流延法制备固体氧化物燃料电池蜂窝体的工艺及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(SOFC)是一种将燃料的化学能直接转变成电能的发电装置,以其具有能量转换效率高、无污染、燃料范围广等优点而倍受关注。目前,SOFC的研究正向800℃以下的中低温方向发展,实现其中低温化的主要途径有:电解质的薄膜化、新型高电导率电解质材料的研究以及SOFC新型结构的研究。在SOFC新型结构的研究中,蜂窝结构被认为具有较好的发展前景。蜂窝式SOFC具有比表面积大,体积功率密度高;不用高温密封和连接,结构牢固;不用支撑元件,体积小,质量轻;电池组组装简便等优点,可促进SOFC向中低温化发展。
     本文主要探讨了流延法制备SOFC蜂窝体的工艺,主要包括以下方面:
     采用流延法制备高致密度的YSZ基片,分析了影响浆料粘度的因素,对流延过程中的工艺参数和流延膜干燥过程进行了研究,并确定了YSZ基片的排胶烧结工艺。结果表明:当流延浆料YSZ含量为45wt.%,球磨48h,所得浆料粘度适合流延;流延速度控制在0.6cm/s,干燥温度25℃,溶剂气氛中干燥,可以获得高密度、表面平整光滑的生片;排胶后以1℃/min速率升温至1350℃,保温3h后得到的YSZ基片的相对密度可达95.2%。
     以淀粉为造孔剂,采用流延法制备多孔电极。XRD分析表明:阳极Ni-YSZ在1250℃、1300℃、1350℃下真空烧结3h后物相组成均为Ni、YSZ和少量NiO;阴极LSM-YSZ在1250和1300℃下真空烧结3h后物相组成为LSM和YSZ,在1350℃烧结3h后,则出现了少量的La_2Zr_2O_7。随着淀粉添加量的增加,阳极和阴极的径向收缩率和孔隙率都随之增加。SEM分析表明,阳极和阴极的孔隙分布均匀,孔径范围约为1~10μm。
     在流延法制备YSZ基片和多孔电极的研究基础上,通过卷压、堆垛、热合工艺将流延法制备的二维片状薄片转化为三维立体结构,制备SOFC蜂窝体。研究了蜂窝体的热合和烧结工艺,并对蜂窝体进行了微观形貌、电子能谱和抗热震性能测试分析。结果表明:由该方法制备的SOFC蜂窝体具有规则的形状,通孔率高;电极与电解质的界面结合良好;阳极和阴极元素在孔壁内发生了扩散;蜂窝体具有较好的抗热震性能。
Solid oxide fuel cell(SOFC)is an energy conversion device that produces electricity directly from fuels by electrochemical reactions.Being several advantages,such as higher energy conversion efficiency,no pollution and good fuel adaptiveness,SOFC has been received considerable interests worldwide.Recent SOFC development has been focused on lower temperature operation less than 800℃.There are three approaches for lower temperature operation:applying new materials which have high conductivity,using a thin film of electrolyte as well as applying new SOFC structure.In the new SOFC structure's research,the honeycomb is considered to be advanced.The honeycomb SOFC have a lot merits,such as high specific area and power density,no need of elevated temperature sealing and supporting element,small volume and weight.
     In this dissertation,the fabrication processes of SOFC's honeycomb body have been exhaustively studied.Detailed work is as following:
     The compact YSZ slice has been prepared by Tape casting.The factors which influence the viscosity of slurry have been studied.The technical parameters and the drying process in the tape-casting process have been studied respectively.The batching curve has been made according to the TG analysis of green tape.The results show that the slurry is suitable to tape casting when the YSZ content is 45wt.%,milled 48 hours;the smooth green tape with high density can be gained by limiting the tape velocity at 0.6mm/s and the temperature at 25℃when drying in the solvent atmosphere.The relative density of YSZ slice sintered at 1350℃for 3h with heating rate of 1℃/min is 95.2%.
