被动湍流控制下多柱体流致振动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钝体绕流时的旋涡脱落是自然界中最普遍的一种物理现象,包含着许多复杂的流动机理。旋涡脱落在钝体表面形成周期性脉动作用力,当钝体固定方式为弹性支撑或允许发生形变时,脉动力将引发钝体产生周期性振动,钝体振动又进一步影响尾流旋涡脱落形态,这种流体与结构物之间相互作用的问题即为流致振动(Flow-induced motion, FIM)。在许多与流体有关的机械与工程中,流致振动是一个涉及安全性的重大问题。涡致振动水生清洁能源(VIVACE)系统将流致振动与能源利用相结合,使这种潜在的破坏性现象在清洁能源领域得到有效利用。为了提高VIVACE系统的能量密度,本文采用被动湍流控制(PTC)和多柱体结构改善系统能量收集性能。另外,随着近年来海洋工程、风工程、航天航空和核工程的飞速发展,多柱体结构流致振动问题受到广泛关注,已成为流体力学理论研究和应用领域的重要课题之一,尚存在大量的问题需要进一步深入研究。因此,对于多柱体流致振动的研究具有非常重要的学术意义与应用价值。
     本文针对被动湍流控制下的多圆柱流致振动问题进行数值分析和实验研究,详细分析了多圆柱流致振动特性和尾流旋涡形态,探讨了各种因素对多柱体旋涡脱落的影响,揭示了多柱体流致振动产生机理,探索改善多柱体流致振动和提高涡致振动水生清洁能源系统能量密度的方法。采用Spalart-Allmaras湍流模型,求解非稳态雷诺平均纳维-斯托克斯方程组(RANS)获得多圆柱流致振动的数值解,并在美国密歇根大学海洋可再生能源实验室(MRELab)完成相应实验测试,得到了以下结论。
     首先,针对PTC单圆柱流致振动系统展开数值计算和实验研究,获得不同来流速度下圆柱振幅、频率和近尾迹流场特征,建立了描述柱体流致振动能量转换装置发电功率的数学模型,分析了最优能量收集速度范围。当雷诺数(Re)在3×10~4≤Re≤1.3×10~5范围内时,PTC单圆柱流致振动RANS数值结果与实验测试极为吻合,能够清晰观察到涡致振动(VIV)初始分支、VIV上部分支和驰振。柱体每个振动周期产生的脱体旋涡数量随着Re数的上升而增加。PTC单圆柱VIVACE系统在整个测试Re数范围内都能有效进行能量收集,模拟结果表明,在VIV上支和驰振起始区域具有最优能量收集效率。
     其次,采用GGI(General Grid Interface)界面结合拓扑网格变形技术,首次对串行排列的弹性支撑PTC双圆柱结构涡致振动和驰振进行数值计算,并在MRELab完成了实验测试。研究表明PTC双圆柱的流致振动振幅和频率响应数值模拟与实验结果趋势一致,两个圆柱均清晰观察到VIV初支和上支、VIV-驰振过渡分支及驰振。当Re=30000时,上游圆柱尾流旋涡形态为典型的2S模式,下游圆柱受到上游圆柱脱体旋涡的影响,运动几乎受到抑制;当Re=59229时,上游圆柱尾涡形态在2P和2P+2S之间切换,下游圆柱尾涡形态为2P模式。在PTC双圆柱发生驰振时,数值模拟获得高达3.5D的振幅(D为圆柱直径),实验测试中的圆柱撞击水槽安全停止阀,达到实验水槽所允许的振幅极限。
     然后,针对串行排列的三个PTC圆柱,研究了各个圆柱流致振动规律,首次通过数值模拟可视化分析了涡致振动过渡到驰振的原因及驰振产生机理。数值模拟和实验研究均表明,在光滑圆柱表面采取PTC措施,能有效刺激边界层分离和旋涡脱落,扩大柱体流致振动同步范围,使高Re数下数值结果与实验测试相吻合。在圆柱振动进入VIV上部分支以后,随着来流速度增加,线性粘滞阻尼模型能有效模拟高Re数PTC圆柱流致振动。圆柱流致振动各个分支间的转移往往伴随尾流旋涡形态的改变,在PTC圆柱由VIV过渡到驰振时,流致振动产生机理也随之发生变化。PTC圆柱驰振的产生是由升力不稳定性引起的,在脱体旋涡形成过程中,圆柱上下侧的分离剪切层被拉伸到几乎垂直于来流方向的位置,造成圆柱上下侧出现较大压差,从而使圆柱受到的升力急剧增大产生驰振。
     最后,通过数值模拟和实验分析对串行排列的PTC四圆柱的流致振动特性开展了研究。研究发现,在串行排列的四圆柱系统中引入PTC,是实现数值结果与实验测试相互匹配的关键因素。在3×10~4≤Re≤1.05×10~5范围内,四个圆柱均观察到了VIV初支、VIV上支、VIV-驰振过渡分支和驰振。PTC圆柱振动由VIV上支向驰振过渡时,实验发现水槽自由液面会造成圆柱振幅突然降低,使柱体驰振出现振幅波动。在Re=50000时,来自上游第1个圆柱的脱体旋涡使第2个圆柱受到的流体作用力变得不稳定,极大削弱圆柱横向升力,从而导致第2个圆柱出现低振幅和低频率振动现象。由于上游PTC圆柱产生的脱体旋涡对下游圆柱运动产生明显影响,使各个圆柱振动频率相互关联,第2/3/4圆柱的振动频率随流速的变化趋势相似。上游PTC圆柱每个振动周期旋涡产生数量往往多于下游柱体,尾流旋涡形态也更为复杂。
The vortices shed from a bluff body is a kind of widespread physical phenomena,which involves many complex flow mechanisms. Vortex shedding results in fluctuatingforces acting on the bluff body, which can cause vibrations when the bluff body iselastically mounted or allowed deformation. This vibration further changes the nature ofthe vortex formation. The interaction between the fluid and structure is called FlowInduced Motion (FIM). FIM is typically treated as destructive phenomenon because ofthe fatigue damage may be potentially introduced. With entirely opposite objective ofprevious efforts, which are mainly focused on reducing FIM effects, VIVACE (VortexInduced Vibration for Aquatic Clean Energy) converter is designed to generate powerby utilizing this potentially disastrous phenomenon. With the rapid development ofocean engineering, wind engineering, aerospace, and nuclear engineering, FIM ofmultiple cylinders has attracted a wide spread attention and becomes one of theimportant subjects in the theory and engineering applications of the hydrodynamics. Butthe research on this topic is still in the stage of exploration and needs to be intensivelystudied. Research on FIM of multiple cylinders has great significance in theory andapplication.
