人子宫内膜上皮细胞紧密连接及其蛋白在胚胎着床中的作用及调节机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:人类的受精卵仅约一半能发育到妊娠20周后,而其中70-80%的失败归因于着床失败。胚胎着床失败是早期妊娠丢失的主要原因。尽管IVF-ET及其相关技术取得了很大进展,胚胎着床仍是决定妊娠率的主要环节。然而人类对胚胎着床分子机制的认识远远落后于对其它生殖过程的认识。IVF及其衍生技术中,促卵泡发育理论和药物几经更新,然而对促进胚胎着床、改善子宫内膜容受性方面几无良策。
     人类分泌中期的子宫内膜在雌孕激素以及各种生长因子、细胞因子、粘附分子组成的网络系统精细调控下表现为对胚泡最大的容受性,这一时期也称为胚泡着床窗口期。在这一时期子宫内膜上皮细胞在形态、结构上都经历了重大的改变以适应胚泡的侵入。子宫内膜上皮包括腔上皮和腺上皮,两者都是由极性的单层立方上皮细胞构成,但是两者在胚胎着床窗口期形态和功能出现了不同的变化。容受期宫腔上皮出现细胞极性的下降:细胞高度下降,微绒毛消失,并由胞饮突取代,细胞表面电荷减少,细胞表面粘附分子分布由基侧膜转向顶侧膜。容受期腺上皮细胞则细胞高度增加,表现为最大的分泌活性和细胞极性。两种细胞在胚胎着床中有不同的作用,宫腔上皮与胚泡发生接触、粘附,子宫腺体的分泌为围着床期以及早期妊娠的胚胎的发育提供“蛋白乳”的作用。
     紧密连接是上皮细胞最富特征性的结构,也是上皮细胞屏障功能和维持细胞极性、调节细胞旁小分子物质通透性的重要结构,由多种穿膜蛋白组成。其中Occludin是第一个被发现的TJ组成蛋白,其生物学作用表现为多样性,除了调节紧密连接的屏障功能外还可能参与细胞增生与分化。
     紧密连接及其蛋白组成在人容受期与非容受期子宫内膜宫腔上皮细胞和腺上皮细胞是否发生了变化?紧密连接蛋白Occludin是否受到性激素的调节,是否参与了子宫内膜上皮细胞的生物学功能?这一系列问题至今尚未见报道,本课题针对上述问题进行了研究和探索。
     第一部分月经周期子宫内膜上皮细胞紧密连接形态学及其蛋白组成研究
     目的:检测月经周期人子宫内膜上皮细胞紧密连接超微结构及其组成蛋白Occludin、Zo-1、claudin-1,-2,-3,-4,-5的定位和定量表达
     方法:透射电镜检查人正常子宫内膜宫腔上皮细胞和腺上皮细胞紧密连接超微结构在月经周期中的变化;免疫荧光和免疫印迹法检测TJ组成蛋白Occludin、Zo-1、claudin-1、-2、-3、-4、-5在人子宫内膜上皮细胞中的定位与分布、表达量的周期性变化。
     结果:透射电镜研究结果显示人子宫内膜宫腔上皮细胞紧密连接在分泌中期比增生中晚期浅、宽;而子宫内膜腺上皮细胞中分泌中期紧密连接比增生中晚期深、复杂、更加多的分支。共聚焦免疫荧光显微镜检查提示子宫内膜宫腔上皮细胞紧密连接蛋白Occludin,Zo-1表达在增生中晚期信号明显强于分泌中期,荧光定量统计分析两者有显著差异。子宫内膜腺上皮细胞Occludin,Zo-1的表达趋势与腔上皮细胞刚好相反,在分泌中期信号明显强于增生中晚期,荧光定量统计分析两者有显著差异。所有检测的紧密连接蛋白Occludin、Zo-1、claudin-1、-2、-3、-4、-5均可在分泌中期的腺上皮细胞膜顶端表达;在增生中晚期腺上皮细胞claudin-2、5表达阴性,claudin-1、-3在侧基底膜表达;Occludin、Zo-1除了在细胞顶端外还在胞浆、侧基底膜不连续表达。子宫内膜组织western blot分析在分泌中期Occludin、claudin-1,-3,-4蛋白表达为最高峰。
     结论:人子宫内膜上皮细胞紧密连接及其组成蛋白在月经周期呈周期性变化。其中宫腔上皮细胞分泌中期紧密连接及其组成蛋白下调;腺上皮细胞紧密连接及其蛋白表达上调
     第二部分子宫内膜上皮细胞紧密连接及其蛋白Occludin在胚泡粘附中的作用
     目的:明确子宫内膜上皮细胞紧密连接在子宫内膜与滋养细胞粘附中的调节作用
     方法:用透射电镜、蛋白免疫印迹法、免疫荧光化学法、跨膜上皮细胞电阻(TER)检测非容受性子宫内膜上皮细胞HEC1-A细胞和容受性子宫内膜上皮细胞RL95-2细胞在TJ形态、功能、TJ蛋白组成和分布的差异;利用子宫内膜上皮细胞株-滋养细胞球(JAR spheroids)粘附的胚胎着床模型检测两种子宫内膜上皮细胞胚泡粘附率的差异;对滋养细胞球进行活细胞荧光染料标记,利用双色免疫荧光共聚焦显微镜检测在HEC-1A细胞与滋养细胞球发生粘附处TJ蛋白Occludin表达的变化;观察HEC1-A细胞Occludin siRNA干扰后检测TJ功能、胚泡粘附率的变化;检测着床促进因子白细胞介素p-1对HEC-1A细胞TJ蛋白Occludin和胚泡粘附率的调节。
     结果:透射电镜显示HEC-1A细胞具有极性,紧密连接位于细胞顶端,免疫荧光染色显示TJ蛋白Occludin、Zo-1表达于细胞膜。RL95-2细胞无TJ结构,Occludin、Zo-1表达于细胞浆。western blot结果显示HEC-1A细胞Zo-1, Occludin蛋白表达显著高于RL95-2细胞。而Claudin-4在HEC-1A细胞阳性表达,RL95-2细胞中阴性表达。HEC-1A细胞TER为(163.0±23.0)Q×cm2, RL95-2细胞TER为(92.3±11.0)Ω×cm2,两者相比有显著差异(P<0.001)。HEC-1A细胞与JAR spheroids粘附率显著低于RL95-2细胞。在JAR细胞球粘附处,HEC-1A细胞Occludin呈现为不连续、点状分布。对HEC-1A细胞的Occludin经siRNA干扰后,细胞在TJ重装过程中TER峰值下降。白细胞介素1-p下调HEC1-A细胞Occludin表达,并上调HEC1-A细胞胚泡粘附率。
     结论:非容受性子宫内膜上皮细胞HEC-1A存在功能性的紧密连接。HEC-1A细胞TJ蛋白Occludin下调后能够促进子宫内膜上皮细胞与胚泡的粘附;在JAR细胞球粘附处,HEC-1A细胞的紧密连接蛋白Occludin为不连续的点状分布。本研究提示紧密连接蛋白Occludin下调参与子宫内膜容受性的建立。
     第三部分Occludin表达的性激素调控及其在子宫内膜腺上皮细胞增生和分泌中的作用
     目的:明确子宫内膜上皮细胞Occludin表达的性激素调控;阐明Occludin在子宫内膜上皮细胞增生和分泌中的作用。
     方法:雌激素、雌孕激素联合培养增生期子宫内膜腺上皮细胞。Western blot检测上皮细胞Occludin、Claudin-4的表达。以IK细胞为腺上皮细胞模型,对其Occludin进行siRNA基因干扰,采用流式细胞技术检测细胞对凋亡诱导剂H202的敏感性,通过细胞周期检测细胞的增殖率;并采用蒽酮法检测细胞糖原含量的变化。
     结果:孕激素上调65kD Occludin、Claudin-4表达;对IK细胞Occludin基因干扰后,细胞凋亡敏感性下降;细胞增殖率增加;糖原分泌下降。
     结论:孕激素上调TJ蛋白65kD Occludin、Claudin-4表达,提示孕激素能增强TJ功能。Occludin能够抑制子宫内膜上皮细胞的增生,并促进其分泌。提示Occludin介导孕激素对子宫内膜上皮细胞的增生抑制和促分化作用。
