干热河谷主要植被恢复树种蒸腾耗水特性及适应机制评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以地处长江上游的金沙江干热河谷植被恢复树种为研究对象,从生理生态学的角度,采用盆栽试验与试验林测试相结合的方法,针对干热河谷旱季长且植被生境存在由干旱转向干热再转向湿润的特殊变化,系统深入地探讨了干热河谷主要植被恢复树种在不同环境条件下的蒸腾耗水特性以及光合、水分生理生态特性,进而对树种的生理生态适应机制进行了系统分析,并对不同试验树种的实际生长状况展开了较为全面的调查,构建了基于生理生态指标及生长量的综合评价指数,科学评价了干热河谷植被恢复树种的适应性问题,旨在为该区生态造林提供科学理论与实践依据。主要结论体现在如下几个方面:
     (1)主要植被恢复树种蒸腾耗水特性
     本研究采用盆栽称重法首次系统比较分析了金沙江干热河谷区29种主要植被恢复树种的苗木蒸腾耗水特性。发现在土壤水分条件良好时,不同种类苗木典型晴天里的蒸腾耗水量及耗水速率的日变化表现为典型的单峰状分布,而随着干旱胁迫加深,苗木蒸腾耗水量及耗水速率的日变化峰值有所提前,且对绝大多数参试树种而言,干热胁迫降低了蒸腾量的日变化幅度,单峰态类型有向双峰态类型过渡的趋势。苗木白天蒸腾耗水量随土壤含水量及水势的下降而降低,但不同种类苗木下降的速率及幅度不一样;随着土壤干旱胁迫的加深,苗木蒸腾耗水速率逐渐降低,且在干旱胁迫初期下降速率较大,而在干旱胁迫后期下降速率呈递减趋势。
     供试树种全天的蒸腾耗水量按大小可分为4类:黑荆、兰桉>大叶相思、新银合欢、干香柏、黄花槐>杞木、赤桉、墨西哥柏、尾叶桉、聚果榕、木麻黄、车桑子、金合欢、圆柏、大叶女贞、余甘子、夹竹桃、滇刺枣>马占相思、山毛豆、久树、山合欢、攀枝花、云南松。依据苗木白天蒸腾耗水速率与土壤水势的数量关系,应用系统聚类法将29种供试苗木分为高、亚高、亚低及低蒸腾耗水速率等4类:①高蒸腾耗水速率中度干旱敏感型树种:木麻黄、滇刺枣、聚果榕及黄花槐;②亚高蒸腾耗水速率弱度干旱敏感型树种有攀枝花、山毛豆、车桑子、金合欢、山合欢、印楝及木豆;③亚低蒸腾耗水速率树种,包括中度干旱敏感型树种和弱度干旱敏感型树种,其中中度干旱敏感型树种有云南松、酸角、马占相思、干香柏和余甘子,弱度干旱敏感型树种有赤桉和久树;④低蒸腾耗水速率树种,包括强度干旱敏感型树种、中度干旱敏感型树种及弱度干旱敏感型树种,其中强度干旱敏感型树种有夹竹桃、兰桉、黑荆、尾叶桉和杞木,中度干旱敏感型树种有新银合欢、墨西哥柏、大叶女贞、大叶相思和圆柏,弱度干旱敏感型树种有小桐子。
     供试苗木的蒸腾耗水量与耗水速率的“午睡”现象受土壤水分状况控制,当土壤水分胁迫发生时,“午睡”现象适时出现,与大气干旱胁迫与否无关。
     无论干热或湿润季节,印楝树干液流密度昼夜变化的规律性较强,呈明显的单、宽峰曲线,在由干热季节转向湿润季节时,印楝树干液流密度降低,5年生印楝在5、7及10月的典型晴天里树干液流密度日变化最大值分别达到27.21、21.61和19.35 cm3·cm-2·h-1,平均值分别为12.11、7.48及6.90cm3·cm-2·h-1。干热季节里植株蒸腾耗水具有相当的被动性,而在湿润季节植株蒸腾耗水则表现出主动性和平衡性。
     (2)主要植被恢复树种的适应机制
     通过探讨供试树种在干季、干热季节以及湿润季节的光合作用规律,本文探讨了不同海拔区域、不同坡位、不同混交方式、不同水分条件对供试树种叶片光合作用发生的影响。主要植被恢复树种叶水势在不同季节的日变化曲线均具有一个明显的峰值,绝大多数呈单峰凹状分布;在干旱胁迫转向干热胁迫阶段,大多数供试树种净光合速率的日变化峰值有所提前,光合“午睡”减弱或转向不明显,在干热胁迫解除、湿润环境来临阶段,多数供试树种又呈现出比较典型的单峰或双峰曲线;供试树种的蒸腾速率日变化进程与净光合速率十分吻合;大部分树种在3月干季的水分利用效率WUE日进程都表现为一条双峰或多峰曲线,干热胁迫的加深明显促进了WUE日变化峰值的提前出现,亦使WUE更早地受到抑制而下降,这一规律与净光合速率的响应特征一致;与树种、季节无关,光化学效率Fv/Fm的日动态总是表现为先下降后上升的变化特征,PSⅡ有效光化学效率Fmv/Fms对环境条件改变的响应较Fv/Fm更为灵敏,非光化学淬灭系数NPQ与Fmv/Fms恰好相反,一般表现为先上升后下降的凸状分布特征,表明启动热耗散机制是干热河谷植被恢复树种光合机构自我保护的一种常见策略。
     元谋县供试树种叶水势在干热的5月份水势最低,干热胁迫的加深加剧了树种间水势的进一步分化,而雨季后干热胁迫的解除能降低分化的程度;干热胁迫降低了大多数供试树种的净光合速率及气孔导度;供试树种蒸腾速率、水分利用效率随季节变化具有不同程度的改变,树种在不同季节里的控制失水能力存在很大差别。树种蒸腾速率的季节性变化方向与气孔导度的变化方向存在不一致的现象,树种蒸腾速率的季节性增减可能表现为气孔因素为主与非气孔因素为主两种控制形式的作用结果。与旱季相比,供试树种固定荧光Fo在湿润季节时的日变化幅度较小,这说明湿润季节有利于光合机构处于一个良好的反应状态,从而提高光合生产力,这与供试树种在湿季表现出更高的净光合速率的现象一致;湿润环境有利于减轻干热河谷区植被恢复树种由强光所导致的“光抑制”。
     干热胁迫的持续与加深增强了元谋与鹤庆这2个不同海拔区域的相同试验树种净光合速率及蒸腾速率间的差异;随着干热胁迫的加深,不同树种受海拔区域高低的影响程度具有较大的变化。相对高的坡位,低的坡位有利于各树种叶水势、净光合速率及蒸腾速率维持在一个相对高的水平,但这种低坡位的光合增益效应因树种而异;坡位的光合增益效应在干热季节表现更为明显。与新银合欢混交时,印楝具有最高的净光合速率,而与大叶相思混交时叶水势最高。在干热河谷区适度的遮阴有利于印楝光合能力及光合效率的提高,而过度的被压则不利于或会限制印楝正常的生理活动。灌溉有利于缓解或解除5月极度干热所形成的水分胁迫,能显著减轻或解除供试树种在干热季节的光合抑制。干季降水增大了多数供试树种在干季的净光合速率、蒸腾速率及水分利用效率,但亦因树种的不同而具有很大差异,干季降水对植被恢复树种的选择及生理活动具有重要意义。