     In this thesis, the FIM of multiple cylinders with Passive Turbulence Control (PTC)are simulated using2-Dimensional Unsteady Reynolds-Averaged Navier-Stokesequations with the Spalart-Allmaras one equation turbulence model. Numerical resultsare compared with experiments conducted in the Marine Renewable Energy Lab(MRELab) of the University of Michigan in the USA. The effects of the parameters ofPTC-cylinders on the vortex shedding, wake vortex patterns, characteristics of bodymotion, hydro-oscillation force, and energy conversion are investigated in the presentstudy. The mechanisms of FIM, such as VIV and galloping, are explored as well. Theenergy conversion efficiency of VIVACE converter is estimated.
     Firstly, the flow and body kinematics of the transverse motion of a spring-mountedcircular cylinder are investigated. The simulated Reynolds number range for whichexperiments were conducted in the MRELab is30000     Secondly, the FIM of two rigid circular cylinders, on end linear-springs, in tandemare numerically studied and verified by experimental data. The key point in thesimulations is the utilization of Topological Mesh Changes combined with General GridInterface. PTC is being used to enhance FIM of cylinders in the VIVACE Converter toincrease its efficiency and power density in harnessing marine hydrokinetic energy. Theamplitude-ratio and frequency results in CFD are in excellent agreement withexperimental data showing the initial and upper branches in VIV, transition from VIV togalloping, and galloping. Vortex structures are studied using high-resolution imagingfrom the CFD results showing typical2S structure in the initial branch and both2P+2Sand2P in the upper branch of VIV. In the galloping branch, amplitudes of3.5diametersare reached before the channel stops are hit.
     Furthermore, a series of simulations are performed for validating the ability of thecode to predict hydrodynamic loads and response of three spring-mountedPTC-cylinders undergoing flow induced motion using2-D URANS. Validation isperformed by comparing simulation results to the experiments. The results show that thecylinder FIM is enhanced with the application of PTC, the flow over the cylindersurface is altering in a way that generates higher lift which is shown better synchronizedwith the motion. The classical linear viscous damping model used in the simulationsmatches well with the physical damping model because the velocity of oscillations isnot near zero when the PTC-cylinder is in the VIV upper branch or galloping. Forcylinder in FIM, the transition between branches is accompanied by vortex patternchange. In galloping, the driving mechanism is not based on the alternating vortices buton the lift instability caused by negative damping due to the lift force induced by theasymmetry of the geometry of the circular cylinder due to the turbulence stimulation.
     Finally, the flow induced motions of four cylinders with PTC in tandem are studiedby numerical simulation and experimental analysis. The study results show that thereason for the successful numerical prediction of the experimental results lies in theapplication of the turbulence stimulation in the form of the PTC. The VIV initial branch and upper branches, transition from VIV to galloping, and galloping are observed for allcylinders. The four-cylinder system extracts so much hydrokinetic energy from the fluidflow that a significant drop in free surface level occurs between the first and fourthcylinders. As the velocity increases, so does the response amplitude, making thecylinders reach closer to the free surface and resulting in the strong fluctuations exhibit.For Re=50000, the upstream vortices shedding from the1stcylinder directly and closelyinteract with the downstream cylinders. Especially for the2ndPTC-cylinder, the liftforce is weakened which results in low amplitude and low frequency vibration. Thevariation trends of oscillation frequency for the2/3/4cylinders are similar. The numberof vortex shed from the upstream cylinder is always more than that from thedownstream one, which leads to a more complex vortex pattern for the upstreamcylinder.
引文
[1] Xie F F, Deng J, Zheng Y. Multi-mode of vortex-induced vibration of a flexible circularcylinder[J]. Journal of Hydrodynamics,2011,23(4):483-490.
