汽轮机变工况下流量与压比关系及热力参数应达值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前我国能源供需日趋紧张、用电需求量日益增大,用电结构也发生了很大的变化,因此机组经常处于变工况乃至深度变工况运行中。与此同时电力行业节能问题正受到越来越多的关注。因此需要对汽轮机进行详细的变工况计算从而得出在工况变化时汽轮机的运行经济性,进而达到优化运行实现节能降耗的目的,但目前机组变工况理论明显滞后,已经成为影响电厂安全经济运行、实现现代化管理的主要制约因素之一。
     汽轮机变工况计算的基础是级变工况,而级变工况难点是末级变工况计算。用统一的解析函数进行级的变工况计算是不可能的。本文首先研究了级喷嘴压比和整级压比与级流量之间的关系,根据背压降低时喷嘴先达到临界状态还是动叶先达到临界状态,将级的类型分为Ⅰ、Ⅱ和0三种类型的级并推导出级流型判别准则,并研究在实用变工况范围内蒸汽轮机级的类型与级的设计几何参数之间的关系。分别求出各个类型级和级组的临界压力比,结合一个级组内各级在某一工况下的压力比,便可以判断级组内有无一级达到临界。
     本文在变工况计算中用整级彭台门系数来代替喷嘴彭台门系数以简化运算,并证明在正常运行工况时,此改变对效率的影响很小,在工程计算中完全可以适用。验证了加入了级临界压力比的改进型Flugle公式的正确性,即其不仅能够应用于中间级的计算,而且可以应用于末几级的计算,乃至末级的计算(非超临界工况),而且误差很小,精度较高。通过应用改进的Flugle公式对汽轮机中间级进行顺序变工况核算,在计算排汽焓时以汽轮机末级抽汽或次末级抽汽(过热蒸汽状态)为计算起点,根据初始假定的末级流量和现场实际的末级前热力状态和背压,用汽轮机变工况流型判别准则,判别级的流型,然后从末级前参数开始顺序进行一次级的变工况核算,得到新的排汽焓和排汽干度,最后算得机组的排汽焓。
     最后本文通过对火电厂热力系统变工况运行条件下系统各种运行环境参数应达值的确定,结合火电厂热经济性状态方程,确定出机组在不同运行条件下的主蒸汽压力的最优值。代入到顺序变工况计算中就可以得到各级的参数应达值。并将上述所有计算方法应用到SIS系统的性能计算和能损分析中,对热力系统的主要热经济性指标进行实时的在线计算,对影响机组热经济性的运行参数进行连续监督和分析,实时诊断机组的运行能损的分布情况,定量计算这些偏差所引起的能量损失并分析导致这些损失的原因,使机组经济运行。
At present, with the demand of the energy has become more and more tensional, the demand of the electricity is increasing, and the contribution to the electricity has also been changed, the steam turbine unit is often in non-designed condition, even more in the condition which is far away from the designed condition. Meanwhile, the issue on the saving-energy in the power industry has been paid more and more attention. Therefore, the varying condition of the steam turbine should be calculated carefully in order that the operating economy of the steam turbine is gotten in the change of the condition in order to optimizing the operation which also can save energy and lower the energy consumption. However, the lag of the theory on the varying condition of the unit has become one of the main restricting factors of affecting the economical operation of the safety of the power plant and realizing the modern management.
     The basis of calculation of varying behavior of steam turbine is stage varying behavior. It is impossible to calculate the varying condition of the stage with the unified analytic function. First, the relation of the nozzle pressure ratio、the stage pressure ratio and the stage flow was studied, and the stage can be dividedⅠ、Ⅱand 0 type stage with that the nuzzle reached critical state first or the blade reaches critical state first in the condition of stage initial parameter remains the same and stage back pressure lowers gradually. And the relation of the type of the stage and the design geometric parameter of the stage was studied in utility varying condition range, further more, the stage critical pressure ratio and the stage group critical pressure ratio can be got, then we can judg whether there is a critical stage inside the stage group by the stage pressure ratio of the stage group.
     In this paper, the nozzle PENGTAIMEN coefficient was substituted by the stage PENGTAIMEN coefficient in the varying condition calculation for simplifying the calculation. That was not influence the efficiency of the steam turbine nearly, it was wholly appliance in project calculation. The correctness of the Flugle formula using the stage critical pressure ratio was verified in this paper, we can find that the formula not only can be used in the intermediate stage, but also can be used in the final stage of the steam turbine (not supercritical condition). And the calculation error was very tiny; the calculation accuracy was very high.