It has been shown that only 50 to 60 percent of conceptions in women could develop and survive past 20 weeks of gestation. Around 40-50% of conception and pregnancy failed at different time of gestation. Because approximately 75 percent of these failures are due to implantation failure, implantation failure is a main factor resulting in early pregnancy loss. So embryo implantation rate determines the success of the in vitro fertilization (IVF) and the birth rate. However, the mechanisms involved in embryo implantation remain largely unknown. The knowledge about the process of embryo implantation we have is well less than the knowledge about the other process of human reproduction. Although the ART protocol and pharmaceuticals for ovarian stimulation are being renovated and reproved constantly, on the contrary, we nearly have no measure about improving the uterine receptivity.
     The phenotypes of endometrial luminal and glandular epithelium change dramatically from the proliferative to the mid-secretory phase of the menstrual cycle, when the endometrium becomes receptive for embryo implantation under regulation of ovarian hormones, cytokines, cell growth factors, adhesion molecules. Endometrial luminal and glandular epithelium are composed of the polarity epithelial cells. In embryo implantation window, two types of epithelial cells undergo different changes in morphology. A loss of apico-basal polarity could be observed in luminal epithelial cells, while gland epithelial cells showed the most polarity and secretory activity. The different morphology between two cell populations highlights the functional difference, with the luminal epithelial cells initial contact and attachment with the embryo and the glandular epithelial cells expressing secretory proteins for conceptus recognition, survival, and development.
     However, little is known about the association of TJ functions with the establish of the endometrial receptivity. The purpose of the present study was 1) to investigate the alteration of TJ morphology and TJ protein in human uterine epithelium during the menstrual cycle; 2) to determine whether TJ function associated with the endometrial receptivity; 3) to determine whether expression of TJ proteins in uterine gland epithelial cells had a correlation with serum 17β-estradiol (E2) and/or progesterone; and 4) to determine whether Occludin regulates the uterine epithelial cell proliferation and differentiation.
     Part1 Alteration of TJ morphology and TJ proteins in human uterine epithelium during the menstrual cycle
     Objective:To investigate alteration of TJ morphology and TJ proteins in human uterine epithelium during the menstrual cycle
     Methods:We examined the dynamically changes of morphology of TJs between adjacent uterine epithelial cells including luminal epithelial cells and gland epithelial cells during the menstrual cycle with transmission electroscope. Then we investigated the location and expression of TJ proteins including Occludin、Zo-1、Claudin-1,-2,-3,-4,-5 in the proliferative and secretary endometrium with immunochemistry techniques, respectively.
     Results:the morphological analysis of uterine epithelial cells with transmission electroscope showed that the depth of TJ between gland epithelial cells in mid-secretary phase increased about 2-fold along the lateral membrane and present more complex and curled when compared with mid-proliferative phase. However, in the luminal epithelial cells, the TJ depth in mid-secretary phase was reduced significantly compared with the mid-proliferative phase.