     在干旱胁迫转向干热胁迫阶段,大多数供试树种光合限制增早、增强;在干热胁迫解除、湿润环境来临阶段,净光合速率受限程度减轻或消失。12个供试树种在干季里的光合作用在一天当中均存在气孔限制与非气孔限制两种主导因素。干热胁迫的加深导致了气孔限制的更早发生,亦导致了非气孔限制的更多发生。总地来看,在干热胁迫加深和干热胁迫解除两个先后发生的季节性阶段里,供试树种经历了光合作用气孔限制减少和气孔限制增多两种过程。叶肉细胞光合活性的增强可能是树种上午净光合速率上升的主要因素。高温显然是引起了以非气孔限制为主导因素的光合限制的发生。
     (3)主要植被恢复树种适应性综合评价
     生理特征综合指数与生长量综合指数具有较好的相关关系,由净光合速率、水分利用效率、蒸腾速率及内禀光能转化效率构成的生理特性综合指数能对干热河谷植被恢复树种的适应性作出合理的评价,其中水分利用效率具有良好的指示性。
Taking tree species for vegetation in Jinsha River dry-hot river valley locating the up segment of Changjiang River as study object, in the view of ecophysiology, this paper deeply studied the characteristics of water consumption by transpiration, photosynthesis and water physiology of the main tree species through potted plant trial and plantation survey. Aiming at the special environment that changes from dry to dry and hot then to wet weather in one year, this paper systematically analyzed adaptation mechanism of ecophysiology for tested tree species. The practical growth condition of tested tree species was surveyed. Based on the index of ecophysiology and growth, the comprehensive index was built to scientifically evaluate the adaptation quality of tree species for vegetation restoration, and provide theoretical and practical base for ecological forestation in the Valley. The main conclusions were below:
     (1) Characteristics of water consumption by transpiration of main tree species for vegetation restoration
     Characteristics of water consumption by transpiration of 29 tree species for vegetation restoration in Jinsha River dry-hot river valley were firstly systematically analyzed through potted plant weight method. Under the normal water condition, the daily changes of water consumption by transpiration and transpiration rate of different seedlings presented typical single peak distribution, and with the drough stress getting deep, the peaks of water consumption by transpiration and transpiration rate moved up. For the absolutely most tree species, the dry and hot stress make the range of daily change of water consumptation by transpiration get smaller, and one-peak types have the trend of transition to two-peaks type. The water consumption by transpiration in day time of seedlings decreased with the decline of soil water content and water potential, but the rate and extent of decline was different for different seedlings. With the soil drough stress getting deep, transpiration rate of seedlings gradually decreased, and at the early stage of drough stress, the rate of decreasing was more big, then had the trend of degression during the anaphase.