     The porous electrode has been prepared by tape casting with the addition of amylum as poreformers.The XRD analysis show that the main phase of Ni-YSZ sintered at 1250℃,1300℃,1350℃for 3h are YSZ,Ni and NiO.The main phases of LSM-YSZ sintered at 1250℃ and 1300℃are LSM and YSZ,but the main phases sintered at 1350℃are LSM,YSZ and few La_2Zr_2O_7.The shrinkage and porosity of electrode are increased with increasing the amylum content.The pores of the electrode are distributed homogeneous and the aperture's scope is 1~10μm.
     The SOFC's honeycomb body has been prepared by winding,stacking and heat sealing the two dimensional slices prepared by tape casting.The heat sealing process and sintering curve have been investigated.The micro pattern,EDS,thermal shock resistance and compressive strength have been tested and analyzed.The results show that the SOFC's honeycomb body prepared by this method has regular shape,the ratio of open pores is high.The combination of the electrode and electrolyte is good.The elements of anode and cathode are diffused in the wall of hole.The honeycomb body has good thermal shock resistance.
引文
[1]毛宗强.燃料电池[M].北京:化学工业出版社,2005:1-28,275-303.
    [2]韩敏芳,彭苏萍.固体氧化物燃料电池材料及制备[M].北京:科学出版社,2004:7,18-93.
    [3]黄镇江,刘凤君.燃料电池及其应用[M].北京,电子工业出版社,2005:173-204.
    [4]Jijun Xu.Research and Development on Fuel Cells-Challenges and Opportunities.Report in HUST (inter document),2002,7.
    [5]姚思童,司秀丽,杨军等.燃料电池的工作原理及其发展现状[J].沈阳工业大学学报,1998,20(1):42-44.
    [6]蒋凯,张秀英,郭崇峰.固体氧化物燃料电池中的电解质[J].稀有金属,2002,25(2):121-125.
    [7]张德新,岳慧敏.固体氧化物燃料电池与电解质材料[J].武汉理工大学学报,2003,27(3):407-411.
    [8]Zheng F,Bordia R K.Phase constitution in Sr and Mg doped LaGaO_3 system[J].Materials Research Bulletin,2004,39:141-155.
    [9]Junichiro Mizusaki,Yuki Yonemura,Hiroyuki Kamata,et al.Electronic conductivity,Seebeck coefficient,defect and electronic structure of nonstoichiometric La_(1-x)Sr_xMnO_3[J].Solid State Ionies,2000,132(3-4):167-180.
    [10]Kostogloudis G,Ftikos C.Properties of A-site deficient La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_3-based.perovskite oxides.Solid State lonies,1999,126(1-2):143-151.
    [11]黄贤良,赵海雷,吴卫江等.固体氧化物燃料电池阳极材料的研究进展[J].硅酸盐学报,2005,23(11):1407-1413.
    [12]Koh J H,Yoo Y S,Park,J W et al.Carbon deposition and cell performance of Ni-YSZ anode support SOFC with methane fuel.Solid State Ionies,2002,149:157-166.
    [13]Lu C,Worrell W L,Wang C,et al.Development of solid oxide fuel cells for the direct oxidation of hydrocarbon fuels[J].Solid State lonies,2002,152-153:393-397.
    [14]Gorte R J,Kim H,Vohs J M.Novel SOFC anodes for the direct electro-chemical oxidation of hydrocarbon[J].Journal of Power Sources,2002,106(1-2):10-15.
    [15]Ph.Hofmann,A.Schweiger,L.Fryda.High temperature electrolyte supported Ni-GDC/YSZ/LSM SOFC operation on two-stage Viking gasifier product gas[J].Journal of Power Sources,173(1):357-366.
    [16]杨凌波,陈刚,胡克鳌.固体氧化物燃料电池连接材料研究与进展[J].材料导报,2003,17(F09):173-176.
    [17]刘伟明,孙良成.固体氧化物燃料电池铬酸镧连接材料研究现状[J].金属热处理,2002,27(11):8-10.
    [18]江义,李文钊,王世忠.高温固体氧化物燃料电池(SOFC)进展[J].化学进展,1997,9(4):387-396.
    [19]Zhu W Z,Deevi S C.A review on the status of anode materials for solid oxide fuel cells[J].Materials Seienee and Engineering A.2003,362(1-2):228-239.