     All examined TJ proteins including Occludin. Zo-1、Claudin-1,-2,-3,-4,-5 with confocal immunofluorescence were located at TJ region in mid-secretary phase GE cells. On the other hand, Claudin-2 and -5 were not expressed in mid/late proliferative phase GE cells. During mid/late proliferative phase, Claudin-1, Claudin-3 and Claudin-4 were faintly stained in the basallaterial membrane, and Zo-1, Occludin localized in punctuate manner at the uppermost portion of the lateral membrane and cytoplasm. The endometrial expression levels of TJ proteins in mid-secretary phase were higher than those in other phases with Western blot analysis. Conclusion:Dynamically changes of structural and molecular components of TJs in uterine epithelial cells were detected during proliferative and secretive phases of the menstrual cycle. In LE cells the TJ depth and expression of TJ proteins were downregulated during mid-secretary phase, while GE cells showed an oppositive result.
     Part 2 The roles of tight junction between uterine endometrial epithelial cells in the embryo implantation
     Objective:To investigate the roles of tight junction in regulation of adhesion between uterine endometrial epithelial cells and embryo cells.
     Methods:Endometrial cell lines RL95-2 and HEC-1A were used as models of receptive and nonreceptive cells, respectively. Attachment assay of JAR spheroids to the endometrial cell was used as embryo implantation model to evaluate the hEEC receptivity to embryo under different cultured conditions. We compared the HEC1-A and RL95-2 cell lines in TJ ultrastructure and TJ protein composition with transmission electron microscope, Western blot and immunofluorescent confocal microscope, respectively. We examined the TJ function by measurement of cell transcellular electrical resistance (TER) with Millicell-ERS. The embryo adhesion rate in HEC1-A and RL95-2 cell lines were examined. The expression of Occludin at the adhesion parts was examined with three-color laser confocal inspection. Then, we investigated the embryo adhesion rate in the HEC1-A cells pretreated with siRNA to interfere Occludin gene and TER during TJ assembled under the calcium switch assay with EGTA. Additionally, we treated HEC1-A cells with interleukin-1βfor 48 hours, and examined the expression level and location of Occludin with Western blot and immunofluorescence, and the adhesion rate of HEC-1A cells to JAR spheroids.
     Results:The transmission electron microscopy showed that HEC1-A cells, not RL95-2 cells, were polarized and had typical tight junctions at the apex of the lateral membrane cells. In HEC1-A the tight junction proteins Zo-1 and Occludin were expressed in the cell membrane, while they were expressed in the cytoplasm of RL95-2 cells. Western blot results showed that the expression of Zo-1 and Occludin in the HEC1-A was significantly higher than that in RL95-2 (P<0.01). Claudin-4, a component of tight junction skeleton, was strongly expressed in HEC1-A cells, but no expression was detected in RL95-2 cells. The TER of monolayer HEC1-A cells was higher than that of RL95-2 cells (163.0±23.0)Ω×cm2 vs (92.3±11.0)Ω×cm2(P<0.01). In hEEC and JAR spheroids attachment experiments, the adhesion rate of HEC1-A cells to JAR spheroids was significantly higher than that of RL95-2 cells (P<0.01). Confocal laser microscopic analysis showed that Occludin might move from the cell membrane into cytoplasm at the adhesion position of HEC1-A cells, remaining disrupted and point-like distribution in the cell membrane. After Occludin siRNA interfering, the expression of Occludin in the membrane was decreased in HEC1-A cells, and meanwhile the embryo adhesion rate increased. However, the peak TER was attained more slowly and its value was lower in cultured HEC-1A cells pretreated with Occludin siRNA during TJ reassembled in calcium switch experiments.
     Conclusion:HEC-1A cell presents TJ and TJ protein in TJ region, while RL95-2 cell did not express TJ and TJ proteind in cell border. Downregulated Occludin protein expression by siRNA interference in HEC1-A cells results in an increase in the embryo adhesion rate, the translocation of Occludin from the cell membrane into cytoplasm at the adhesion position of HEC1-A cells. These results suggest that down-regulation of the uterine endometrial epithelial cell tight junctions may be related to embryonic adhesion.
     Part 3 The roles of Occludin in regulation of epithelial cell differentiation and proliferation and the alteration of TJ proteins in cultured human endometrial epithelial cells in the presence of ovarian steroid hormones
     Objective:To investigate the effects of E2 and progesterone (P4) on the expression of TJ proteins Occludin and Claudin-4 in the cultured human endometrial epithelial cells and the roles of Occludin in the regulation of epithelial differentiation and proliferation.
     Method:The endometrial gland epithelial cells in proliferative phase was collected from 6 women who underwent hysterectomy for leomyoma. Endometrial GE cells were isolated and cultured in vitro in the presence of 17β-estradiol (E2,10-8mol/L) or E2 (10-8mol/L)+P4(10-6mol/L) for 48h. The control group received no treatment. The levels of Occludin and Claudin-4 proteins in the cultured human endometrial epithelial cells were analyzed with Western blot. Ishikawa (IK) cells were used in these experiments. IK cells have glandular characteristics and are able to secrete some cellular factors similar to normal endometrial cells. IK cells were widely considered as suitable cell lines for studying functions of normal endometrial glandular epithelial cells. We used IK cells as a GE cell model and treated these cells with Occludin siRNA to downregulate Occludin expression. IK cells apoptosis was examined using H2O2 as apoptogen and analyzed with flow cytometry. The cell proliferation was examined with cell cycle flow cytometry analysis. Glycogen level in IK cells was also analyzed.
     Results:E2 (lOnM) had little effect on Claudin-4 protein expression and P4 significantly increased the 65 kD/50kD ratio of Occludin band and Claudin-4 protein. Pretreatment of IK cells with Occludin siRNA significantly decreased the cell glycogen level, increased cell proliferative rate and reduced apoptosis sensitivity to H2O2.
     Conclusion:Progesterone upregulates the protein expression of 65kD Occludin and Claudin-4 in primary cultured endometrial gland epithelial cells, suggesting that progesterone may promote the TJ assembled in uterine GE cells. siRNA targeting human Occludin in IK cells led to downregulate apoptosis and increase cell proliferation, reduce cell glycogen production, suggesting that Occludin may play a role in mediating the progesterone effects on GE cell apoptosis and on secretory activity.
