Hill W[A].ISS,eds.78th Steelmaking Conf Proc[C].Warrendale PA:ISS,1995:401-413.
    [13]蔡开科.凝固与浇铸[M].北京:冶金工业出版社,1987.
    [14]孙海轶,李丽影等.近年来中间包技术的发展[J].材料与冶金学报,2002.(1):36-40.
    [15]张立峰,蔡开科.中间包冶金技术的发展[J].炼钢.1997(8):42-45.
    [16]陈登福,冯科等.连铸高效化的关键技术[J].特殊钢.2002(10):1-4.
    [17]Turkdogan E T Ebgan R S,Gilbert S[A].ISS,eds.74th Steelmaking Conference Proceedings[C].Warrendale,PA:ISS,eds,1991:423-434.
    [18]Tiekink W K,Brockhoff J P,Maes R.[A].IS,eds.77th Steelmaking Conference Proceeding [C].Warrendale,PA:ISS,1994.49-51.
    [19]贺友多等.连铸中间包内的流体流动[J].金属学报.1988(2):79-86.
    [20]Byrne,etc,1987 Steelmaking Conference Proceeding.P81-90.
    [21]Singh S,Koria S C.Physical modeling of Steel Flow in Continuous Casting Tundish[J].Ironmaking and Steelmaking,1993,(3):221-230.
    [22]王建军,包燕平,曲英.中间包冶金学[M].北京:冶金工业出版社,2001.79-89.
    [23]Mazumdar Dipak,Yamanogl Guler,Guthrie Roderick I L.Hydrodynamic Performance of Steelmaking Tundish Systems:a Comparative Study of Three Different Designs[J].Steel Research,1997,68(7):293-300.
    [24]Sahay S K,De T K,Basu D S,et al.Strand Performance Improvement Through Use of Asymmetric Baffles in Tundish of Six Strand Billet Caster at DSP[J].I &SM,2001,(7):71-74.
    [25]Lowry M L,Sahai Y.Investigation of Steel Flow in a Continuous Casting Tundish with Multiple-Hole Baffles Using Mathematical Models and Tracer Studies[J].I&SM,1991,(8):53-60.
    [26]Hiraki S,Kanazawa T,Kumakura S,Koide M,Hanazaki K,et al.Influence of Tundish Operation on the Quality of Hot Coils During High Speed Continuous Casting[J].I &SM,1999,(3):47-52.
    [27]Morales R D,Lopez-Ramrez S,Palafox-Rams J,et al.Numerical and Modeling Analysis of Fluid Flow and Heat Transfer of Liquid Steel in a Tundish with Different Flow Control Devices[J].ISIJ international,1999,39(5):455-462.
    [28]Heaslip L J,Schade J.Physical Modeling and Visualization of Liquid Steel Flow Behavior during Continuous Casting[J].I &Steel Maker,1999,(1):33-41.
    [29]张立峰,蔡开科.中间包冶金技术的发展[J].炼钢,1997,(8):42-45.
    [30]杨振南,青兆光.连铸板坯夹杂及其控制路径[J].炼钢,1999(2):25-28.
    [31]张晓光.大型板坯连铸机中间包挡渣墙参数的研究[J].辽宁冶金,1995(3):26-30.
    [32]A RAMOS-BANDERAs,R.n.MORALES.Mathematical Simulation and Modeling of Steel Flow with Gas Bubbling in Trough Type Tundish[J].ISU Intern.2003,43(5):653-662.
    [33]Baum R S.Wire Feeding Offers Productive Opportunities for Tundish Metallurgy[J].I &SM,1992,(11):31-34.
    [34]Stadler P,Bebber H.Operational Results in Horizontal Casting with Plasma[J].I &SM,1992,(11):41-34.
    [35]Morales R D,Barrcto-Sandoval,J de J.Mathematical Simulation of the Influence of Buoyancy Forces Oil the Molten Steel Flow in a Continuous Casting Tundish[J].Metallurgical Transaction,2000,31B:1505-1515.
    [36]T Debroy,J A Sychterz.Numerical Calculation of Fluid Flow in a Continuous Casting Tundish[J].Metal lurgical Transactions,1985,16B:497-504.
    [37]贺友多.传输过程的数值方法[M].北京:冶金工业出版社.1991.128-137.
    [38]刘春.大方坯连铸中间包结构优化[D].学位论文.沈阳:东北大学,2006.
    [39]王建军.中间包夹杂物运动行为的数模研究[J].炼钢,2001,17(4):40-43.
    [40]曲英,刘今.冶金反应工程学导论[M].北京:冶金工业出版社.1988.
    [41]伍成波.冶金过程数学模拟及仿真[M].重庆:重庆大学出版社.
    [42]高家锐,刘成全等.动量、热量、质量传输原理[M].重庆大学出版社.
    [43]Hraslip L J,Schade J.Physical Modeling amd Visualizatiom of Liquid Steel Flow Behavior during Continuous Casting[J].I&Steel Maker.1999(1):33-41.
    [44]Koria S C,Singh S.Physical Modeling of the Effect of the Flow Modifier on the Dynamics of Molten Steel Flowing in a Tundish[J].ISIJ International.1994(10):784-793.
    [45]Dipak Mazumdar etc.,Similarity Consideration in the Physical Modeling of Steelmaking Tundish Systems.Steel Reasearch,1995(1):14-19.
    [46]钟良才,张立,黄耀文等.湍流控制器对中间包流体流动特性的影响[J].钢铁研究学报,2002,14(4):6-9.