     Accoring to the quantity of water consumption by transpiration in whole day, the tested tree species could be classified to four sorts: Acacia mearnsii De. Wild., Eucalyptus globulus Labill. > Acacia auriculiformis A. Cunn., Leucaena leucoephala cv. Salvador, Cupressus duclouxiana Hickel., Sophora xanthantha C.Y. Ma. > Carallia longipes, Eucalyptus camaldolensia Dehn., Cupressus lusitanica Mill., Eucalyptus urophylla S.T. Blake., Ficus racemosa L., Casuarina equisetifolia, Dodonaea viscose (L.) Jacq., Acacia glauca (L.) Moelichl, Sabina chinensis (L.) Ant., Ligustrun lucidum Ait., Phyllanthus emblica L., Nerium indicum Mill., Ziziphus mauritiana Lam > Acacia mangium, Tephrosia candida DC., Schleichera oleosa Iour., Albizia kalkora Roxb., Bombax malabaricum DC., Pinus yunnanensis Franch. According to the mathematical relationship between transpiration rate in day time and soil potential, systematical classification method was applied to devide 29 kinds of tree species into four sorts:①high transpiration rate and middle drought sensitivity tree species, including Casuarina equisetifolia, Ziziphus mauritiana Lam, Ficus racemosa L. and Sophora xanthantha C.Y.;②sub-high transpiration rate and weak drought sensitivity tree species, including Bombax malabaricum DC., Tephrosia candida DC., Dodonaea viscose L., Acacia glauca L., Albizia kalkora Roxb., Azadirachta indica A. Juss and Cajanus cajan (L.) Mill.③Sub-low transpiration rate tree species, including middle drought sensitivity type and weak drought sensitivity type, the former have Pinus yunnanensis Franch., Tamarindus indica L., Acacia mangium, Cupressus duclouxiana and Phyllanthus emblica L., the latter include Eucalyptus camaldolensia and Schleichera oleosa Iour.④Low transpiration rate tree species, including strong drought sensitivity type, middle drought sensitivity type and weak drought sensitivity type, in which, strong drought sensitivity type include Nerium indicum Mill., Eucalyptus globulus Labill., Acacia mearnsii De. Wild., Eucalyptus urophylla S.T. and Carallia longipes, middle drought sensitivity type include Leucaena leucoephala cv., Cupressus lusitanica, Ligustrun lucidum Ait., Acacia auriculiformis A. and Sabina chinensis (L.) Ant., Jatropha curcas L. belongs to weak drought sensitivity type.