引文
1. Wilcox A J, Weinberg C R, O'Connor J F, et al. Incidence of early loss of pregnancy.[J]. N Engl J Med.1988,319(4):189-194.
    2. Van de Velde H, De Vos A, Sermon K, Staessen C, De Rycke M, Van Assche E, Lissens W, Vandervorst M, Van Ranst H, Liebaers I, Van Steirteghem, et al. A 2000 Embryo implantation after biopsy of one or two cells from cleavage-stage embryos with a view to preimplantation genetic diagnosis. [J].renat Diagn 20:1030-7.
    3. Morrish D W, Dakour J, Li H. Functional regulation of human trophoblast differentiation.[J]. J Reprod Immunol.1998,39(1-2):179-195.
    4. Kirby D R. The development of mouse blastocysts transplanted to the scrotal and cryptorchid testis.[J]. J Anat.1963,97:119-130.
    5. Molinaro T A, Barnhart K T. Ectopic pregnancies in unusual locations.[J]. Semin Reprod Med.2007,25(2):123-130.
    6. Diedrich K, Fauser B C, Devroey P, et al. The role of the endometrium and embryo in human implantation.[J]. Hum Reprod Update.2007,13(4):365-377.
    7. Niklaus AL, Murphy CR, Lopata A, et al. Characteristics of the uterine luminal surface epithelium at preovulatory and preimplantation stages in themarmoset monkey. [J].at Rec.2001,264:82-92.
    8. Carson D D, Bagchi I, Dey S K, et al. Embryo implantation.[J]. Dev Biol.2000, 223(2):217-237.
    9. Denker H W, Thie M. The regulatory function of the uterine epithelium for trophoblast attachment:experimental approaches.[J]. Ital J Anat Embryol.2001, 106(2 Suppl 2):291-306.
    10. Cowell T P. Implantation and development of mouse eggs transferred to the uteri of non-progestational mice.[J]. J Reprod Fertil.1969,19(2):239-245.
    11. Thie M, Fuchs P, Denker H W. Epithelial cell polarity and embryo implantation in mammals.[J]. Int J Dev Biol.1996,40(1):389-393.
    12. Albers A, Thie M, Hohn HP, Denker HW. Differential expression and localization of integrins and CD44 in the membrane domains of human uterine epithelial cells during the menstrual cycle. [J].995,Acta Anat (Basel) 153:12-9.
    13. Murphy C R. Understanding the apical surface markers of uterine receptivity: pinopods-or uterodomes?[J]. Hum Reprod.2000,15(12):2451-2454.
    14. Aplin J D. MUC-1 glycosylation in endometrium:possible roles of the apical glycocalyx at implantation.[J]. Hum Reprod.1999,14 Suppl 2:17-25.
    15. Illingworth I M, Kiszka I, Bagley S, et al. Desmosomes are reduced in the mouse uterine luminal epithelium during the preimplantation period of pregnancy:a mechanism for facilitation of implantation.[J]. Biol Reprod.2000,63(6): 1764-1773.
    16. Kalluri R, Weinberg R A. The basics of epithelial-mesenchymal transition.[J]. J Clin Invest.2009,119(6):1420-1428.
    17. Seppala M, Taylor R N, Koistinen H, et al. Glycodelin:a major lipocalin protein of the reproductive axis with diverse actions in cell recognition and differentiation.[J]. Endocr Rev.2002,23(4):401-430.
    18. Burton G J, Jauniaux E, Charnock-Jones D S. Human early placental development: potential roles of the endometrial glands.[J]. Placenta.2007,28 Suppl A:S64-S69.
    19. Hempstock J, Cindrova-Davies T, Jauniaux E, et al. Endometrial glands as a source of nutrients, growth factors and cytokines during the first trimester of human pregnancy:a morphological and immunohistochemical study.[J]. Reprod Biol Endocrinol.2004,2:58.
    20. Burton G J, Watson A L, Hempstock J, et al. Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy.[J]. J Clin Endocrinol Metab.2002,87(6):2954-2959.
    21. Jaffe R, Jauniaux E, Hustin J. Maternal circulation in the first-trimester human placenta-myth or reality?[J]. Am J Obstet Gynecol.1997,176(3):695-705.
    22. Burton G J, Jauniaux E, Watson A L. Maternal arterial connections to the placental intervillous space during the first trimester of human pregnancy:the Boyd collection revisited.[J]. Am J Obstet Gynecol.1999,181(3):718-724.
    23.陈小章,王子栋,杨冠群《外分泌生理学》,科学出版社2003,9(1),P13-17
    24. Farquhar M G, Palade G E. Junctional complexes in various epithelia.[J]. J Cell Biol.1963,17:375-412.
    25. Shin K, Fogg V C, Margolis B. Tight junctions and cell polarity.[J]. Annu Rev Cell Dev Biol.2006,22:207-235.
    26. Schulzke J D, Fromm M. Tight junctions:molecular structure meets function.[J]. Ann N Y Acad Sci.2009,1165:1-6.
    27. Watson A J, Duckworth C A, Guan Y, et al. Mechanisms of epithelial cell shedding in the Mammalian intestine and maintenance of barrier function.[J]. Ann N Y Acad Sci.2009,1165:135-142.
    28. Abe T, Sugano E, Saigo Y, et al. Interleukin-lbeta and barrier function of retinal pigment epithelial cells (ARPE-19):aberrant expression of junctional complex molecules.[J]. Invest Ophthalmol Vis Sci.2003,44(9):4097-4104.