    [2] Xie F, Deng J, Xiao Q, Zheng Y. A numerical simulation of VIV on a flexible circularcylinder[J]. Fluid Dynamics Research,2012,44(4):045508.
    [3] Wanderley J B V, Sphaier S H, Levi C. A two-dimensional numerical investigation of thehysteresis effect on vortex induced vibration on an elastically mounted rigid cylinder[J].Journal of Offshore Mechanics and Arctic Engineering-Transactions of the ASME,2012,134(2):021801.
    [4] Song J N, Lu L, Teng B, Park H-i, Tang G Q, Wu H. Laboratory tests of vortex-inducedvibrations of a long flexible riser pipe subjected to uniform flow[J]. Ocean Engineering,2011,38(11-12):1308-1322.
    [5] Sanaati B, Kato N. A study on the effects of axial stiffness and pre-tension on VIV dynamicsof a flexible cylinder in uniform cross-flow[J]. Applied Ocean Research,2012,37:198-210.
    [6] Lee L, Allen D. Vibration frequency and lock-in bandwidth of tensioned, flexible cylindersexperiencing vortex shedding[J]. Journal of Fluids and Structures,2010,26(4):602-610.
    [7] Ji C, Xiao Z, Wang Y, Wang H. Numerical investigation on vortex-induced vibration of anelastically mounted circular cylinder at low Reynolds number using the fictitious domainmethod[J]. International Journal of Computational Fluid Dynamics,2011,25(4):207-221.
    [8] Huang S, Khorasanchi M, Herfjord K. Drag amplification of long flexible riser modelsundergoing multi-mode VIV in uniform currents[J]. Journal of Fluids and Structures,2011,27(3):342-353.
    [9] Yamamoto C T, Meneghini J R, Saltara F, Fregonesi R A, Ferrari J A. Numerical simulationsof vortex-induced vibration on flexible cylinders[J]. Journal of Fluids and Structures,2004,19(4):467-489.
    [10] Zhou C Y, So R M C, Lam K. Vortex-induced vibrations of an elastic circular cylinder[J].Journal of Fluids and Structures,1999,13(2):165-189.
    [11] Prasanth T K, Mittal S. Vortex-induced vibrations of a circular cylinder at low Reynoldsnumbers[J]. Journal of Fluid Mechanics,2008,594:463-491.
    [12] Mittal S, Singh S. Vortex-induced vibrations at subcritical Re[J]. Journal of Fluid Mechanics,2005,534:185-194.
    [13] Goswami I, Scanlan R H, Jones N P. Vortex-induced vibration of circular-cylinders.1.Experimental-data[J]. Journal of Engineering Mechanics-ASCE,1993,119(11):2270-2287.
    [14] Brika D, Laneville A. Vortex-induced vibrations of a long flexible circular-cylinder[J].Journal of Fluid Mechanics,1993,250:481-508.
    [15] Wu X, Ge F, Hong Y. A review of recent studies on vortex-induced vibrations of longslender cylinders[J]. Journal of Fluids and Structures,2012,28:292-308.
    [16] Korkischko I, Meneghini J R. Suppression of vortex-induced vibration using movingsurface boundary-layer control[J]. Journal of Fluids and Structures,2012,34:259-270.
    [17] Bearman P, Brankovic M. Experimental studies of passive control of vortex-inducedvibration[J]. European Journal of Mechanics B-Fluids,2004,23(1):9-15.
    [18] Li H, Laima S, Ou J, Zhao X, Zhou W, Yu Y, Li N, Liu Z. Investigation of vortex-inducedvibration of a suspension bridge with two separated steel box girders based on fieldmeasurements[J]. Engineering Structures,2011,33(6):1894-1907.
    [19] D'Asdia P, Noe S. Vortex induced vibration of reinforced concrete chimneys: in situexperimentation and numerical previsions[J]. Journal of Wind Engineering and IndustrialAerodynamics,1998,74(6):765-776.
    [20] Ehsan F, Scanlan R H. Vortex-induced vibrations of flexible bridges[J]. Journal ofEngineering Mechanics-ASCE,1990,116(6):1392-1411.
    [21] Yang B, Gao F P, Wu Y X, Li D H. Experimental study on vortex-induced vibrations ofsubmarine pipeline near seabed boundary in ocean currents[J]. China Ocean Engineering,2006,20(1):113-121.
    [22] Trim A D, Braaten H, Lie H, Tognarelli M A. Experimental investigation of vortex-inducedvibration of long marine risers[J]. Journal of Fluids and Structures,2005,21(3):335-361.
    [23] Hover F S, Miller S N, Triantafyllou M S. Vortex-induced vibration of marine cables:Experiments using force feedback[J]. Journal of Fluids and Structures,1997,11(3):307-326.
    [24] Blackburn H M, Henderson R D. Lock-in behavior in simulated vortex-induced vibration[J].Experimental Thermal and Fluid Science,1996,12(2):184-189.
    [25] Nguyen T, Koide M, Yamada S, Takahashi T, Shirakashi M. Influence of mass and dampingratios on VIVs of a cylinder with a downstream counterpart in cruciform arrangement[J].Journal of Fluids and Structures,2012,28:40-55.