     The phenomenon of“sleep at noon”of water consumption by transpiration and transpiration rate of seedlings is controlled by the condition of soil water, while soil water stress takes place, the phenomenon of“sleep at noon”appears at once, which is independent of drough stress from atmosphere.
     Whether dry and hot season or wet season, the day and night change of trunk sap flow density of Azadirachta indica A. Juss had strong law, and presented one wide peak. When the environmental changes from dry and hot season to wet season, the trunk sap flow density of Azadirachta indica A. Juss got decreasing, the maximum of daily changes of sap flow density for five-year-old Azadirachta indica A. Juss respectively arrived to 27.21, 21.61 and 19.35 cm3·cm-2·h-1, the average values of daily changes respectively were 12.11, 7.48 and 6.90cm3·cm-2·h-1. Water consumption by transpiration of individual stem in dry and hot season had great passivity, however, water consumption by transpiration of individual stem in wet season presented initiative and balance quality.
     (2)Adaptation mechanism of main tree species for vegetation restoration
     Through discussing the photosynthesis law of tested tree species in dry season, dry and hot season and wet season, this paper studied the effect of different altitude region, different slope location, different mixture mode and different water condition on photosynthesis of tree species. The daily changes of leaf water potential of main tree species for vegetation restoration all had an obvious peak in different seasons, and absolutely most tree species presented one-peak concavity distribution. At the stage of dry and hot stress, the peak time of daily changes net photosynthesis rate of most tree species moved up, the phenomenon of“sleep at noon”of photosynthesis got weaken or not obvious, while dry and hot stress was relieved and wet season came, most tree species presented typical one-peak or two-peak curve again. The daily changes of transpiration rate of tree species were identical to net photosynthesis rate.
     The daily change of water using efficiency (WUE) of most tree species presented a two-peak or mutil-peak curve in dry March, the peak value of daily change of WUE was made come ahead with the dry and hot stress getting deep, which was identical to net photosynthesis rate. Independent of tree species and seasons, the daily changes of photochemistry efficiency Fv/Fm always presented the characteristics of descending first then ascending, available photochemistry efficiency of PSⅡ(Fmv/Fms) was more sensitive to environment condition than Fv/Fm, however, non-photochemistry efficiency extinguishment parameter NPQ presented convexity distribution of ascending first then descending, which showed that the startup of heat dissipation mechanism is an ordinary strategy of self-protection of photosynthesis organ for tree species in the dry- hot Valley.
     The leaf water potentials of tested tree species in Yuanmou County arrived to the minimum in dry-hot May, with dry-hot stress getting deep, water potentials of different tree species became more diverse, and the diversity could be relieved with the coming of wet season. The net photosynthesis rate and stoma conductance of most tree species were decreased by dry-hot stress. Transpiration rate and water using efficiency of tested tree species had some changes with the conversion of seasons. The control capacity of water losing of tree species had great difference in different seasons. The seasonal change direction of transpiration rate of tested tree species had the inconsistent phenomenon with stoma conductance, so we think the seasonal increasing and decreasing of transpiration rate might be action result of two different controlment form, one was priority to stoma factor, the other was priority to non-stoma factors. Comparing with dry season, the range of daily changes of minimal fluorescence parameter Fo was more small in wet season, which showed that wet environment was benefit to make photosynthesis organ keep a good reaction state, consequently improve photosynthesis production, which was identical with the phenomenon that tree species often had higher net photosynthesis rate in wet season. Wet environment benefited to relieve the photo restrain by light for tree species in dry-hot river valley.
     The sustaining and deepening of dry-hot stress strengthen the difference of net photosynthesis rate and transpiration between two different altitude region. With the deeping of dry-hot stress, the effect of altitude region on physiological index of different tree species had great change. Comparing with relatively high slope location, lower slope location was in favor of making leaf water potential, net photosynthesis rate and transpiration rate keep a relative high level, but this improved effect from low slope location was affected by tree species and its action was more obvious in dry-hot season. When mixing with Leucaena glauca (L.)Benth., Azadirachta indica A.Juss had the highest net photosynthesis rate, while mixing with Acacia auriculiformis, Azadirachta indica A.Juss had the highest leaf water potential. In dry-hot river valley, adaptive shade was benefit for photosynthesis capacity and efficiency of Azadirachta indica A.Juss, excessive press could restrict its formal physiological reaction. Irrigation could relieve the dry-hot stress and photosynthesis restrict of tree species in May. The rainfall in dry season increased net photosynthesis rate, transpiration rate and water using efficiency of most tested tree species, and the effect on different tree species had some difference. Rainfall in dry season had important sense for selection and physiological activity of tree species for vegetation restoration in dry-hot river valley.