    29. Wolburg H, Lippoldt A. Tight junctions of the blood-brain barrier:development, composition and regulation.[J]. Vascul Pharmacol.2002,38(6):323-337.
    30. Gye M C. Expression of Claudin-1 in mouse testis.[J]. Arch Androl.2003,49(4): 271-279.
    31. Schneeberger E E, Lynch R D. The tight junction:a multifunctional complex.[J]. Am J Physiol Cell Physiol.2004,286(6):C1213-C1228.
    32. Guillemot L, Paschoud S, Pulimeno P, et al. The cytoplasmic plaque of tight junctions:a scaffolding and signalling center.[J]. Biochim Biophys Acta.2008, 1778(3):601-613.
    33. Tsukita S, Yamazaki Y, Katsuno T, et al. Tight junction-based epithelial microenvironment and cell proliferation.[J]. Oncogene.2008,27(55):6930-6938.
    34. Forster C. Tight junctions and the modulation of barrier function in disease.[J]. Histochem Cell Biol.2008,130(1):55-70.
    35. Miyoshi J, Takai Y. Molecular perspective on tight-junction assembly and epithelial polarity.[J]. Adv Drug Deliv Rev.2005,57(6):815-855.
    36. Martin T A, Jiang W G. Loss of tight junction barrier function and its role in cancer metastasis.[J]. Biochim Biophys Acta.2009,1788(4):872-891.
    37. Nicholson M D, Lindsay L A, Murphy C R. Ovarian hormones control the changing expression of Claudins and Occludin in rat uterine epithelial cells during early pregnancy.[J]. Acta Histochem.2010,112(1):42-52.
    38. Satterfield M C, Dunlap K A, Hayashi K, et al. Tight and adherens junctions in the ovine uterus:differential regulation by pregnancy and progesterone. [J]. Endocrinology.2007,148(8):3922-3931.
    39. Maria O M, Kim J W, Gerstenhaber J A, et al. Distribution of tight junction proteins in adult human salivary glands.[J]. J Histochem Cytochem.2008,56(12): 1093-1098.
    40. Itoh M, Bissell M J. The organization of tight junctions in epithelia:implications for mammary gland biology and breast tumorigenesis.[J]. J Mammary Gland Biol Neoplasia.2003,8(4):449-462.
    41. Iwanaga S, Inokuchi T, Notohara A, et al. Alterations in tight junctions of human endometrial epithelial cells during normal menstrual cycle--freeze-fracture electron microscopic study.[J]. Nippon Sanka Fujinka Gakkai Zasshi.1985,37(12): 2847-2852.
    1. Schneeberger E E, Lynch R D. The tight junction:a multifunctional complex.[J]. Am J Physiol Cell Physiol.2004,286(6):C1213-C1228.
    2. Guillemot L, Paschoud S, Pulimeno P, et al. The cytoplasmic plaque of tight junctions:a scaffolding and signalling center.[J]. Biochim Biophys Acta.2008, 1778(3):601-613.
    3. Murphy C R, Swift J G, Mukherjee T M, et al. Effects of ovarian hormones on cell membranes in the rat uterus. Ⅱ. Freeze-fracture studies on tight junctions of the lateral plasma membrane of the luminal epithelium.[J]. Cell Biophys.1981,3(1): 57-69.
    4. Iwanaga S, Inokuchi T, Notohara A, et al. Alterations in tight junctions of human endometrial epithelial cells during normal menstrual cycle--freeze-fracture electron microscopic study.[J]. Nippon Sanka Fujinka Gakkai Zasshi.1985,37(12): 2847-2852.
    5.王自能.人正常子宫内膜腺上皮紧密连接的研究.解剖学报1992,23(3):306-308.
    6. Noyes R W, Hertig A T, Rock J. Dating the endometrial biopsy.[J]. Am J Obstet Gynecol.1975,122(2):262-263.
    7. Karakotchian M, Fraser I S. An ultrastructural study of microvascular inter-endothelial tight junctions in normal endometrium.[J]. Micron.2007,38(6): 632-636.
    8. Seth A, Sheth P, Elias B C, et al. Protein phosphatases 2A and 1 interact with Occludin and negatively regulate the assembly of tight junctions in the CACO-2 cell monolayer.[J]. J Biol Chem.2007,282(15):11487-11498.
    9.钟秀容,周稚璞,陈文列,吴翊软,林曦.三种电镜技术在细胞紧密连接研究中的应用.福建医科大学学报2002,36(1):103-105.
    10. Claude P, Goodenough D A. Fracture faces of zonulae occludentes from "tight" and "leaky" epithelia.[J]. J Cell Biol.1973,58(2):390-400.
    11. Wade J B, Karnovsky M J. Fracture faces of osmotically disrupted zonulae occludentes.[J]. J Cell Biol.1974,62(2):344-350.
    12. Denker H W, Thie M. The regulatory function of the uterine epithelium for trophoblast attachment:experimental approaches.[J]. Ital J Anat Embryol.2001, 106(2 Suppl 2):291-306.
    13. Neville M C. Introduction:tight junctions and secretory activation in the mammary gland.[J]. J Mammary Gland Biol Neoplasia.2009,14(3):269-270.
    14. Furuse M, Hirase T, Itoh M, et al. Occludin:a novel integral membrane protein localizing at tight junctions.[J]. J Cell Biol.1993,123(6 Pt 2):1777-1788.
    15. Furuse M, Fujita K, Hiiragi T, et al. Claudin-1 and-2:novel integral membrane proteins localizing at tight junctions with no sequence similarity to Occludin.[J]. J Cell Biol.1998,141(7):1539-1550.
    16. Furuse M, Fujimoto K, Sato N, et al. Overexpression of Occludin, a tight junction-associated integral membrane protein, induces the formation of intracellular multilamellar bodies bearing tight junction-like structures.[J]. J Cell Sci.1996,109 (Pt 2):429-435.