    [47]张立峰,王新华.连铸中的夹杂物[J].山东冶金,2005(1):1-5.
    [48]樊俊飞,张清朗,朱苗勇等.六流T形中间包内控流装置优化的水模拟研究[J].钢铁,1998(5):24-28.
    [49]朱苗勇.连铸中间包内钢液流动与传热耦合过程的计算机模拟[J].金属学报.1997.(9):933-938.
    [50]曲英.流动现象和夹杂物的去除[A].第六届钢质量及夹杂物学术研讨会议论文集.[C]大庸:中国金属学会,1993:1-6.
    [51]薛伟峰.马钢薄板坯连铸中间包和结晶器数理模拟研究[D].学位论文.重庆:重庆大学,2005.
    [52]张立峰.纯净钢钢水洁净度的工艺及理论研究[D].学位论文.北京:北京科技大学,1998.
    [53]张立,黄耀文,杨时标等.连铸中间包湍流控制器水模实验研究[J].钢铁.2002(12):17-19.
    [54]郑淑国,朱苗勇.薄板坯连铸中间包内抑流器的模拟研究[J].钢铁研究学报.2004(8):29-33.
    [55]Knoepke J,Mastervich J.Water Modeling Inland Steel's No.3 Combination Caster Tundish [A].Warrendale,eds.Steelmaking Conference Proceedings[C].Washington DC:ISS2AIME,1986:777-788.
    [56]O.J.ILEGBUS1.Application of the Two-fluid Model of Turbulence to Tundish Problems.ISIJ international.1994(9):732-738.
    [57]木春秀明等.连铸中间包的革新技术[J].武钢技术.1995(10):24-29.
    [58]樊俊飞,张清朗,朱苗勇等.六流T形中间包内控流装置优化的水模拟研究[J].钢铁,1998(5):24-28.
    [59]张殿军,石中学等.优化中间包流场降低铸坯夹杂的研究[J].钢铁研究.2003(2):13-19.
    [60]王宇峰.八钢电炉厂弹簧钢洁净化生产工艺研究[D].学位论文.重庆:重庆大学,2005.
    [61]阎建新,黄晔,区勇铭等.停留时间分布曲线分析方法的探讨[J].东北大学学报.1998:82-84.
    [62]Lorry M L.Residence Time Distribution Flow Studies of a Tundish Ladle Changes[A]. Developments in Ladle Steelmaking and Continous Casting[C].Canada:Canadian Institute of Mine and Metallurgy.1994.247-255.
    [63]Schade J,Smith M P,Palmer S E.Doubling Tundish Volume at Ak Steel's Middletown works:Structural Criteria,Design Considerations and Operating Results[J],I&SM,1996(10):93-103.
    [64]Collur M M,Love D B,Patil B V Use of Flow Modifiers to Improve Performance of Tundish [A].Steelmaking Conference Proceedings[C].Chicago:1997.P313-324.
    [65]J.D.Anderson,Computational Fluid Dynamics:The Basics with Applications.McGrawHill[M].1995,清华大学出版社,2002.
    [66]韩占忠,王敬,兰小平等,FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社.2004.
    [67]J.de.J.Barreto,R.D.Morales.Physical and Mathematical Modeling of Steel Flow and Heat Transfer in Tundishes under Non-isothermal and Non-adiabatic conditions,ISIJ International,1996(5):543-552.
    [68]傅德薰.流体力学数值模拟[M].北京:国防工业出版社,1993.
    [69]陈景仁.湍流模型及有限分析法[M].上海:上海交通大学出版社.1989.
    [70]M.L.Lowry and Y.Sahai,Modeling of thermal effects in liquid steel flow in tundishes,Steelmaking Conference Proceedings,1991(8):505-511.
    [71]王建军,周莉.中间包内非常数密度钢水流动与传热的三维数模研究[J].马钢技术,1997(1):8-12.
    [72]王建军,扬洪亮.小方坯连铸机中间包等离子枪加热三维温度场数模研究[J].钢铁,1995(6):22-26.
    [73]盛东源,邓开文.中间包内钢液流动、温度控制和夹杂物行为的数学模拟[J].金属学报,1996(7):742-747.
    [74]张立峰,蔡开科.中间包结构对钢水清洁度的影响[J].炼钢,1997(6):45-48.
    [75]朱立本,王建军.宝钢板坯连铸即中间包三维流场数模研究[J].钢铁,1994(8):19-23.
    [76]贺友多.传输过程的数值方法[M].北京:冶金工业出版社.1991.128-137.
    [77]Hans-Juregen Odenthal,Ralf BOlling.Numerical and Physical Simulation of Tundish Fluid Flow Phenomena.Japan-Germany Seminar on Fundamentals of Iron and Steelmaking.2002:86-98.
    [78]J.舍克里 著.冶金中的流体流动现象[M].北京:冶金工业出版社,1985.
    [79]B.Kaufman et al.Separation of Nonmetallic Particles in Tundishes.Steel Research,1993(4):262-270.69
    [80]苏振江.六流大方坯连铸中间包和结晶器内钢液行为研究[D].学位论文.重庆:重庆大学,2004.
    [81]迟景灏.连铸设备及其发展.重庆.重庆大学内部资料.
    [82]牛光源,黄杰.水力学模拟固态夹杂物制备[J].锦州工学院学报.1989(8):95-99.
    [83]文光华,唐萍等.六流大方坯连铸中间包选型和控流装置研究[J].钢铁矾钛,2002(2):19-22.
    [84]高远明,倪江卫.改善钢水纯净度的中间包新技术[J].炼钢,2000(4):55-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700