     At the stage of dry stress turning to dry-hot stress, the photosynthesis restriction of most tree species became more early and strong. While wet season coming, the restriction extent of net photosynthesis rate relieved or disappeared. The photosynthesis of 12 tested tree species simultaneously had two dominant factors of stoma restriction and non-stoma restriction. The strengthening of dry-hot stress led to stoma restriction taking place more early, and presenting more non-stoma restriction. Generally, at the two successive course of dry-hot stress strengthening and relieving, the photosynthesis of tested tree species experienced two courses: stoma restriction decreasing and stoma restriction increasing. The improvement of cell photosynthesis activity might be main factor that caused net photosynthesis rate of tested tree species increased in the morning. High temperature obviously induced the taking place of photosynthesis restriction that took non-stoma restriction as main factor.
     (3)Comprehensive evaluation of adaptability of main tree species for vegetation restoration
     The comprehensive indexes of physiological characteristics and growth had good correla -tion, Comprehensive index built by net photosynthesis rate, water using efficiency, transpira -tion rate and maximal photochemical efficiency of PSⅡcould make a reasonable evaluation for the adaptability of tree species for vegetation restoration. Water using efficiency had good direction.
引文
[1]赵俊臣.干热河谷经济学初探[M].香港:中国文化出版社,1992.1-3
    [2]张荣祖.横断山区干旱河谷[M].北京:科学出版社,1996
    [3]赵琳,郎南军,郑科,彭明俊.云南干热河谷生态环境特性研究[J].林业调查规划, 2006, 31(3): 114-117
    [4]柴宗新,范建容,等.金沙江干热河谷植被恢复的思考[J].山地学报,2001,19(4):381-384
    [5]陈灵芝.中国的生物多样性:现状及其保护对策.北京:科学出版杜, 1993
    [6]包维楷,陈庆恒,刘照光.岷江上游山地生态系统的退化及其恢复与重建对策[J].长江流域资源与环境, 1995 , 4 (3) :277-282
    [7]余作岳,彭少麟.热带亚热带退化生态系统植被恢复生态学研究[M].广州:广东科技出版社, 1997
    [8]任海,彭少麟.恢复生态学导论[M] .北京:科学出版社,2002 ,1-144
    [9]赵晓英,孙成权.恢复生态学及其发展[J].地球科学进展,1998, 13(5) :474-480
    [10]Cains,J.T. The status of the theoretical and applied science of restoration ecology[J].The Environment Professional.1991,13:186-191
    [11]Tilman, D., et al. Productivity and sustainability influenced by diversity in grassland ecosystems[J].Nature,1996,379:718-720
    [12]Chadvich,O.A. et al. Changing sources of nutrients during four million years of ecosystem development[J].Nature,1999,397:491-497
    [13]Foster,D.R, Aber,J.D., Melillo,J.M. Forest responde to disturbance and anthropo -genic stress[J].BioScience.1993,47(7):437-445