     The sequence varying condition calculation of the intermediate stage can be made with the improved Flugle formula. As for the calculation of the exhaust enthalpy, we give a sequential varying condition calculation that starts with steam extraction of the final stage or the second final stage (superheated steam condition). According to the initially assumed final stage flow, and the thermodynamic parameters before the final stage, also the backpressure, we can distinguish the flow patterns of the stage by a discriminant criteria. Then we can conduct a stage varying condition calculation of primary stage in sequence from the front final stage parameter, so the new exhaust steam enthalpy and the exhaust steam dryness can be got. So the precise exhaust enthalpy can be got easily.
     Finally, in this paper, the optimizing initial steam pressure of the unit can be gotten in the different operating condition, through fixing the operating target value of operating parameter of thermodynamic system in the varying condition in the power plant, and combining the thermo-economy state equation, and putting it to the sequence varying condition calculation to get the operating target value of the parameter of all levels. The calculating way mentioned above also can be applied into the performance calculation and the analysis of the energy consumption of SIS, through which the main economy indexes of thermodynamic system can be calculated on line, and the operating parameter of affecting the thermo-economy of unit can be supervised and analyzed continuously. The distribution of the loss of energy of the unit can be diagnosed on-line, and we calculate the loss of energy and analyses the cause of that, it will make the steam turbine operated economically.
引文
[1]朱成章.“电煤紧缺中国该怎么平衡”国际煤炭网2008-1-15
    [2]“电力行业研究报告优化电源结构外延式扩张贯穿今年”国际电力网2008-1-16
    [3] 2007年中国电力行业呈现三大热点—国际能源网2008-2-8
    [4]中国能源统计年鉴(2000~2002) ,中国统计出版社,2004.3
    [5]侯子良.SIS发展到推广应用新时期面临的两大问题[J].中国电力2005(1)
    [6]林万超.火电厂热系统节能理论[M].西安:西安交通大学出版社,1994.
    [7]盛德仁,陈坚红.等效焓降法理论剖析与扩展[J] .浙江大学学报(工学版),2004,38(3)
    [8]李勇等.等效热降法的改进计算方法[J].中国电机工程学报,2004(12)
    [9]马芳礼.电厂热力系统节能分析原理[M].北京:水利电力出版社,1992.
    [10]郭民臣,王清照,魏楠等.电厂热力系统矩阵分析法的改进[J].热能动力工程,1997,12(2):103~106.
    [11]张春发,张素香,崔映红等.现行电力系统热经济性状态方程[J].工程热物理学报,2001,22(5):665~667.
    [12]张春发,崔映红,杨文滨,等.汽轮机临界状态判别定理及改进型Flugel公式[J].中国科学(E辑),2003,33(3):264~272.
    [13]曹丽华,李勇.汽轮机超临界级变工况热力计算方法的改进[J].汽轮机技术,2001,43(6):341~343.
    [14]张春发,张明智,崔映红等.凝汽式汽轮机在变工况下的流动状态的判别[J].动力工程,2002,22(5):1781~1785.
    [15]王道祥,胥建群,周克毅.汽轮机级和级组临界压比计算模型[J].热力透平,2003,32(3):168~171.
    [16]周兰欣等.600MW直接空冷机组变工况特性的研究[J].动力工程,2007,27(2):165~168.
    [17]刘国跃,朱宝田,雷兆团.超临界及超超临界机组的运行特性研究[J],电力设备,2006,7(4):7~10.
    [18]江宁,曹祖庆.调节级通用曲线的计算与应用[J].汽轮机技术,2003,45(1):17~20.
    [19]杜亚荣等.给水泵汽轮机效率计算方法的分析[J].节能,2006,289(8):22~24.
    [20]刘定平,肖蔚然.基于神经网络和混合遗传算法的凝汽器真空优化控制[J].汽轮机技术,2006,48(1):52~54
    [21]蔡光荣,邹铁军.母管制供热机组按季节优化分配运行方式的探讨[J].热电技术,2006,90(2):33~35
    [22]董跃钧,盛剑会.一种汽轮机预测维修系统数据采集算法[J].中原工学院学报,2006,17(2):42~45
    [23] McGovern, T. and C. Hicks, Deregulation and restructuring of the global electricity supply industry and its impact upon power plant suppliers. International Journal of Production Economics, 2004. 89(3): p. 321~337.