    17. Balda M S, Whitney J A, Flores C, et al. Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein.[J]. J Cell Biol.1996,134(4):1031-1049.
    18. Rao R. Occludin phosphorylation in regulation of epithelial tight junctions.[J]. Ann N Y Acad Sci.2009,1165:62-68.
    19. Sakakibara A, Furuse M, Saitou M, et al. Possible involvement of phosphorylation of Occludin in tight junction formation.[J]. J Cell Biol.1997,137(6):1393-1401.
    20. Suzuki T, Elias B C, Seth A, et al. PKC eta regulates Occludin phosphorylation and epithelial tight junction integrity. [J]. Proc Natl Acad Sci U S A.2009,106(1): 61-66.
    21. Gonzalez-Mariscal L, Tapia R, Chamorro D. Crosstalk of tight junction components with signaling pathways.[J]. Biochim Biophys Acta.2008,1778(3):729-756.
    22. Osanai M, Murata M, Nishikiori N, et al. Epigenetic silencing of Occludin promotes tumorigenic and metastatic properties of cancer cells via modulations of unique sets of apoptosis-associated genes.[J]. Cancer Res.2006,66(18): 9125-9133.
    23. Forster C. Tight junctions and the modulation of barrier function in disease.[J]. Histochem Cell Biol.2008,130(1):55-70.
    24. Balkovetz D F. Claudins at the gate:determinants of renal epithelial tight junction paracellular permeability.[J]. Am J Physiol Renal Physiol.2006,290(3): F572-F579.
    25. Schulzke J D, Fromm M. Tight junctions:molecular structure meets function.[J]. Ann N Y Acad Sci.2009,1165:1-6.
    26. Krause G, Winkler L, Mueller S L, et al. Structure and function of Claudins.[J]. Biochim Biophys Acta.2008,1778(3):631-645.
    27. Van Itallie C, Rahner C, Anderson J M. Regulated expression of Claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability.[J]. J Clin Invest.2001,107(10):1319-1327.
    28. Gregory M, Dufresne J, Hermo L, and Cyr DG Claudin-1 is not restricted to tight junctions in the rat epididymis. [J]. Endocrinology.2001,142:854-863.
    29. Riesewijk A, Martin J, van Os R, et al. Gene expression profiling of human endometrial receptivity on days LH+2 versus LH+7 by microarray technology.[J]. Mol Hum Reprod.2003,9(5):253-264.
    30. Enck A H, Berger U V, Yu A S. Claudin-2 is selectively expressed in proximal nephron in mouse kidney.[J]. Am J Physiol Renal Physiol.2001,281(5): F966-F974.
    31. Richardson J C, Scalera V, Simmons N L. Identification of two strains of MDCK cells which resemble separate nephron tubule segments.[J]. Biochim Biophys Acta. 1981,673(1):26-36.
    32. Furuse M, Furuse K, Sasaki H, et al. Conversion of zonulae occludentes from tight to leaky strand type by introducing Claudin-2 into Madin-Darby canine kidney I cells.[J]. J Cell Biol.2001,153(2):263-272.
    33. Morita K, Sasaki H, Furuse M, et al. Endothelial Claudin:Claudin-5/TMVCF constitutes tight junction strands in endothelial cells.[J]. J Cell Biol.1999,147(1): 185-194.
    34. Zheng X Y, Chen G A, Wang H Y. Expression of cystic fibrosis transmembrane conductance regulator in human endometrium.[J]. Hum Reprod.2004,19(12): 2933-2941.
    35. Timmons BC, Mitchell SM, Gilpin C, Mahendroo MS. Dynamic changes in the cervical epithelial tight junction complex and differentiation occur during cervical ripening and parturition. [J].Endocrinology,2007;148(3):1278-1287
    36. Gao H, Wu G, Spencer T E, et al. Select nutrients in the ovine uterine lumen. I. Amino acids, glucose, and ions in uterine lumenal flushings of cyclic and pregnant ewes.[J]. Biol Reprod.2009,80(1):86-93.
    37. Balkovetz D F. Claudins at the gate:determinants of renal epithelial tight junction paracellular permeability.[J]. Am J Physiol Renal Physiol.2006,290(3): F572-F579.
    38. Martin PM, Sutherland AE, Van Winkle LJ. Aminoacid transport regulates blastocyst implantation.[J]. Biol Reprod.2003 (69):1101-8.
    39. Nilsson BO, Ljung L.X-ray microanalyses of cations (Na, K,Ca) and anions (S,P,C1) in uterine secretions during blastocyst implantation in the rat. [J]. Jxp ool 1985,234:415-421.
    1 Aplin J D. The cell biology of human implantation.[J]. Placenta.1996,17(5-6): 269-275.
    2 Lopata A. Blastocyst-endometrial interaction:an appraisal of some old and new ideas.[J]. Mol Hum Reprod.1996,2(7):519-525.
    3 Denker H W, Thie M. The regulatory function of the uterine epithelium for trophoblast attachment:experimental approaches.[J]. Ital J Anat Embryol.2001, 106(2 Suppl 2):291-306.
    4 Morrish D W, Dakour J, Li H. Functional regulation of human trophoblast differentiation.[J]. J Reprod Immunol.1998,39(1-2):179-195.
    5 Murphy C R. Understanding the apical surface markers of uterine receptivity: pinopods-or uterodomes?[J]. Hum Reprod.2000,15(12):2451-2454.
    6 Aplin J D. MUC-1 glycosylation in endometrium:possible roles of the apical glycocalyx at implantation.[J]. Hum Reprod.1999,14 Suppl 2:17-25.
    7 Illingworth I M, Kiszka I, Bagley S, et al. Desmosomes are reduced in the mouse uterine luminal epithelium during the preimplantation period of pregnancy:a mechanism for facilitation of implantation.[J]. Biol Reprod.2000,63(6): 1764-1773.