    [20]Haynes C,Wepfer W J."Design for Power" of a commercial grade tubular solid oxide fuel cell[J].Energy Conversion & Management,2000,41(11):1123-1139.
    [21]衣宝廉.燃料电池[M].北京:化学工业出版社,2000:122-134.
    [22]汤根土,骆仲映,倪明江等.平板状阳极支撑固体氧化物燃料电池的数值模拟及性能分析[J].中国电机工程学报,2005,25(10):116-121.
    [23]美国研制出新型固体氧化物燃料电池[J].现代材料动态,2006,8:25.
    [24]杨晓蝉摘译.日本三菱材料等公司用新型电池开发3kW级模板[J].现代材料动态,2004,8:6-7,10.
    [25]我国硅酸盐固体氧化物燃料电池取得突破.电池商讯,2006,12:5.
    [26]贺连星,温廷琏,吕之奕.流延法制备陶瓷燃料电池电解质膜的研究进展[J].材料科学与工程,1997,59(9):18.
    [27]黄勇,向军辉,谢志鹏等.陶瓷材料流延成型研究现状[J].硅酸盐通报,2001,5:22-27.
    [28]G N Howatt.Method of producing high dielectric high insulation ceramic plates[P].U.S.Pat.2,582,993,1952.
    [29]Richard E,Mistier and Erie R,Twiname.Tape Casting:Theory and practice[M].Westerville,OH:Ameriean Ceramic Society,2000:209-224.
    [30]R E Mistler.Tape easting:past,present,potential[J].Am.Ceram.Soc.Bull,1998,77(10):82-86.
    [31]韩振宇,马莒生,徐忠华.低温共烧陶瓷基板制备技术研究进展[J].电子元件与材料,2000,19(6):31-33.
    [32]Y S Lee,T Y Tseng.Influence of processing parameters on the mierostrueture and electrical properties ofmultilayer-chip ZnO varistors[J].J.Mater.Sci.:Materials in electronics,1995,6(1):90-96.
    [33]D Coimbra,R Greenwood,K Kendall.Video-controlled tensile testing of alumina fibres and rods manufactured by colloidal processing[J].J.Mater.Sci.,2000,35(13):3347-3357.
    [34]刘福田,李兆前,黄传真.Mo-(Fe-B)-Fe混合粉末流延成型薄层坯体的干燥机理分析[J].陶瓷学报,2002,23(4):211-216.
    [35]孙明涛,孙俊才,季世军等.固体氧化物燃料电池的中低温化研究[J].稀有金属,2004,28(6):1065-1069.
    [36]管丛胜,杜爱玲,杨玉国.高能化学电源[M],北京:化学工业出版社,2005:538.
    [37]M.Wetzko,A.Belzner,F.J.Rohr,F.Harbach.Solid oxide fuel cell stacks using extruded honeycomb type elements[J].Journal of Power Sources,1999,83:148-155.
    [38]Shaowu Zha,Yuelan Zhang,Meilin Liu.Functionally graded cathodes fabricated by sol-gel/slurry coating for honeycomb SOFCs[J].Solid State Ionics,2005,176:25-31.
    [39]Hao Zhong,Hiroshige Matsumoto,Tatsumi lshihara.Honeycomb-type Solid Oxide Fuel Cells Using La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_3 Electrolyte[J].The Chemical Soeiety of Japan,2007,36(7):846.
    [40]Kiyoshi OKUMURA,Shigenori ITO,Shinji KAWASAKI.Development of a Composite Honeycomb Structure for Solid Oxide Fuel Cells[J].Journal of the Ceramic Society of Japan,2004,112(5):1042-1045.
    [41]马春雷,谢志鹏,黄勇.添加剂在水基凝胶流延成型中的作用[J].材料科学与工艺,2004,12(2):113-116.
    [42]上海科技大学新型无机材料教研组.电子陶瓷工艺基础[M].上海人民出版社,1977:15-66.
    [43]R.M.German.Powder injectionmolding[M].MPIF.Princeton:NJ 1990,207.