    [24]李永玲,张春发,王惠杰等.汽轮机组滑压运行最优初压的确定[J].热力发电,2006,04:42~42
    [25]张春发,王惠杰,宋之平等.火电厂单元机组最优运行初压的定量研究[J].中国电机工程学报,2006,26(4):36~40
    [26] J.Y. Shin,Y.J. Jeon,D.J. Maeng,J.S. Kim,S.T. Ro.Analysis of the dynamic characteristics of a combined~cycle power plant [J].Energy,27 (2002) :1085–1098
    [27] H. van Putten, P. Colonna.Dynamic modeling of steam power cycles: Part II– Simulation of a small simple Rankine cycle system[J] . Applied Thermal Engineering, 27 (2007) :2566–2582
    [28] Liwei Shu,Lingen Chen,Jiashan Jin,etc.Functional reliability simulation for a power~station’s steam~turbine[J].Applied Energy, 80 (2005) :61–66
    [29] Mohammad A.K. Al~Sofi,Ata M. Hassan,Othman A. Hamad,etc.Means and merits of higher temperature operation in dual~purpose plants[J].Desalination,125 (1999) :213~222
    [30] Christoph Koch,Frank Cziesla,George Tsatsaronis.Optimization of combined cycle power plants using evolutionary algorithms[J] . Chemical Engineering and Processing, 46 (2007) :1151–1159
    [31] Vittorio Verda . Prediction of the fuel impact associated with performance degradation in power plants[J].Energy,2006 :1~11
    [32] A. Gor_sek,P. Glavic.Process integration of a steam turbine[J].Applied Thermal Engineering ,23 (2003) : 1227–1234
    [33] Vitaly A. Prisyazhniuk.The turbine plant efficiency: Maximum efficiency attained and the share of individual stages[J]. Applied Thermal Engineering , 22 (2003) : 1232–1238
    [34] Osman A. Hamed, Hamed A. Al~Washmi,Holayil A. Al~Otaibi.Thermoeconomic analysis of a power/water cogeneration plant[J].Energy, 31 (2006) :2699–2709
    [35]王罡.大型汽轮机组全工况运行热经济性在线分析[D].北京,华北电力大学,2000
    [36]臧宝锋.不确定与竞争条件下的发电投资决策研究[D].南京,东南大学,2006
    [37]闫水保.电厂热力系统节能分析方法研究[D].南京,东南大学,2002
    [38]余廷芳.火电厂厂级监控信息系统(SIS)建模、实现及人工智能的应用研究[D].南京,东南大学,2004
    [39]郭喜燕.火电机组动态过程性能在线监测研究[D].北京,华北电力大学,2004
    [40]李建强.基于数据挖掘的电站运行优化理论研究与应用[D].保定,华北电力大学,2006
    [41]伍奎.汽轮发电机组在线监测诊断的网络化、智能化研究[D].重庆,重庆大学,2005
    [42] Frank T. Princiotta.The Role of Power Generation Technology in Mitigating Global Climate Change[C].Hang Zhou:ICMLC 2007,3~13
    [43] William Stenzel.The US Electrical Power Industry~A 2007 Perspective[C].Hang Zhou:ICOPE 2007,26~31
    [44] Teruhide Hamamatsu.Reconsideration on Efficient Energy~Use Misunderstandings on Energy~Use and a Review of Technological Innovations[C].Hang Zhou:ICOPE 2007,32~36
    [45] Hongqiang Yan.Chinese Electric Power Industry Under Developing[C].Hang Zhou:ICOPE 2007,37~41
    [46] A.Sakuma,T.Matsuura,H.Kodama.Steam Turbine Retrofits Technology for Improved Performance and Reliability[C].Hang Zhou:ICOPE 2007,32~36