    [26] Mukundan H, Hover F S, Triantafyllou M S. A systematic approach to riser VIV responsereconstruction[J]. Journal of Fluids and Structures,2010,26(5):722-746.
    [27] Bernitsas M M, Raghavan K, Ben-Simon Y, Garcia E M H. VIVACE (Vortex InducedVibration Aquatic Clean Energy): A new concept in generation of clean and renewableenergy from fluid flow[J]. Journal of Offshore Mechanics and Arctic Engineering-Transactions of the ASME,2008,130(4):041101.
    [28] Bernitsas M M, Raghavan K. Fluid motion energy converter[P]. US7493759,2009
    [29] Zdravkovich M M, Flow Around Circular Cylinders Volume1: Fundamentals[M]. England:Oxford University Press,1997.
    [30] Chang C C, Kumar R A, Bernitsas M M. VIV and galloping of single circular cylinder withsurface roughness at3.0×104≤Re≤1.2×105[J]. Ocean Engineering,2011,38(16):1713-1732.
    [31] Chang C C. Hydrokinetic Energy Harnessing by Enhancement of Flow Induced Motionusing Passive Turbulence Control[D]. Ann Arbor: University of Michigan,2010.
    [32] Lou M, Dong W, Guo H. A vortex induced vibration of marine riser in waves[J]. ActaOceanologica Sinica,2011,30(4):96-101.
    [33] Prasanth T K, Behara S, Singh S P, Kumar R, Mittal S. Effect of blockage onvortex-induced vibrations at low Reynolds numbers[J]. Journal of Fluids and Structures,2006,22(6-7):865-876.
    [34] Pan Z Y, Cui W C, Miao Q M. Numerical simulation of vortex-induced vibration of acircular cylinder at low mass-damping using RANS code[J]. Journal of Fluids andStructures,2007,23(1):23-37.
    [35] Papaioannou G V, Yue D K P, Triantafyllou M S, Karniadakis G E. On the effect of spacingon the vortex-induced vibrations of two tandem cylinders[J]. Journal of Fluids andStructures,2008,24(6):833-854.
    [36] Chen W L, Li H, Ou J P, Li F C. Numerical Simulation of Vortex-Induced Vibrations ofInclined Cables under Different Wind Profiles[J]. Journal of Bridge Engineering,2013,18(1):42-53.
    [37] Muralidharan K, Muddada S, Patnaik B S V. Numerical simulation of vortex inducedvibrations and its control by suction and blowing[J]. Applied Mathematical Modelling,2013,37(1-2):284-307.
    [38] Al-Jamal H, Dalton C. Vortex induced vibrations using Large Eddy Simulation at amoderate Reynolds number[J]. Journal of Fluids and Structures,2004,19(1):73-92.
    [39] Evangelinos C, Karniadakis G E M. Dynamics and flow structures in the turbulent wake ofrigid and flexible cylinders subject to vortex-induced vibrations[J]. Journal of FluidMechanics,1999,400:91-124.
    [40] Vandiver J K. Dimensionless parameters important to the prediction of vortex-inducedvibration of long, flexible cylinders in ocean currents[J]. Journal of Fluids and Structures,1993,7(5):423-455.
    [41] Govardhan R, Williamson C H K. Critical mass in vortex-induced vibration of a cylinder[J].European Journal of Mechanics B-Fluids,2004,23(1):17-27.
    [42] Vikestad K, Vandiver J K, Larsen C M. Added mass and oscillation frequency for a circularcylinder subjected to vortex-induced vibrations and external disturbance[J]. Journal ofFluids and Structures,2000,14(7):1071-1088.
    [43] Skop R A, Luo G. An inverse-direct method for predicting the vortex-induced vibrations ofcylinders in uniform and nonuniform flows[J]. Journal of Fluids and Structures,2001,15(6):867-884.
    [44] Guilmineau E, Queutey P. Numerical simulation of vortex-induced vibration of a circularcylinder with low mass-damping in a turbulent flow[J]. Journal of Fluids and Structures,2004,19(4):449-466.
    [45] Jauvtis N, Williamson C H K. The effect of two degrees of freedom on vortex-inducedvibration at low mass and damping[J]. Journal of Fluid Mechanics,2004,509:23-62.
    [46] Griffin O M, Ramberg S E. Some recent studies of vortex shedding with application tomarine tubulars and risers[J]. Journal of Energy Resources Technology-Transactions of theASME,1982,104(1):2-13.
    [47] Khalak A, Williamson C H K. Motions, forces and mode transitions in vortex-inducedvibrations at low mass-damping[J]. Journal of Fluids and Structures,1999,13(7-8):813-851.
    [48] Blackburn H M, Govardhan R N, Williamson C H K. A complementary numerical andphysical investigation of vortex-induced vibration[J]. Journal of Fluids and Structures,2001,15(3-4):481-488.
    [49] Sarpkaya T. A critical review of the intrinsic nature of vortex-induced vibrations[J]. Journalof Fluids and Structures,2004,19(4):389-447.
    [50] Williamson C H K, Govardhan R. Vortex-induced vibrations[J]. Annual Review of FluidMechanics,2004,36:413-455.
    [51] Gabbai R D, Benaroya H. An overview of modeling and experiments of vortex-inducedvibration of circular cylinders[J]. Journal of Sound and Vibration,2005,282(3-5):575-616.
