SWAT模型在苕溪流域非点源污染研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非点源污染已经成为我国水环境恶化和湖泊富营养化的重要诱因,控制非点源污染对于改善区域水环境具有重要的意义。太湖流域社会经济发达,但水环境已经处于富营养化状态。农业非点源污染已经成为太湖水污染的主要来源之一。苕溪是太湖重要入湖河道,也是沿河区域主要的水源。鉴于此,本研究采用美国农业部开发的SWAT模型对苕溪流域的非点源污染进行模拟研究,构建苕溪流域非点源污染模型,对流域的非点源污染情况进行模拟和分析,为苕溪流域水环境综合整治提供科学依据与有效经验。。主要研究内容和成果如下:
     (1)根据现场调查和资料收集,建立苕溪流域非点源模型数据库,为模型运行提供支撑。利用苕溪流域的瓶窑大桥(东苕溪)和港口(西苕溪)两个站点的监测数据,对SWAT模型径流和水质参数进行率定和验证。模拟结果的误差分析表明校准后的流域非点源污染模型适用于该研究区,且模拟效果较好。
     (2)应用SWAT模型模拟结果,结合GIS地理信息系统,对研究区的产流、产沙、非点源污染输出进行了空间分析。结果表明,苕溪流域土壤侵蚀空间分布特征与降水空间分布有一定的相关性;苕溪流域非点源污染单位面积产生量,北部高于南部,东部高于西部,中部地区最少。
     (3)非点源污染模型模拟结果显示,耕地所产生的单位面积泥沙和污染物负荷远大于其他类型。降雨对流域非点源污染的输出有着直接影响,年内有机氮、硝态氮、氨氮产量呈不规则的“W”形态变化,在雨季前后期,营养盐的输出分别会有一个“小高峰”,因此雨季是流域内非点源输出的重点时段。研究区子流域平均坡度与子流域产生的泥沙负荷、有机氮负荷以及硝态氮负荷呈显著性相关关系。
     (4)基于不同施肥情况的情景分析表明,减少化肥施用量对研究区非点源污染的削减具有一定的效果,但并不显著。
Non-point source pollution (NPS) was an important factor for water environmental deterioration and Lake Eutrophication. It is essential to control NPS to improve water quality in our country. Taihu Lake is the third largest freshwater lake in China. With economic and social development, an increasing amount of pollutants have been discharged into Taihu Lake and resulted in water pollution-eutrophication in particular. Agricultural non-point source pollution is a major source of water pollution source in Taihu Lake. Tiaoxi is an inflow river surrounding Taihu Lake, and is also the main drinking water source for local community.
     SWAT model developed by USDA Agricultural Research Service(ARS) was applied to estimate the NPS in Tiaoxi Watershed. By calibrating and validating with the observed data, the NPS model for study area was established. The pollution load of NPS in Tiaoxi Watershed was estimated and the factors for NPS were discussed with the model. The main content and results were as follows:
     (1) The database for SWAT in the study area was established to ensure the successful operation. The data from Pingyao and Gangkou stations were used for calibration and validation. Error analysis showed that the simulation results were fine and the model was applicable for the study area.
     (2) SWAT model was used to calculate the runoff, sediment and nutrient load in Tiaoxi Watershed. The results showed that there existed a good positive correlation between sediment and rainfall. According to the simulation results of 2008, nutrient load was higher in the north and east of the watershed.
     (3) According to the model results, farmland was the main source of sediment and pollutions, which produced much more nutrient load in unit area than other land use types. The runoff and the load of nutrients varied during the whole year and reached the peak in the rainy season. There existed positive correlation between discharge and rainfall. The same trend was also found in the output of sediment and nutrient load. Therefore the rainy season is the key time for the NPS control. The average slope of sub-basins was another important factor to the output of the load of sediment, organic nitrogen and nitrate.
     (4) Scenario analysis based on the fertilizer application showed that reduction of chemical fertilizer could reduce the output of NPS, but not significantly.
引文
[1]樊娟,刘春光,石静,等.非点源污染研究进展及趋势分析[J].农业环境科学学报.2008,27(4):1306-1311.
    [2]Dowd B M, Press D, Huertos M L. Agricultural nonpoint source water pollution policy:The case of California's Central Coast[J]. Agriculture, Ecosystems & Environment.2008,128(3):151-161.