    [47] Hai~ping Chen,An~fei Lin,Wei~zhu Shi.Study on Thermodynamic System Analytical Method of Cogeneration Unit Based on Mass Unit[C].Hang Zhou:ICOPE 2007,108~110
    [48] Yan Shunlin, Xuhong. The General Topological Template and The General Steam~water Distribution Equation of Thermal System for the Coal~fired Power Unit[C].Hang Zhou:ICOPE 2007,117~120
    [49] Shigeo HATAMIYA,Hidefumi ARAKI,Yukinori KATAGIRI,etc.An Experimental and Analytical Study on the Advanced Humid Air Turbine System[C].Hang Zhou:ICOPE 2007,290~296
    [50] Toru Takahashi,Yoshinobu Nakao,Eiichi Koda.Analysis and Evaluation about Advanced Humid Air Turbine System[C].Hang Zhou:ICOPE 2007,341~344
    [51] Jian~tao Zheng,Xiao~fang Wang,Wei Wang,etc.Applied Study of On~line Evaluation for Operating Performance of 102J Turbo~Compressor Sets based on Thermodynamic Parameter Diagnosis[C].Hang Zhou:ICOPE 2007,529~532
    [52] Fu Ling , Fu Zhongguang , Bi Ke . The Application of Objective~Oriented Utility~Based Association Rules in the Operation Optimization of the Thermal Power Plant[C].Hang Zhou:ICOPE 2007,597~600
    [53]薛亚丽.热力过程多变量控制系统的优化设计[D].北京,清华大学,2005
    [54] Li Yonghua,Hu Sangao.A General Matrix Equation of Unit Exergy Loss in Regenerative System Heat Controlled Volume of Fossil Fired Power Unit[C].Hang Zhou:ICOPE 2007,1295~1299
    [55] Yingbai Xie , Liyong Lun , Zhun Yu . Performance of Cogeneration SystemIncorporating Gas Engine Driven Heat Pump[C].Hang Zhou:ICOPE 2007,61~65
    [56] Wang Hui~jie,Zhang Chunfa,Song Zhiping.The On~line Guide System for Energy~saving of Power Plant Based on Logical Matrix[C].Hang Zhou:ICOPE 2007,1291~1294
    [57] Hai~ping Chen,Cong Jiang,Wei~zhu Shi.The Part Load Operation Calculation Model about Thermo~economics in Hailler Air~cooled System[C].Hang Zhou:ICOPE 2007,1320~1323
    [58] Li Yong Cao Lihua.Improvements on the Equivalent Enthalpy Drop Method And Its Application in Thermal Economy Diagnosis of Thermal System of Steam Turbine[C].Hang Zhou:ICOPE 2007,1300~1304
    [59] Chunfa Zhang,Ning Zhao,Huijie Wang.A Meanwhile Accurate On~line Monitoring Method of Both Energy Consumption Rate and the Exhaust Steam Dryness in a Steam Turbine Set[C].Hang Zhou:ICOPE 2007,558~563
    [60]周曦,曹祖庆.超临界级变工况热力核算的算法讨论[J].汽轮机技术,1996,38(3):164~169
    [61]崔映红,张春发,丁千玲.汽轮机排汽焓的在线计算及末级的变工况特性[J].汽轮机技术,2002,44(3):171~173
    [62]田均明,弓四平,魏欣敏.引进型汽轮发电机组甩负荷工况特点及改进[J].中国电力,2005,38(6):80~81
    [63]王晓峰,高春升.600MW汽轮机的阀门管理与调节级特性[J].汽轮机技术,2003,45(2):122~123
    [64]宋晓,谢诞梅,周海龙.基于MATLAB的汽轮机调节级变工况特性计算[J].汽轮机技术,2002,44(3):141~143