    [52] Sumner D. Two circular cylinders in cross-flow: A review[J]. Journal of Fluids andStructures,2010,26(6):849-899.
    [53] Bearman P W. Circular cylinder wakes and vortex-induced vibrations[J]. Journal of Fluidsand Structures,2011,27(5-6):648-658.
    [54] Lee J H. Hydrokinetic power harnessing utilizing vortex induced vibration through a virtualc-k VIVACE model[D]. Ann Arbor: University of Michigan,2010.
    [55] Feng C. The measurement of vortex induced effects in flow past stationary and oscillatingcircular and d-section cylinders[D]. Vancouver: University of British Columbia,1968.
    [56] Dehkordi B G, Jafari H H. On the Suppression of Vortex Shedding From Circular CylindersUsing Detached Short Splitter-Plates[J]. Journal of Fluids Engineering-Transactions of theASME,2010,132(4):044501.
    [57] Reedy T M, Elliott G S, Dutton J C, Lee Y. Passive control of high-speed separated flowsusing splitter plates[J]. AIAA Journal,2012,50(7):1586-1595.
    [58] Zdravkovich M M. Review and classification of various aerodynamic and hydrodynamicmeans for suppressing vortex shedding[J]. Journal of Wind Engineering and IndustrialAerodynamics,1981,7(2):145-189.
    [59] Blevins R D, Flow-Induced Vibration[M]. New York: Van Nostrand Reinhold,1990.
    [60] Wu J, Shu C. Numerical study of flow characteristics behind a stationary circular cylinderwith a flapping plate[J]. Physics of Fluids,2011,23(7):073601.
    [61] Rabinovitch J, Brion V, Blanquart G. Effect of a splitter plate on the dynamics of a vortexpair[J]. Physics of Fluids,2012,24(7):074110.
    [62] Gu F, Wang J S, Qiao X Q, Huang Z. Pressure distribution, fluctuating forces and vortexshedding behavior of circular cylinder with rotatable splitter plates[J]. Journal of Fluids andStructures,2012,28:263-278.
    [63] Ali M S M, Doolan C J, Wheatley V. The sound generated by a square cylinder with asplitter plate at low Reynolds number[J]. Journal of Sound and Vibration,2011,330(15):3620-3635.
    [64] Govardhan R, Williamson C H K. Modes of vortex formation and frequency response of afreely vibrating cylinder[J]. Journal of Fluid Mechanics,2000,420:85-130.
    [65] Williamson C H K, Roshko A. Vortex formation in the wake of an oscillating cylinder[J].Journal of Fluids and Structures,1988,2(4):355-381.
    [66] Williamson C H K. Sinusoidal flow relative to circular-cylinders[J]. Journal of FluidMechanics,1985,155(1):141-174.
    [67] Jauvtis N, Williamson C H K. Vortex-induced vibration of a cylinder with two degrees offreedom[J]. Journal of Fluids and Structures,2003,17(7):1035-1042.
    [68] Raghavan K. Energy extraction from a steady flow using vortex induced vibration[D]. AnnArbor: University of Michigan,2007.
    [69] Flemming F, Williamson C H K. Vortex-induced vibrations of a pivoted cylinder[J]. Journalof Fluid Mechanics,2005,522:215-252.
    [70] Williamson C H K, Jauvtis N. A high-amplitude2T mode of vortex-induced vibration for alight body in XY motion[J]. European Journal of Mechanics B-Fluids,2004,23(1):107-114.
    [71]徐枫.结构流固耦合振动与流动控制的数值模拟[D].哈尔滨:哈尔滨工业大学,2009.
    [72] Den Hartog J P, Mechanical Vibrations, Fourth Edition[M]. New York: McGraw-Hill BookCompany,1956.
    [73] Alonso G, Meseguer J, Sanz-Andres A, Valero E. On the galloping instability oftwo-dimensional bodies having elliptical cross-sections[J]. Journal of Wind Engineering andIndustrial Aerodynamics,2010,98(8-9):438-448.
    [74] Naudascher E, Rockwell D, Flow-induced vibrations: An engineering guide[M]. New York:Dover Publications Inc.,2000.
    [75] HéMon P, Santi F. On the aeroelastic behaviour of rectangular cylinders in cross-flow[J].Journal of Fluids and Structures,2002,16(7):855-889.
    [76] Alonso G, Meseguer J. A parametric study of the galloping stability of two-dimensionaltriangular cross-section bodies[J]. Journal of Wind Engineering and IndustrialAerodynamics,2006,94(4):241-253.
    [77] Alonso G, Meseguer J, Pérez-Grande I. Galloping instabilities of two-dimensional triangularcross-section bodies[J]. Experiments in Fluids,2005,38(6):789-795.
    [78] Alonso G, Meseguer J, Pérez-Grande I. Galloping stability of triangular cross-sectionalbodies: A systematic approach[J]. Journal of Wind Engineering and IndustrialAerodynamics,2007,95(9-11):928-940.
    [79] Parkinson G V, Sullivan P P. Galloping response of towers[J]. Journal of Wind Engineeringand Industrial Aerodynamics,1979,4(3-4):253-260.