    8 Thie M, Fuchs P, Denker H W. Epithelial cell polarity and embryo implantation in mammals.[J]. Int J Dev Biol.1996,40(1):389-393.
    9 Thie M., Denker H. W. In vitro studies on endometrial adhesiveness for trophoblast: cellular dynamics in uterine epithelial cells. [J]. Cells Tissues Organs, 2002,172(3):237-252.
    10 Hannan N J, Paiva P, Dimitriadis E, et al. Models for study of human embryo implantation:choice of cell lines?[J]. Biol Reprod.2010,82(2):235-245.
    11 Li H Y, Shen J T, Chang S P, et al. Calcitonin promotes outgrowth of trophoblast cells on endometrial epithelial cells:involvement of calcium mobilization and protein kinase C activation.[J]. Placenta.2008,29(1):20-29.
    12 Harduf H, Goldman S, Shalev E. Human uterine epithelial RL95-2 and HEC-1A cell-line adhesiveness:the role of plexin B1.[J]. Fertil Steril.2007,87(6): 1419-1427.
    13 Heneweer C, Kruse L H, Kindhauser F, et al. Adhesiveness of human uterine epithelial RL95-2 cells to trophoblast:rho protein regulation.[J]. Mol Hum Reprod. 2002,8(11):1014-1022.
    14 Wu L, Feng B S, He S H, et al. Bacterial peptidoglycan breaks down intestinal tolerance via mast cell activation:the role of TLR2 and NOD2.[J]. Immunol Cell Biol.2007,85(7):538-545.
    15 Clarke H, Soler A P, Mullin J M. Protein kinase C activation leads to dephosphorylation of Occludin and tight junction permeability increase in LLC-PK1 epithelial cell sheets.[J]. J Cell Sci.2000,113 (Pt 18):3187-3196.
    16 Harduf H, Goldman S, Shalev E. Progesterone receptor A and c-Met mediates spheroids-endometrium attachment.[J]. Reprod Biol Endocrinol.2009,7:14.
    17 John N J, Linke M, Denker H W. Quantitation of human choriocarcinoma spheroid attachment to uterine epithelial cell monolayers.[J]. In Vitro Cell Dev Biol Anim. 1993,29A(6):461-468.
    18 Seth A, Sheth P, Elias B C, et al. Protein phosphatases 2A and 1 interact with Occludin and negatively regulate the assembly of tight junctions in the CACO-2 cell monolayer.[J]. J Biol Chem.2007,282(15):11487-11498.
    19 Yu A S, Mccarthy K M, Francis S A, et al. Knockdown of Occludin expression leads to diverse phenotypic alterations in epithelial cells.[J]. Am J Physiol Cell Physiol.2005,288(6):C1231-C1241.
    20 Morrish DW, Dakour J, Li H. Functional regulation of human trophoblast differentiation. J Reprod Immunol. [J] 1998 Aug;39(1-2):179-95.
    21 KIRBY DR. The development of mouse blastocysts transplanted to the scrotal and cryptorchid testis. [J]J Anat.1963 Jan;97:119-30.
    22 Molinaro TA, Barnhart KT. Ectopic pregnancies in unusual locations. [J]Semin Reprod Med.2007 Mar;25(2):123-30.
    23 Lee K Y, Demayo F J. Animal models of implantation.[J]. Reproduction.2004, 128(6):679-695.
    24 Dominguez F, Galan A, Martin JJ, Remohi J, Pellicer A, Simon C. Hormonal and embryonic regulation of chemokine receptors CXCR1, CXCR4, CCR5 and CCR2B in the human endometrium and the human blastocyst. [J]Mol Hum Reprod 2003; 9: 189-198.
    25 Hohn HP, Linke M, Denker HW. Adhesion of trophoblast to uterine epithelium as related to the state of trophoblast differentiation:in vitro studies using cell lines. [J]Mol Reprod Dev 2000; 57:135-145.
    26 Kuramoto H, Tamura S, Notake Y. Establishment of a cell line of human endometrial adenocarcinoma in vitro. [J]Am J Obstet Gynecol 1972; 114: 1012-1019.
    27 Way D L, Grosso D S, Davis J R, et al. Characterization of a new human endometrial carcinoma (RL95-2) established in tissue culture.[J]. In Vitro.1983, 19(3 Pt 1):147-158.
    28 King A, Thomas L, Bischof P. Cell culture models of trophoblast Ⅱ:trophoblast cell lines-a workshop report. [J] Placenta 2000; 21 Suppl A:S113-119.
    29 Orchard M D, Murphy C R. Alterations in tight junction molecules of uterine epithelial cells during early pregnancy in the rat.[J]. Acta Histochem.2002,104(2): 149-155.
    30 Mendoza-Rodriguez C A, Gonzalez-Mariscal L, Cerbon M. Changes in the distribution of Zo-1, Occludin, and Claudins in the rat uterine epithelium during the estrous cycle.[J]. Cell Tissue Res.2005,319(2):315-330.
    31 Nicholson M D, Lindsay L A, Murphy C R. Ovarian hormones control the changing expression of Claudins and Occludin in rat uterine epithelial cells during early pregnancy.[J]. Acta Histochem.2010,112(1):42-52.
    32 Murphy C R, Swift J G, Mukherjee T M, et al. Effects of ovarian hormones on cell membranes in the rat uterus. Ⅱ. Freeze-fracture studies on tight junctions of the lateral plasma membrane of the luminal epithelium.[J]. Cell Biophys.1981,3(1): 57-69.
    33 Satterfield M C, Dunlap K A, Hayashi K, et al. Tight and adherens junctions in the ovine uterus:differential regulation by pregnancy and progesterone. [J]. Endocrinology.2007,148(8):3922-3931.