    [65]牛卫东,孙玉明.用VB和Excel实现调节级特性曲线[J].山东电力技术,2002,127(5):66~68
    [66]张启寿.对传热系数K的探讨[J].安庆师范学院学报,1999,5(2):64~65
    [67]李勇,曹祖庆.凝汽器清洁率的概念及测试方法[J].汽轮机技术,1995,37(2):73~76
    [68]江宁,曹祖庆.用标准传热系数评价凝汽器水侧、汽侧清洁程度[J].热力发电,2001(2):43~45
    [69]刘建,杜志明.传热系数随温度线性变化的亚临界化学放热系统热安全性分析[J].安全与环境学报,2006,6(2):102~104
    [70]王罡,张光.关于热力计算矩阵法的两个问题的研究[J].现代电力,2000,17(1)
    [71]安丰波,张月宇,杨全业等.关于热力计算矩阵法的两个问题的研究[J].山东电力技术,2003(1):13~15
    [72]郭江龙,张树芳,陈海平.火电机组排汽焓在线计算方法的研究[J].发电设备,2001(6):11~14
    [73]任浩仁,盛德仁,卢学峰等.汽轮机在线性能计算中排汽焓的确定[J].动力工程,1998,18(6):1~4
    [74]江宁,曹祖庆.从经济性看汽轮机滑压运行的最佳方式[J].上海汽轮机,2002(1):36~42
    [75]盛德仁,任浩仁,陈坚红等.汽轮机调峰运行时蒸汽初压的优化确定[J].动力工程,2000,26(5):809~812
    [76]任浩仁,史挺进,胡美丽等.抽凝机组和热泵联合运行系统变工况特性的研究[J].工程热物理学报,1994,15(3):241~244
    [77]任浩仁,李剑日,盛德仁等.汽轮机变工况热力计算算法的改进[J].浙江电力,1996(2):1~5
    [78]盛德仁,任浩仁,李蔚.运行工况下汽轮机组主要参数应达值的数值分析[J].热力发电,2000(3):28~31
    [79]陈祥.引进型300MW机组不同工况定、滑压运行经济性比较[J].宁夏电力,2002(1):1~3
    [80]王佩璋.600MW级火电机组直接空冷系统的现代化配置[J].热机技术,2004(3):42~47
    [81]李树梅,赵耀.直接空冷系统变工况计算与热力特性曲线[J].内蒙古电力技术,2003,21(2):2~4
    [82]赵之东,杨丰利.直接空冷凝汽器的发展和现状[J].华北电力技术,2004(5):44~50
    [83]周圣兵,陈林根,孙丰瑞.构形理论广义热力学优化的新方向之一[J].热科学与技术,2004,3(4):283~292
    [84]陈林根,孙丰瑞.热力学优化理论的研究进展[J].武汉化工学院学报,2002,24(1):81~85
    [85]陈林根,曹水,孙丰瑞.一类普适导热规律下不可逆热机的性能[J].大自然探索,2002,16(61)
    [86]沈邱农,程钧培.超超临界机组参数和热力系统的优化分析[J].动力工程,2004,24(3):305~310
    [87]杨光智,王黎,许若超.流体临界状态的热力学性质及临界性质的计算[J].华北电力大学学报,2004,31(6):44~46
    [88] World Energy Outlook 2005,International Energy Agency
    [89]张锡纯.二熵~~既是一种完整的宇宙观,又是一种源事理[J].北京航空航天大学学报,2000,13(4):1~4
    [90]白见云等.火电厂能损在线分析及运行指导系统的研究与应用[J].电力学报,2003,18(3):176~179
    [91]杨勇平,杨昆.火电机组节能潜力诊断理论与应用[J].中国电机工程学报,1998,18(2):131~134
    [92]丁艳军等.基于过程系统工程理论的热力系统性能模拟[J].热能动力工程,2000,15:153~155
    [93]李蔚,任浩仁,盛德仁.300MW火电机组在线能耗分析系统的研制[J].中国电机工程学报,2002,22(11):153~155
    [94]陈清林,朱雪飞,王松平.考虑环境的能量转换系统环境yong经济建模与优化[J].工程热物理学报,2003,24(1):9~12
    [95]张春发,曹洪涛,李晓金.大型火电机组节能优化控制系统研究[J].电力科学与工程,2003(2):9~12
    [96]张光.大型汽轮发电机组动态运行优化控制的数学模型[J].中国电机工程学报,2001,21(3):86~89
    [97]雎刚,韦红旗,陈绍炳.单元机组负荷多变量模型预测控制[J].中国电机工程学报,2002,22(4):144~148
    [98]胡华进,徐治皋.电站热力系统循环组合法及其矩阵模型[J].中国电机工程学报,1998,18(1):12~15
    [99]李秀云,严俊杰,林万超.滑压机组背压变化对经济性影响的两种新计算方法[J].中国电机工程学报,1999,19(9):22~26
    [100]史进渊.汽轮机热力性能的概率设计法[J].中国电机工程学报,1999,19(12):27~30
    [101]郭民臣,王清照,魏楠.热(汽)耗变换系数法——分析电厂热力系统的新方法[J].中国电机工程学报,1997,17(4):227~229
    [102]周宇阳,王卫龙,陈汉平等.热分析灰色有限元数学模型[J].中国电机工程学报,2002,22(3):113~117
    [103]郭民臣,魏楠,杨勇平.热耗变换系数、抽汽效率与主循环效率[J].中国电机工程学报,2001,21(10):83~87
    [104]陈坚红,李蔚,盛德仁等.一种火电机组在线性能计算中的数据融合方法[J].中国电机工程学报,2002,22(5):152~156
    [105]郭民臣,魏楠,刘文毅.“自由路径法则”在电厂热力系统分析中的应用[J].中国电机工程学报,2002,22(4):122~126
    [106]郭江龙,张树芳,宋之平等.定热量等效热降转换系数λ的矩阵计算[J].热力发电,2004(1):15~17