    [80] Bokaian A R, Geoola F. Hydroelastic instabilities of square cylinders[J]. Journal of Soundand Vibration,1984,92(1):117-141.
    [81] Nakamura Y, Hirata K, Kashima K. Galloping of a circular-cylinder in the presence of asplitter plate[J]. Journal of Fluids and Structures,1994,8(4):355-365.
    [82] Bokaian A, Geoola F. Wake-induced galloping of two interfering circular cylinders[J].Journal of Fluid Mechanics,1984,146(1):383-415.
    [83] Duarte Ribeiro J. Effects of surface roughness on the two-dimensional flow past circularcylinders I: mean forces and pressures[J]. Journal of Wind Engineering and IndustrialAerodynamics,1991,37(3):299-309.
    [84] Park H, Bernitsas M M, Kumar R A. Selective Roughness in the Boundary Layer toSuppress Flow-Induced Motions of Circular Cylinder at30,000    [85] Güven O. An experimental and analytical study of surface-roughness effects on the meanflow past circular cylinders[D]. Iowa City: University of Iowa,1975.
    [86] Roulle C. Reproduction des régimes hypercritiques sur formes rondes en soufflerieatmosphérique[D]. Nantes: Centre Scientifique et Technique du Batiment,1980.
    [87] Ko N W M, Leung Y C, Chen J J J. Flow past V-groove circular-cylinders[J]. AIAA Journal,1987,25(6):806-811.
    [88] Farell C, Blessmann J. On critical flow around smooth circular-cylinders[J]. Journal of FluidMechanics,1983,136(1):375-391.
    [89] Farell C, Carrasquel S, Güven O, Patel V C. Effects of wind-tunnel walls on the flow pastcircular cylinders and cooling towers models[J]. Journal of Fluids Engineering,1977,99(3):470-479.
    [90] Batham J P. Pressure distributions on circular cylinders at critical Reynolds-numbers[J].Journal of Fluid Mechanics,1973,57(2):209-228.
    [91] Fedeniuk S K. An investigation of the effect of end plates on the flow behavior around arough circular cylinder[D]. Minneapolis: University of Minnesota,1982.
    [92] Achenbach E. The effect of surface roughness on the heat transfer from a circular cylinderto the cross flow of air[J]. International Journal of Heat and Mass Transfer,1977,20(4):359-369.
    [93] Hove D T, Shih W C L, Curtis R J. Roughness effects on cylinder flows[C].8th US NationalCongress of Applied Mechanics, June26-30, University of California, Los Angeles, CA,USA,1978.
    [94] Achenbach E, Heinecke E. On vortex shedding from smooth and rough cylinders in therange of Reynolds-numbers6×103to5×106[J]. Journal of Fluid Mechanics,1981,109(1):239-251.
    [95] Achenbach E. Influence of surface roughness on the cross-flow around a circular cylinder[J].Journal of Fluid Mechanics,1971,46(2):321-335.
    [96] Nakamura Y, Tomonari Y. Effects of surface roughness on the flow past circular cylinders athigh Reynolds numbers[J]. Journal of Fluid Mechanics,1982,123:363-378.
    [97]高洋洋.多柱体系统静止绕流与涡激振动的试验及数值研究[D].山东:中国海洋大学,2011.
    [98] Borazjani I, Sotiropoulos F. Vortex-induced vibrations of two cylinders in tandemarrangement in the proximity-wake interference region[J]. Journal of Fluid Mechanics,2009,621:321-364.
    [99] Zdravkovich M M. Review of interference-induced oscillations in flow past2parallelcircular-cylinders in various arrangements[J]. Journal of Wind Engineering and IndustrialAerodynamics,1988,28(1-3):183-200.
    [100] Zdravkovich M M, Pridden D L. Interference between2circular-cylinders-series ofunexpected discontinuities[J]. Journal of Industrial Aerodynamics,1977,2(3):255-270.
    [101] Mizushima J, Suehiro N. Instability and transition of flow past two tandem circularcylinders[J]. Physics of Fluids,2005,17(10):104107.
    [102] Meneghini J R, Saltara F, Siqueira C L R, Ferrari J A. Numerical simulation of flowinterference between two circular cylinders in tandem and side-by-side arrangements[J].Journal of Fluids and Structures,2001,15(2):327-350.
    [103] Tasaka Y, Kon S, Schouveiler L, Le Gal P. Hysteretic mode exchange in the wake of twocircular cylinders in tandem[J]. Physics of Fluids,2006,18:084104.
    [104] Facchinetti M L, de Langre E, Biolley F. Coupling of structure and wake oscillators invortex-induced vibrations[J]. Journal of Fluids and Structures,2004,19(2):123-140.
    [105] Tanida Y, Okajima A, Watanabe Y. Stability of a circular cylinder oscillating in uniform flowor in a wake[J]. Journal of Fluid Mechanics,1973,61(04):769-784.
    [106] King R, Johns D J. Wake interaction experiments with two flexible circular cylinders inflowing water[J]. Journal of Sound and Vibration,1976,45(2):259-283.
    [107] Bokaian A, Geoola F. Proximity-induced galloping of2interfering circular-cylinders[J].Journal of Fluid Mechanics,1984,146:417-449.
    [108] Zdravkovich M M. Flow induced oscillations of two interfering circular cylinders[J].Journal of Sound and Vibration,1985,101(4):511-521.