    [14]Leach, J.H.Non-indigenous species in the Great Lakes: Were colonization and damage to ecosystem health predictable [J].Journal Of Aquatic Ecosystem Health. 1995, 4:117-128
    [15]Likens,G.E., Driscoll,C.T., Buso, D.C.Long-term effects of acid rain:responde and recovery of aforested ecosystem [J].Science,1996,272:244-246
    [16]Naeem,S. Declining biodiversity can alter the performance of ecosystem[J]. Nature, 1994,368:734-737
    [17]Caims,J. Recovery and restoration of damaged ecosystems[C]. Univ. Press of Virginia. Charlottesvill.1977, 180
    [18]Bradshaw,A.D. What do we mean by restoration. In: Urbanska K M,et al ed. Restoration Development[C]. Cambridge University Press,1997
    [19]章家恩,徐琪.恢复生态学研究的一些基本问题探讨[J].应用生态学报,1999,10(1):109-112
    [20]吕仕洪,向悟生.红壤侵蚀区植被恢复研究综述[J].广西植物,2003,23(1):83-89
    [21]彭少麟.恢复生态学与植被重建[J].生态科学,1996,15(2):26-31
    [22]章家恩,徐琪.恢复生态学研究的一些基本问题探讨[J].应用生态学报,1999,10(1):109-112
    [23]包维楷,陈庆恒.退化山地植被恢复和重建的基本理论和方法[J].长江流域资源与环境, 1998,7(4) :370-377
    [24]孙凡,冯沈萍.论恢复生态学原理及其在三峡库区推耕还林(草)中的指导作用[J ] .中国农业科技导报,2001 ,3(1) :17-20
    [25]陈佐忠,汪诗平,王艳芬.内蒙古典型草原生态系统定位研究最新进展[J].植物学通报, 2003, 20(4):423-429
    [26]胡秀仁.城市生活垃圾堆放场植被恢复技术初探[J].环境保护, 1996(6) :10-14
    [27]西部行动计划领导小组办公室.岷江上游典型退化生态系统恢复与重建试验示范[J].中国科学院院刊, 2003 , 18 (4) :282-284
    [28]刘庆.青藏高原东部(川西)生态脆弱带修复与重建研究进展[J].资源科学,1999,21(4).
    [29]陈灵芝,陈伟烈.中国退化生态系统研究[M].北京:中国科学技术出版社, 1995
    [30]何永彬.横断山—一云南高原干热河谷形成原因研究[J].资源科学,2000,22(5):69-70
    [31]金振洲,欧晓昆.元江、怒江、金沙江、澜沧江—干热河谷植被[M].昆明:云南大学出版社, 2000
    [32]杨一光.云南省综合自然区划[M] .北京:高等教育出版社,1991
    [33]杨万勤,宫阿都,何毓蓉.金沙江干热河谷生态环境退化成因与治理途径探讨(以元谋段为例) [J].科技前沿与学术评论,2000,23(3):36-40
    [34]中国林业科学研究院科技情报研究所.立地分类和评价[M].北京:中国林业科学研究院, 1980
    [35]张映翠.金沙江干热河谷土地资源及其开发潜力[J].山地研究,1996,14(3):188-193
    [36]杨再强,王立新,潘步昌等.攀西干旱干热河谷退耕还林立地类型的划分及经营模式探讨[J].四川林勘设计, 2003,2(2):33-35
    [37]纪中华,刘光华,等.金沙江干热河谷脆弱生态系统植被恢复及可持续生态农业模式[J].水土保持学报,2003,17(5):19-22
    [38]张建平.元谋干热河谷区农业生态系统的优化对策[J].山地学报,2000,18(2):134-138
    [39]张建辉.金沙江干热河谷区人工林生长与土壤母质一母岩的关系研究[J].山地学报,2001,19(3):231-236
    [40]杨忠,张信宝,等.金沙江干热河谷植被恢复技术[J].山地学报,1999,17(2):152-156
    [41]高洁.元谋干热河谷主要造林植物的耐旱性评估[J].西南林学院学报,1997,17(2):19-23
    [42]高洁.干热河谷主要造林树种光合作用光抑制的防御机制[J].应用与环境生物学报,2004,10(3):286-291
    [43]李昆,张春华,崔永忠等.金沙江干热河谷区退耕还林适宜造林树种筛选研究[J].林业科学研究,2004,17(5):555-563
    [44]李昆,曾觉民,等.金沙江干热河谷主要造林树种蒸腾作用进行研究[J].林业科学研究,1999,12(3):244-250
    [45]崔永忠,李昆,张春华.鹤庆县金沙江干热河谷地区几个适宜造林树种育苗技术研究[J].林业调查规划,2004,29(4):106-109
    [46]马焕成,胥辉,陈德强.元谋干热河谷几种相思和桉树水分消耗量估测[J].林业科技通讯,2000,(4):9-11
    [47]马焕成,吴延熊,Jack, A.M.元谋干热河谷几种外来树种在旱季的光合特点[J].浙江林学院学报,2001,18(1):46-49
    [48]周蛟.元谋干热河谷引种造林试验及树种选择研究[J].西南林学院学报,2000,2O(2):78-84.