    [107]王庆一.中国的能源效率及国际比较[J].节能与环保,2005,6
    [108]崔大龙,李政.基于全工况数学模型诊断核电汽轮机热力系统故障的新思路[J].核动力工程,2004,25(1):21~26
    [109]张晓晖,杨茉.热质进出热力系统经济性诊断研究[J].汽轮机技术,2004,46(1):39~42
    [110]郭民臣.电厂热力系统分析方法的研究与发展现状[J].热力发电,2001(6):7~12
    [111]李中华,刘建军,柳正军等.火电厂热力分析诊断通用模型研究与应用究[J].能源研究与信息,2000,16(3):1~6
    [112]张春发,崔映红.基于流图理论的热力系统火用经济性分析[J].系统工程学报,2002,17(2):137~142
    [113]张宏武等.跨音透平级动叶顶部间隙流动的数值模拟[J].工程热物理学报,2002,23(4):441~444
    [114]朱玉娜等.凝汽器变工况核算及其传热系数的确定方法[J].电站系统工程,1998,14(6):9~11
    [115]张帆.汽轮机变工况在线监测系统的数值分析[J].电站系统工程,1999,15(2):20~24
    [116]刘建军,蒋洪德.汽轮机低压排汽系统气动性能分析[J].工程热物理学报,2002,23(4):425~428
    [117]崔映红,张春发,周兰欣.在线监测中机组运行基准工况的确定[J].动力工程,2004,24(2):298~301
    [118]李永玲,张春发,王惠杰等.汽轮机组滑压运行最优初压的确定[J].热力发电,2006(4):42~44
    [119]张春发,王惠杰,宋之平等.火电厂单元机组最优运行初压的定量研究[J].中国电机工程学报,2006,26(4):36~40
    [120]Chunfa Zhang, Ning Zhao, Huijie Wang.The Confirmation of Critical Pressure of Stage Group Based on Criterion of Differentiation of Stage Current Type out of Quantitative Entropy Currents.Hong Kong:ICMLC2007,2322~2327
    [121]李延国.对我国电力行业放松管制的思考[J],科技和产业,2005,(3):30~32,36
    [122]Chunfa Zhang, Ning Zhao, Huijie Wang,etc.An On~line Monitoring Method of the Exhaust Steam Dryness in Steam Turbine.Hong Kong:ICMLC2007,437~442
    [123]Zhang, Chunfa, Li, Liping, Wang, Huijie, etc.A modern method for analyzing thermal energy system with system state equation and analytical formula of performance index. Journal of Thermal Science, v 16, n 1, March, 2007, p 90~96
    [124]Zhang, Chunfa, Li, Liping, Wang, Huijie, etc.The low load characteristic and energy~saving optimizing control of large capacity power plant. Chicago:ICOPE2005,215~219
    [125]Li, Li.~Ping,Ma Jin; Zhao Ning,etc.Probabilistic model~based degradation diagnosing of thermal system and simulation test. Dalian: ICMLC 2006,1483~1486
    [126]Zarnikau, J., A review of efforts to restructure Texas' electricity market. Energy Policy, 2005. 33(1): 15~25.
    [127]Chunfa Zhang, Ning Zhao, Li~ping Li , etc . The variable Load Operation Characteristic and Energy~saving Optimizing Control System of PowerPlant.Hong Kong:ICMLC2007,443~448
    [128]Wen, F.S., F.F. Wu, and Y.X. Ni, Generation capacity adequacy in the competitive electricity market environment. International Journal of Electrical Power & Energy Systems, 2004. 26(5): p. 365~372.
    [129]Sood, Y.R., N.P. Padhy, and H.O. Gupta, Assessment for feasibility and pricing of wheeling transactions under deregulated environment of power industry. International Journal of Electrical Power & Energy Systems, 2004. 26(3): p. 163~171.