    [109] Ruscheweyh H P. Aeroelastic interference effects between slender structures[J]. Journal ofWind Engineering and Industrial Aerodynamics,1983,14(1-3):129-140.
    [110] Brika D, Laneville A. The flow interaction between a stationary cylinder and a downstreamflexible cylinder[J]. Journal of Fluids and Structures,1999,13(5):579-606.
    [111] Blevins R D. Forces on and stability of a cylinder in a wake[J]. Journal of OffshoreMechanics and Arctic Engineering-Transactions of the ASME,2005,127(1):39-45.
    [112] Allen D W, Henning D L. Vortex-induced vibration current tank tests of two equal-diametercylinders in tandem[J]. Journal of Fluids and Structures,2003,17(6):767-781.
    [113] Fontaine E, Morel J P, Scolan Y M, Rippol T. Riser interference and VIV amplification intandem configuration[J]. International Journal of Offshore and Polar Engineering,2006,16(1):33-40.
    [114]姚熊亮,陈起富,徐文景,李维扬.并列弹性双圆柱在均匀流场中的流体激励力的研究[J].力学学报,1994,24(1):12-19.
    [115]姚熊亮,陈起富,徐文景.均匀流场串列圆柱涡激振动特性的实验研究[J].振动工程学报,1994,7(1):17-22.
    [116]姚熊亮,陈起富.均匀流场中并列圆柱涡激振动的现状与预测[J].海洋工程,1995,13(3):37-47.
    [117] Assi G, Meneghini J, Aranha J, Bearman P, Casaprima E. Experimental investigation offlow-induced vibration interference between two circular cylinders[J]. Journal of Fluids andStructures,2006,22(6):819-827.
    [118] Assi G, Bearman P, Meneghini J. On the wake-induced vibration of tandem circularcylinders: the vortex interaction excitation mechanism[J]. Journal of Fluid Mechanics,2010,661(1):365-401.
    [119] Assi G R S, Bearman P W, Kitney N. Low drag solutions for suppressing vortex-inducedvibration of circular cylinders[J]. Journal of Fluids and Structures,2009,25(4):666-675.
    [120] Mittal S, Kumar V. Vortex induced vibrations of a pair of cylinders at Reynolds number1000[J]. International Journal of Computational Fluid Dynamics,2004,18(7):601-614.
    [121] Wang X Q, So R M C, Xie W C, Zhu J. Free-stream turbulence effects on vortex-inducedvibration of two side-by-side elastic cylinders[J]. Journal of Fluids and Structures,2008,24(5):664-679.
    [122] Huera-Huarte F J, Gharib M. Flow-induced vibrations of a side-by-side arrangement of twoflexible circular cylinders[J]. Journal of Fluids and Structures,2011,27(3):354-366.
    [123] Huera-Huarte F J, Gharib M. Vortex-and wake-induced vibrations of a tandem arrangementof two flexible circular cylinders with far wake interference[J]. Journal of Fluids andStructures,2011,27(5-6):824-828.
    [124]陈文曲,任安禄,李广望.串列双圆柱绕流下游圆柱两自由度涡致振动研究[J].力学学报,2004,36(06):732-738.
    [125]陈文曲.二维串并列圆柱绕流与涡致振动研究[J].浙江:浙江大学,2005.
    [126]邓见.含运动物体三维复杂流场数值模拟和尾流结构研究[J].浙江:浙江大学,2007.
    [127]邓见,任安禄,邹建锋.方柱绕流横向驰振及涡致振动数值模拟[J].浙江大学学报(工学版),2005,39(04):595-599.
    [128] Igarashi T. Aerodynamic forces acting on three circular cylinders having different diametersclosely arranged in line[J]. Journal of Wind Engineering and Industrial Aerodynamics,1993,49(1):369-378.
    [129] Pontes M T, Falc o A. Ocean energies: Resources and utilization[C]. Proceedings of18thWEC Congress, Oct., Buenos Aires,2001.
    [130] WEC(World Energy Council). Survey of Energy Resources[M]. London: World EnergyCouncil,2001.
    [131] Thorpe T. An overview of wave energy technologies: status, performance and costs[C].Proceedings of International One day Seminar, Institution of Mechanical Engineers, LondonUK,1999.
    [132] Commission of the European Com., DGXII. Wave energy project results: The exploitationof tidal marine currents[R]. Report No. EUR16683EN,1996.
    [133] Norberg C. An experimental investigation of the flow around a circular cylinder: influenceof aspect ratio[J]. Journal of Fluid Mechanics,1994,258(1):287-316.
    [134] Raghavan K, Bernitsas M M, Maroulis D E. Effect of Bottom Boundary on VIV for EnergyHarnessing at8×103    [135] Raghavan K, Bernitsas M M. Experimental investigation of Reynolds number effect onvortex induced vibration of rigid circular cylinder on elastic supports[J]. Ocean Engineering,2011,38(5-6):719-731.
    [136] Bernitsas M M, Ben-Simon Y, Raghavan K, Garcia E M H. The VIVACE Converter: ModelTests at High Damping and Reynolds Number Around105[J]. Journal of OffshoreMechanics and Arctic Engineering-Transactions of the ASME,2009,131(1):011102.