    [49]杨忠,张信宝.金沙江干热河谷植被恢复技术[J].山地学报,1999,1 7(2):152-156.
    [50]张建平,杨忠,张信宝.元谋干热河谷旱地地下地膜隔墙试验初报[J].水土保持通报,2000,20(2):39-40
    [51]张尚云,高洁.金沙江干热河谷恢复植被与造林技术研究[J].西南林学院学报,1997,1 7(2):1-6
    [52]刘娟,陈玉德,喻赞仁.元谋干热河谷植被恢复的物种选择与营造技术[J].林业科技开发,2001,15(6):40-42
    [53]张映翠.金沙江干热河谷土地资源及其开发潜力[J].山地研究,1996,14(3):188-193.
    [54]张信宝,杨忠,文安邦.微水造林,建设攀枝花市视野区常绿森林植被[J].水土保持学报,2001,15(4):6-9
    [55]林文杰,马焕成,周蛟.干旱胁迫下不同保水剂处理的水分动态研究[J].水土保持研究,2004,11(2):121-123
    [56]陈奇伯,王克勤,李艳梅等.金沙江干热河谷不同类型植被改良土壤效应研究[J].水土保持学报, 2003,17(2):67-70
    [57]王克勤,郭逢春,贺庭荣等.金沙江干热河谷人工赤桉林群落结构[J].中国水土保持科学, 2004,2(4):37-41
    [58]马姜明,李昆,张昌顺.元谋干热河谷苏门答腊金合欢、新银合欢人工林天然更新初步研究[J].应用生态学报,2006,17(8):1365-1369
    [59]马焕成.干热河谷造林新技术[M].昆明:云南科技出版社,2001
    [60]费世民,王鹏.论干热河谷植被恢复过程中的适度造林技术[J].四川林业科技,2003,24(3):10-16
    [61]杨庆媛,汪军.云南省金沙江流域生态环境建设的问题与对策研究[J].西南师范大学学报(自然科学版),2003,28(4):487-491
    [62]金振洲,欧晓昆.元江、怒江、金沙江、澜沧江—干热河谷植被[M].昆明:云南大学出版社,2000
    [63]欧晓昆.云南省干热河谷地区的生态现状与生态建设[J].长江流域资源与环境,1994,3(3):271-276
    [64]沙毓沧.金沙江干热河谷农业自然资源现状和可持续发展潜力[J].云南热作科技,1998, 21(4):41-45
    [65]张建平,王道杰,王玉宽.元谋干热河谷区生态环境变迁探讨[J].地理科学, 2004, 20 (2) : 148-152
    [66]Schulze,E.D., Robichaux,R.H., Grace,J. 1987. Plant water balance [J]. BioScience, 37(1): 30-37
    [67]LarcherW.著.李博等译.植物生理生态学[M].北京:科学出版社,1982
    [68]张建国,李吉跃,沈国舧.树木耐旱特性及其机理研究[M].北京:中国林业出版社,2000
    [69]赵平.退化生态系统植被恢复的生理生态学研究进展[J].应用生态学报,2003,14(11):2031-2036
    [70]张守攻.新技术革命林业能分几杯羹[J].中国林业,2000,(6):38-39, 43
    [71]周平,李吉跃,招礼军.北方主要造林树种苗木燕腾耗水特性研究[J].北京林业大学学报,2002,24(6):50-55
    [72]巨关升,刘奉觉,邓世锴.选择树木蒸腾耗水测定方法的研究[J].林业科技通讯,1998(10):12-14
    [73]岳广阳,张铜会,赵哈林.科尔沁沙地黄柳和小叶锦鸡儿茎流及蒸腾特征[J].生态学报,2006,26(10):3206-3213
    [74]郭连生,田有亮.9种针阔叶幼树的蒸腾速率、叶水势与环境因子关系的研究[J].生态学报,1992,12(1):47-52
    [75]沈允钢,施教耐,许大全.动态光合作用[M].北京:科学出版社,1985:126-15
    [76]Xu,D.Q. Progress in photosynthesis research: from molecular mechanisms to green revolution[J]. Acta Phytophysiologica Sinica,2001 ,27(2):97-108
    [77]许大全.光合速率、光合效率与作物产量[J].生物学通讯,1999,34(8):8-9
    [78]陈贻竹,李晓萍,夏丽.1995.叶绿素荧光技术在植物环境胁迫研究中的应用[J].热带亚热带植物学报,3(4):79-86
    [79]段爱国,保尔江,张建国.水分胁迫下华北地区主要造林树种离体枝条叶片的叶绿素荧光参数[J].林业科学研究,2005,18(5):578-584
    [80]冯建灿,胡秀丽,毛训甲.叶绿素荧光动力学在研究植物逆境生理中的应用[J].经济林研究,2002, 20(4):14-18
    [81]Foyer, C.H.,Noctor, G. Leaves in the dark see the light[J]. Science,2000, 284:5414- 5416