    [3]Martha G W, Wanada P B. A geographic information system to predict non point source pollution potential[J]. Water Resource Bulletin.1987(2):281-291.
    [4]Dennis L C, Peter J V, Keith L. Modeling nonpoint source pollutants in the vadose zone with GIS[J]. Environmental Science and Technology.1997(8):2157-2175.
    [5]U S E P A. Non-Point Source Pollution from Agriculture[Z]. USA:2003.
    [6]Kronvang B, Graesboll P, Larsen S E, et al. Diffuse nutrient losses in Denmark[J]. Water Science and Technology.1996,33(4-5):81-88.
    [7]Arhonditsis G, Tsirtsis G, Angelidis M O, et al. Quantification of the effects of nonpoint nutrient sources to coastal marine eutrophication:applications to a semi-enclosed gulf in the Mediterranean Sea[J]. Ecological Modelling.2000,129(2-3): 209-227.
    [8]鲍全盛,曹利军.密云水库非点源污染负荷评价研究[J].水资源保护.1997(1):8-11.
    [9]杨苏树,倪喜云.大理州洱海流域农业非点源污染现状[J].农业环境与发展.1999,16(2):43-44.
    [10]蒋晓辉.滇池面源污染及其综合治理[J].云南环境科学.2000,19(4):33-34.
    [11]朱兆良,孙波,杨林章,等.我国农业面源污染的控制政策和措施[J].科技导报.2005,23(4):47-51.
    [12]梁新强,陈英旭,李华,等.雨强及施肥降雨间隔对油菜田氮素径流流失的影响[J].水土保持学报.2006,20(6):14-17.
    [13]张红艳.非点源污染的经济学研究进展[J].上海环境科学.2002,16(3):55-57.
    [14]朱铁群.我国水环境农业非点源污染防治研究简述[J].农村生态环境.2000, 16(3):55-57.
    [15]杨爱玲,朱颜明.地表水环境非点源污染研究[J].环境科学进展.1999,7(5):60-67.
    [16]Ou Y, Wang X Y. Identification of critical source areas for non-point source pollution in Miyun reservoir watershed near Beijing, China[J]. Water Science and Technology.2008,58(11):2235-2241.
    [17]胡雪涛,陈吉宁,等.非点源污染模型研究[J].环境科学.2002,23(3):124-128.
    [18]张秋玲,陈英旭,俞巧钢,等.非点源污染模型研究进展[J].应用生态学报.2007,18(8):1886-1890.
    [19]Donigian As D H. User's Manual for Agricultural Runoff Management (ARM) Model [J]. Discovery guides.1978:286-366.
    [20]Knisel W G. CREAMS:a field scale model for Chemicals, Runoff, and Erosion from Agricultural Management Systems [J], United States. Dept. of Agriculture. Conservation research report.1980,26.
    [21]Young R A, Onstad C A, Bosch D D, et al. AGNPS-A nonpoint-source pollution model for evaluating agricultural watersheds [J]. Journal of soil and water conservation. 1989,44(2):168-173.
    [22]苑韶峰,吕军.流域农业非点源污染研究概况[J].土壤通报.2004,35(4):507-511.
    [23]郝芳华,程红光,杨胜天.非点源污染模型—理论方法与应用[M].北京:中国环境科学出版社,2006.
    [24]Gassman P W, Reyes M R, Green C H, et al. The soil and water assessment tool: Historical development, applications, and future research directions [J]. Transactions of the ASABE.2007,50(4):1211-1250.
    [25]J. G. Arnold N F. SWAT2000:current capabilities and research opportunities in applied watershed modelling[J]. Hydrological Processes.2005,19(3):563-572.
    [26]庞靖鹏,徐宗学,刘昌明.SWAT模型研究应用进展[J].水土保持研究.2007,14(3):31-35.
    [27]金鑫.农业非点源污染模型研究进展及发展方向[J].山西水利科技.2005(1):15-17.
    [28]Neitsch S L, Arnold J G, Kiniry J R. Soil and Water Assessment Tool Theoretical Documentation Version 2005 [Z].2005.
    [29]王中根,刘昌明,黄友波.SWAT模型的原理、结构及应用研究[J].地理科学进展.2003,22(1):79-86.