    [130]Haar, B.W., Impact of deregulation on the task of commission control. Utilities Policy, 2004. 12(3): p. 193~202.
    [131]Byatt, I., The role of UK competition agencies in the regulation and deregulation of utility service industries: reflections of a former regulator. Utilities Policy, 2004. 12(2): p. 57~59.
    [132]Bevrani, H., Y. Mitani, and K. Tsuji, Robust decentralized AGC in a restructured power system. Energy Conversion and Management, 2004. 45(15~16): p. 2297~2312.
    [133]Salas, V. and J. Saurina, Deregulation, market power and risk behaviour in Spanish banks. European Economic Review, 2003. 47(6): p. 1061~1075.
    [134]朱宝田.积极开发和采用发电新技术促进我国电力可持续发展[J].中国电力,2001,34(9):10~14.
    [135]Geerli, S. Niioka, and R. Yokoyama, Electricity pricing and load dispatching in deregulated electricity market. International Journal of Electrical Power & Energy Systems, 2003. 25(6): p. 491~498.
    [136]Curran, R., S. Raghunathan, and M. Price, Review of aerospace engineering cost modelling: The genetic causal approach. Progress in Aerospace Sciences, 2004. 40(8): p. 487~534.
    [137]李运泽,杨献勇,严俊杰等.二次再热超临界机组热力系统的三系数线性分析法[J].中国电机工程学报,2002,22(6):132~136
    [138]曹祖庆.汽轮机变工况特性[M].北京:水利电力出版社,1991.
    [139]Ritschel, A. and G.P. Smestad, Energy subsidies in California's electricity market deregulation. Energy Policy, 2003. 31(13): p. 1379~1391.
    [140]李勇,曹丽华,杨善让.凝汽式汽轮机相对内效率在线监测的一种近似计算方法[J].中国电机工程学报,2002,22(2):64~67.
    [141]李维特,黄保海.汽轮机变工况热力计算[M].北京:水利电力出版社,2003
    [142]程翠萍.凝汽式汽轮机末级的变工况分析[J].汽轮机技术,2005,47(3):219~221.
    [143]潘文全.流体力学基础(下)[M].北京:机械工业出版社,1983.
    [144]沈士一,庄贺庆,康松,等.汽轮机原理[M].北京:水利电力出版社,1992.
    [145]雪格耶也夫.蒸汽透平[M].陈大燮,译.北京:高等教育出版社,1954.
    [146]韩中和,杨昆.凝汽式汽轮机排汽焓的简便算法与误差分析[J].汽轮机技术,2006,48(3):167~170.
    [147]Zhang Chunfa,Cui Yinghong,Yang Wenbin,et al.Proof for part of the sttla flow experimental conclusion and the improvement of flugel formula[J].Science in China(Series E),2002,45(1):35~46.
    [148]魏铁征,王军.锅炉运行.天津:天津科学技术出版社,2000.9.205~221
    [149]Chunfa Zhang, Ning Zhao, Huijie Wang, A flexible on~line monitoring method of the exhaust steam dryness and the optimal initial steam pressure in steam turbine。Proceedings of 2008 International Conference on Wavelet Analysis and Pattern Recognition,Hong Kong,30~31August 2008,736~743
    [150]陈矛章,叶轮机械弯扭叶片的研究现状及发展趋势简评[J].中国工程科学,2000.6,2(6)
    [151]黄洪雁,韩万今,冯国泰等.采用弯扭叶片提高汽轮机运行性能[J].节能技术,1999.1,19(93):12~13
    [152]周鸿儒,冯国泰.弯扭叶片的设计思想_设计准则及其在汽轮机中的应用[J].汽轮机技术,2001.12,6(43):328~330
    [153]宋彦萍.弯扭叶片的主要研究成果及其应用[J].热能动力工程,1999.5,14(81):159~163
    [154]刘建华.弯扭叶片对汽轮机变工况的影响分析[J].汽轮机技术,2001.6,3(43):145~146
    [155]卢国栋.火电厂回热加热系统变工况特性研究:[硕士学位论文].保定:华北电力大学,2007
    [156]周兰欣,张学镭,陈素敏.凝汽器压力应达值的确定方法.汽轮机技术,2002,44(3):149~151

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700