    [82]Havaux,M., Lannoye,R. Chlorophyll fluorescence induction: A sensitive indicator of water stress in maize plants[J]. Irrig Sci., 1983,(4):147-151
    [83]Horton,P.,Rubsn,A.V. Walters,R.G. Regulation of light harvesting in green plants: indication by nonphotochemical quenching of chlorophyll fluorescence[J].Plant Physiol,1994,106:415-420
    [84]Krause,G.H., Weis,E. Chlorophyll fluorescence as a tool in plant physiology.Ⅱ.Interpretation of fluorescence signals[J]. Photosynth. Res., 1984,(5):139-157
    [85]林世青,许春辉,张其德.1992.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用[J].植物学通报,9 (1) :1-16
    [86]许大全,张玉全.植物光合作用的光抑制[J].植物生理学通讯,1992,28(4):237-243
    [87]李树华,许兴,郑国琦.牛心朴子叶绿素荧光参数日变化及其与气象因子的关系[J].干旱地区农业研究,2003,21(2):91-94
    [88]李晓,冯伟,曾晓春.叶绿素荧光分析技术及应用进展[J].西北植物学报,2006,26(10):2186-2196
    [89]蒲光兰,周兰英,胡学华等.干旱胁迫对金太阳杏叶绿素荧光动力学参数的影响[J].干旱地区农业研究,2005,23(3):44-48
    [90]谭新星,许大全.叶绿素缺乏的大麦突变体的光合作用和叶绿素荧光[J].植物生理学报,1996, 22(1):51-57
    [91]王可玢,许春辉,赵福洪.水分胁迫对小麦旗叶某些体内叶绿素a荧光参数的影响[J].生物物理学报, 1997,13(2):273-278
    [92]徐德聪,吕芳德,潘晓杰.叶绿素荧光分析技术在果树研究中的应用[J].经济林研究,2003,21(3):88-91
    [93]许皓,李彦,邹婷等.梭梭生理与个体用水策略对降水改变的响应[J].生态学报,2007,12:5206-5210
    [94]汤章城.植物对水分胁迫的反应和适应:植物对干旱的反应和适应[J].植物生理学通讯,1983,7(4):1-7
    [95]Turner, N. C. Drought resistance and adaptation to water deficits in crop plants[A]. In: Harry Mussall. Stress Physiology in Crop Plants[C]. New York: John Wiley and Sons, 1979:343-372
    [96]段爱国,张建国,张俊佩,王军辉.金沙江干热河谷主要植被恢复树种叶水势的时空变化规律[J].林业科学研究, 2007,20(2):151-159
    [97]Granier,A. Evaluation of transpiration in a Douglas fir stand bymeans of sap flow measurements[J].Tree Physiology,1987,3:309-320
    [98]Granier,A., Huc,R., Barigah,S.T. Transp iration of natural rain forest and its dependence on climatic factors [J]. Agricultural and forest meteorology, 1996, 78: 19-29
    [99]Ping,L., Lauren,U., Zhao,P. Granier’s Thermal Dissipation Probe( TDP) method for measuring sap flow in trees: theory and practice[J]. Acta Botanica Sinica, 2004, 46 (6) : 631-646
    [100]马履一,王华田.油松边材液流时空变化及其影响因子研究[J].北京林业大学学报,2002, 24(3):23-27.
    [101]孙慧珍,周晓峰,康绍忠.应用热技术研究树干液流进展[J].应用生态学报, 2004, 15 (6) : 1074-1078.
    [102]张金池,黄夏银,鲁小珍.徐淮平原农田防护林带杨树树干液流研究[J].中国水土保持科学, 2004,2(4):21-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700