    [30]Lam Q D, Schmalz B, Fohrer N. Modelling point and diffuse source pollution of nitrate in a rural lowland catchment using the SWAT model[J].Agricultural Water Management.2010,97(2):317-325.
    [31]Barlund I, Kirkkala T. Examining a model and assessing its performance in describing nutrient and sediment transport dynamics in a catchment in southwestern Finland[J]. Boreal Environment Research.2008,13(3):195-207.
    [32]Bosch N S. The influence of impoundments on riverine nutrient transport:An evaluation using the Soil and Water Assessment Tool[J]. Journal of Hydrology.2008, 355(1-4):131-147.
    [33]Zheng J, Li G, Han Z, et al. Hydrological cycle simulation of an irrigation district based on a SWAT model[J]. Mathematical and Computer Modelling.2010,51(11-12): 1312-1318.
    [34]范丽丽,沈珍瑶,刘瑞民,等.基于SWAT模型的大宁河流域非点源污染空间特性研究[J].水土保持通报.2008,28(4):133-137.
    [35]王晓燕,秦福来,欧洋,等.基于SWAT模型的流域非点源污染模拟——以密云水库北部流域为例[J].农业环境科学学报.2008,27(3):1098-1105.
    [36]Zhang X, Liu X, Luo Y, et al. Evaluation of water quality in an agricultural watershed as affected by almond pest management practices[J]. Water Research.2008, 42(14):3685-3696.
    [37]Luo Y, Zhang M. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT[J]. Environmental Pollution. 2009,157(12):3370-3378.
    [38]Holvoet K, van Griensven A, Gevaert V, et al. Modifications to the SWAT code for modelling direct pesticide losses[J]. Environmental Modelling & Software.2008, 23(1):72-81.
    [39]Wang X, Shang S, Yang W, et al. Simulation of land use-soil interactive effects on water and sediment yields at watershed scale[J]. Ecological Engineering.2010,36(3): 328-344.
    [40]Ullrich A, Volk M. Application of the Soil and Water Assessment Tool (SWAT) to predict the impact of alternative management practices on water quality and quantity[J]. Agricultural Water Management.2009,96(8):1207-1217.
    [41]Bormann H, Breuer L, Grff T, et al. Analysing the effects of soil properties changes associated with land use changes on the simulated water balance:A comparison of three hydrological catchment models for scenario analysis [J]. Ecological Modelling.2007,209(1):29-40.
    [42]Huang Z, Xue B, Pang Y. Simulation on stream flow and nutrient loadings in Gucheng Lake, Low Yangtze River Basin, based on SWAT model[J]. Quaternary International.2009,208(1-2):109-115.
    [43]Ouyang W, Skidmore A K, Hao F, et al. Soil erosion dynamics response to landscape pattern[J]. Science of The Total Environment.2010,408(6):1358-1366.
    [44]秦耀民,胥彦玲,李怀恩.基于SWAT模型的黑河流域不同土地利用情景的非点源污染研究[J].环境科学学报.2009:440-448.
    [45]Ficklin D L, Luo Y, Luedeling E, et al. Climate change sensitivity assessment of a highly agricultural watershed using SWAT[J]. Journal of Hydrology.2009,374(1-2): 16-29.
    [46]Ficklin D L, Luo Y, Luedeling E, et al. Sensitivity of agricultural runoff loads to rising levels of CO2 and climate change in the San Joaquin Valley watershed of California[J]. Environmental Pollution.2010,158(1):223-234.
    [47]Park M J, Park J Y, Shin H J, et al. Projection of future climate change impacts on nonpoint source pollution loads for a forest dominant dam watershed by reflecting future vegetation canopy in a Soil and Water Assessment Tool model[J]. Water Science and Technology.2010,61(8):1975-1986.
    [48]Xu Z X, Zhao F F, Li J Y. Response of streamflow to climate change in the headwater catchment of the Yellow River basin[J]. Quaternary International.2009, 208(1-2):62-75.
    [49]Li Z, Liu W, Zhang X, et al. Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China[J]. Journal of Hydrology.2009,377(1-2):35-42.
    [50]Richards C E, Munster C L, Vietor D M, et al. Assessment of a turfgrass sod best management practice on water quality in a suburban watershed[J]. Journal of Environmental Management.2008,86(1):229-245.