    [137] Chang C C, Bernitsas M M. Design of VIVACE Converter using PTC[C]. Proceedings ofthe30th OMAE Conf., Rotterdam, The Netherlands,2011.
    [138] Wu W, Bernitsas M M, Maki K. RANS simulation vs. experiments of flow induced motionof circular cylinder with passive turbulence control at35,000    [139] Bernitsas M M, Raghavan K. Reduction/Suppression of VIV of circular cylinders throughroughness distribution at8×103    [140] Bernitsas M M, Raghavan K, Duchene G, Asme. Induced separation and vorticity usingroughness in VIV of circular cylinders at8×103    [141] Raghavan K, Bernitsas M M. Enhancement of high damping VIV through roughnessdistribution for energy harnessing at8×103    [142] Lee J, Chang C C, Xiros N I, Bernitsas M M. Integrated power take-off and virtualoscillator system for the vivace converter: Vck system identification[C]. ASME2009International Mechanical Engineering Congress and Exposition, November13-19, LakeBuena Vista, FL, United states,2009.
    [143] Kim E S, Bernitsas M M, Kumar R A. Multi-Cylinder Flow-Induced Motions: Enhancementby Passive Turbulence Control at28,000    [144] Lee J H, Bernitsas M M. High-damping, high-Reynolds VIV tests for energy harnessingusing the VIVACE converter[J]. Ocean Engineering,2011,38(16):1697-1712.
    [145] Lee J H, Xiros N, Bernitsas M M. Virtual damper-spring system for VIV experiments andhydrokinetic energy conversion[J]. Ocean Engineering,2011,38(5-6):732-747.
    [146] Walker D T, Lyzenga D R, Ericson E A, Lund D E. Radar backscatter and surface roughnessmeasurements for stationary breaking waves[C]. Proceedings of the Royal Society ofLondon Series a-Mathematical Physical and Engineering Sciences,1996,452(1952):1953-1984.
    [147] Choi H, Jeon W P, Kim J. Control of flow over a bluff body[J]. Annual Review of FluidMechanics,2008,40:113-139.
    [148] Kwon K, Choi H. Control of laminar vortex shedding behind a circular cylinder usingsplitter plates[J]. Physics of Fluids,1996,8(2):479-486.
    [149] Spalart P R, Allmaras S R. A One-equation Turbulence Model for Aerodynamic Flows[J].Recherche Aerospatiale,1994,1:5-21.
    [150] Jasak H. Error analysis and estimation for the Finite Volume method with applications tofluid flows[D]. London: Imperial College London,1996.
    [151] Travin A, Shur M, Strelets M, Spalart P. Detached-eddy simulations past a circularcylinder[J]. Flow Turbulence and Combustion,2000,63(1-4):293-313.
    [152] Beaudoin M, Jasak H. Development of a generalized grid interface for turbomachinerysimulations with OpenFOAM[C]. Open Source CFD International Conference, December4th/5th, Berlin, Germany,2008.
    [153] Wu W. Two-Dimensional RANS Simulation of Flow Induced Motion of Circular Cylinderwith Passive Turbulence Control[D]. Ann Arbor: University of Michigan,2011.
    [154] Khalak A, Williamson C H K. Fluid forces and dynamics of a hydroelastic structure withvery low mass and damping[J]. Journal of Fluids and Structures,1997,11(8):973-982.
    [155] Zdravkovich M M, Flow Around Circular Cylinders Volume2: Applications[M]. England:Oxford University Press,1997.
    [156] Williamson C H K, Govardhan R. A brief review of recent results in vortex-inducedvibrations[J]. Journal of Wind Engineering and Industrial Aerodynamics,2008,96(6-7):713-735.
    [157] Wanderley J B V, Sphaier S H, Levi C. A numerical investigation of vortex inducedvibration on an elastically mounted rigid cylinder[C]. Proceedings of the27th InternationalConference on Offshore Mechanics and Arctic Engineering, June15-20, Estoril, Portugal,2008.
    [158] Alam M M, Sakamoto H, Zhou Y. Determination of flow configurations and fluid forcesacting on two staggered circular cylinders of equal diameter in cross-flow[J]. Journal ofFluids and Structures,2005,21(4):363-394.
    [159] Igarashi T. Characteristics of the flow around two circular cylinders arranged in tandem. I[J].JSME International Journal Series B,1981,24:323-331.
    [160] Okajima A. Flows around two tandem circular cylinders at very high Reynolds numbers[J].Bulletin of JSME,1979,22(166):504-511.
    [161] Sumner D, Price S J, Paidoussis M P. Flow-pattern identification for two staggered circularcylinders in cross-flow[J]. Journal of Fluid Mechanics,2000,411:263-303.
    [162] Zdravkovich M M. The effects of interference between circular cylinders in cross flow[J].Journal of Fluids and Structures,1987,1(2):239-261.
    [163] Igarashi T, Suzuki K. Characteristics of the flow around three circular cylinders arranged inline[J]. Bulletin of the JSME,1984,27(233):2397-2404.
    [164] Zhao M, Cheng L. Numerical simulation of vortex-induced vibration of four circularcylinders in a square configuration[J]. Journal of Fluids and Structures,2012,31:125-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700