    [44]Lacey PMC.Development in the theory of particle mixing.Appl.J.Chem,1954,4:257-26.
    [45]贾莉,吕喆,黄喜强等.用于SOFC的YSZ电解质薄膜的制备方法进展[J].电源技术,28(7):449-451.
    [46]陈铭,温延琏,黄臻等.YSZ陶瓷膜流延等静压复合成型新工艺研究[J].无机材料学报,1999,14(5):745-750.
    [47]梁建超.氧化锆基片的流延制备技术及其性能研究[D].武汉:华中科技大学,2005:32.
    [48]T.Charties,A.Bruneau.Aqueous tape casting of alumina substrates[J].J Euro Ceram Soc,1993,12:243-247.
    [49]王启宏.材料流变学[M].北京:中国建筑工业出版社,1985:.
    [50]K.Otsuka,Y.Ohsawa,M.Sekibate.A study on the alumina ceramics casting conditions by the doctor-blade method and their effect on the properties of green tape.Yogyo Kyokai Shi,1986,94(3):351-359.
    [51]Y.T.Chou,Y.T.Ko,M.F.Yan.Fluid flow model of ceramic tape casting[J].Journal of the American Ceramic Society,1987,70:C280-282.
    [52]洪啸吟,冯汉.保涂料化学[M].北京:中国科学出版社,2000.
    [53]P.R.Slater,J.T.S.lrvine.Niobium based tetragonal tungsten bronzes as potential anodes for solid oxide fuel cell-synthesis and electrical characterization[J].Solid State Ionics,1999,120:125-134.
    [54]B.J.Briscoe,G.L Biundo,N.Ozkan.Drying of aqueous ceramic suspensions[J].Key Eng Mater,1997,132-136:354-357.
    [55]梁丽萍,高荫本,陈诵英.固体氧化物燃料电池与陶瓷材料[J].材料科学与工程,1997,15(4):9-14.
    [56]Y.Ji,J.A.Kilner,M.F.Carolan.Electrical properties and oxygen diffusion in yttria-stabilised zirconia(YSZ)-La_(0.8)Sr_(0.2)MnO_(3±δ)(LSM)composites[J].Solid State lonics,2005,176:937-943.
    [57]T.Kenjo,M.Nishiya.LaMnO_3 air cathodes containing ZrO_2 electrolyte for high temperature solid oxide fuel cells[J].Solid State lonics,1992,57:295-302
    [58]卢自桂,江义,董永来.锰酸镧和氧化钇稳定的氧化锆复合阴极的研究[J].高等学校化学学 报, 2001, 22(5): 791-795.
    [59] A. Mitterdorfer, L.J. Gauckler. La_2ZrO_7 formation and oxygen reduction kinetics of the La_(0.85)Sr_(0.15)Mn_yO_3, O_2(g)/YSZ system[J]. Solid State Ionics, 1998, 111: 185-218.
    [60] Christopher Chervin, Robert S. Glass, Susan M. Kauzlarich. Chemical degradation of La_(1-x)Sr_xMnO_3/Y_2O_3-stabilized ZrO_2 composite cathodes in the presence of current collector pastes[J]. Solid State Ionics, 2005, 176: 17-23.
    [61] G. Ch. Kostogloudis, Ch. Ftikos. Chemical Compatibility of RE_(1-x)Sr_xMnO_(3 ±δ)(RE=La, Pr, Nd, Gd, 0≤x≤0.5) with Yttria Stabilized Zirconia Solid Electrolyte[J]. Journal of the European Ceramic Society, 1998, 18: 1707-1710.
    [62] Hiroyuki Kamata, Akio Hosaka, Junichiro Mizusaki, et at. High temperature electrocatalytic properties of the SOFC air electrode La_(0.8)Sr_(0.2)MnO_3/YSZ[J]. Solid State Ionics, 1998, 106 : 237-245.
    [63] J. Cesarao, I. A. Aksay. Processing of highly concentrated aqueous aiumina suspensionsstabilized with polyelectrolytes[J]. Journal of the American Ceramic Society, 1988, 71(12): 1062-1067.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700