    [51]Stewart G R, Munster C L, Vietor D M, et al. Simulating water quality improvements in the Upper North Bosque River watershed due to phosphorus export through turfgrass sod[J]. Transactions of the ASABE.2006,49(2):357-366.
    [52]Yang Q, Zhao Z Y, Benoy G, et al. A Watershed-scale Assessment of Cost-Effectiveness of Sediment Abatement with Flow Diversion Terraces[J]. Journal of Environmental Quality.2010,39(1):220-227.
    [53]Yang Q, Meng F, Zhao Z, et al. Assessing the impacts of flow diversion terraces on stream water and sediment yields at a watershed level using SWAT model [J]. Agriculture, Ecosystems & Environment.2009,132(1-2):23-31.
    [54]张圣微,雷玉平,姚琴,等.土地覆被和气候变化对拉萨河流域径流量的影响[J].水资源保护.2010,26(2):39-44.
    [55]张明旭,赵海英.晋江西溪流域气候变化的SWAT模型模拟[J].通化师范学院学报.2009(4):92-94.
    [56]Migliaccio K W, Chaubey I, Haggard B E. Evaluation of landscape and instream modeling to predict watershed nutrient yields[J]. Environmental Modelling & Software. 2007,22(7):987-999.
    [57]Demirel M C, Venancio A, Kahya E. Flow forecast by SWAT model and ANN in Pracana basin, Portugal[J]. Advances in Engineering Software.2009,40(7):467-473.
    [58]Cibin R, Sudheer K P, Chaubey I. Sensitivity and identifiability of stream flow generation parameters of the SWAT model[J]. Hydrological Processes.2010,24(9): 1133-1148.
    [59]Zhang X, Srinivasan R, Bosch D. Calibration and uncertainty analysis of the SWAT model using Genetic Algorithms and Bayesian Model Averaging[J]. Journal of Hydrology.2009,374(3-4):307-317.
    [60]Yang J, Reichert P, Abbaspour K C, et al. Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China[J]. Journal of Hydrology.2008,358(1-2):1-23.
    [61]Kim N W, Chung I M, Won Y S, et al. Development and application of the integrated SWAT-MODFLOW model[J]. Journal of Hydrology.2008,356(1-2):1-16.
    [62]Sang X F, Zhou Z H, Wang H, et al. Development of Soil and Water Assessment Tool Model on Human Water Use and Application in the Area of High Human Activities, Tianjin, China[J]. Journal of Irrigation and Drainage Engineering -ASCE. 2010,136(1):23-30.
    [63]Nash J E, Sutcliffe J V. River flow forecasting through conceptual models part Ⅰ-A discussion of principles[J]. Journal of Hydrology.1970,10(3):282-290.
    [64]刘前进,蔡强国,方海燕.基于GIS的次降雨分布式土壤侵蚀模型构建——以晋西王家沟流域为例[J].中国水土保持科学.2008,6(5):21-26.
    [65]刘瑞民,杨志峰,丁晓雯,等.土地利用/覆盖变化对长江上游非点源污染影响研究[J].环境科学.2006(12).
    [66]李兆富,杨桂山,李恒鹏.西苕溪典型小流域土地利用对氮素输出的影响[J].中国环境科学.2005,25(6):678-681.
    [67]李俊然,陈利顶.土地利用结构对非点源污染的影响[J].中国环境科学.2000,20(6):506-510.
    [68]史银志,雷晓云.基于人工模拟降雨的土壤侵蚀特性试验研究[J].石河子大学学报:自然科学版.2008,26(4):487-490.
    [69]程艳,李柄花,此里能布,等.洱海弥苴河流域降雨侵蚀力特征研究[J].中国水土保持.2008(6):29-33.
    [70]刘青泉,陈力,等.坡度对坡面土壤侵蚀的影响分析[J].应用数学和力学.2001,22(5):449-457.
    [71]张乃明,张玉娟,陈建军,等.滇池流域农田土壤氮污染负荷影响因素研究[J].中国农学通报.2004,20(5):148-150.
    [72]程波,张泽,陈凌,等.太湖水体富营养化与流域农业面源污染的控制[J].农业环境科学学报.2005(z1):118-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700