    34 Enders A C, Hendrickx A G, Schlafke S. Implantation in the rhesus monkey:initial penetration of endometrium.[J]. Am J Anat.1983,167(3):275-298.
    35 Smith C A, Moore H D, Hearn J P. The ultrastructure of early implantation in the marmoset monkey (Callithrix jacchus).[J]. Anat Embryol (Berl).1987,175(3): 399-410.
    36 P.A.W.Rogersl, C.R.Murphy, J.Leeton, et al. Turner's syndrome patients lack tight junctions between uterine epithelial cells. [J]Human Reproduction 1992,7 (6):883-885.
    37 Gao H, Wu G, Spencer T E, et al. Select nutrients in the ovine uterine lumen. I. Amino acids, glucose, and ions in uterine lumenal flushings of cyclic and pregnant ewes.[J]. Biol Reprod.2009,80(1):86-93.
    38 Dekel N, Gnainsky Y, Granot I, et al. Inflammation and implantation.[J]. Am J Reprod Immunol.2010,63(1):17-21.
    39 Al-Sadi R M, Ma T Y. IL-lbeta causes an increase in intestinal epithelial tight junction permeability.[J]. J Immunol.2007,178(7):4641-4649.
    40 Shah G V, Muralidharan A, Gokulgandhi M, et al. Cadherin switching and activation of beta-catenin signaling underlie proinvasive actions of calcitonin-calcitonin receptor axis in prostate cancer.[J]. J Biol Chem.2009,284(2): 1018-1030.
    41 Paulesu L, Jantra S, Ietta F, et al. Interleukin-1 in reproductive strategies.[J]. Evol Dev.2008,10(6):778-788.
    42 Kimura T, Nakamura H, Koyama S, et al. In vivo gene transfer into the mouse uterus:a powerful tool for investigating implantation physiology.[J]. J Reprod Immunol.2005,67(1-2):13-20.
    43 陈小章,王子栋,杨冠群.外分泌生理学,科学出版社,2003(1),P13-17。
    44 Miyoshi J, Takai Y. Molecular perspective on tight-junction assembly and epithelial polarity.[J]. Adv Drug Deliv Rev.2005,57(6):815-855.
    45 Kalluri R, Weinberg R A. The basics of epithelial-mesenchymal transition.[J]. J Clin Invest.2009,119(6):1420-1428.
    46 Denker H W. Implantation:a cell biological paradox.[J]. J Exp Zool.1993,266(6): 541-558.
    47 Gipson I K, Blalock T, Tisdale A, et al. MUC16 is lost from the uterodome (pinopode) surface of the receptive human endometrium:in vitro evidence that MUC16 is a barrier to trophoblast adherence.[J]. Biol Reprod.2008,78(1):134-142.
    48 Murphy C R. Uterine receptivity and the plasma membrane transformation.[J]. Cell Res.2004,14(4):259-267.
    49 Albers A, Thie M, Hohn HP, Denker HW. Differential expression and localization of integrins and CD44 in the membrane domains of human uterine epithelial cells during the menstrual cycle.1995,Acta Anat (Basel) 153:12-9.
    50 Singh H, Aplin J D. Adhesion molecules in endometrial epithelium:tissue integrity and embryo implantation.[J]. J Anat.2009,215(1):3-13.
    51 Illingworth IM, Kiszka I, Bagley S, Ireland GW, Garrod DR, Kimber SJ.Desmosomes are reduced in the mouse uterine luminal epithelium during the preimplantation period of pregnancy:amechanism for facilitation of implantation. [J]. Biol Reprod.2000 (63):1764-1773.
    52 Furuse M, Hirase T, Itoh M, et al. Occludin:a novel integral membrane protein localizing at tight junctions.[J]. J Cell Biol.1993,123(6 Pt 2):1777-1788.
    53 K.M. McCarthy, I.B. Skare, M.C. Stankewich, M. Furuse, S. Tsukita, R.A. Rogers, R.D. Lynch, E.E. Schneeberger, Occludin is a functional component of the tight junction, J. Cell Sci.109 (1996) 2287-2298.
    54 Sharma GD, He J, Bazan HE. p38 and ERK1/2 coordinate cellular migration and proliferation in epithelial wound healing:evidence of cross-talk activation between MAP kinase cascades. J Biol Chem 2003; 278:21989-97.
    55 D. Medici, E.D. Hay, D.A. Goodenough. Cooperation between Snail and LEF-1 transcription factors is essential for TGF-{beta} 1-induced epithelial mesenchymal transition. [J].Mol. Biol. Cell 2006,17 (4):1871-1879.
    56 Du D, Xu F, Yu L, Zhang C, Lu X, Yuan H, Huang Q, Zhang F, Bao H, Jia L, Wu X, Zhu X, Zhang X, Zhang Z, Chen Z. The tight junction protein, Occludin, regulates the directional migration of epithelial cells. Dev Cell.2010 Jan 19;18(1):52-63.
    1. Burton G J, Watson A L, Hempstock J, et al. Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy.[J]. J Clin Endocrinol Metab.2002,87(6):2954-2959.
    2. Hempstock J, Cindrova-Davies T, Jauniaux E, et al. Endometrial glands as a source of nutrients, growth factors and cytokines during the first trimester of human pregnancy:a morphological and immunohistochemical study.[J]. Reprod Biol Endocrinol.2004,2:58.
    3. Burton G J, Jauniaux E, Charnock-Jones D S. Human early placental development: potential roles of the endometrial glands.[J]. Placenta.2007,28 Suppl A:S64-S69.
    4. Jaffe R, Jauniaux E, Hustin J. Maternal circulation in the first-trimester human placenta-myth or reality?[J]. Am J Obstet Gynecol.1997,176(3):695-705.
    5. Burton G J, Jauniaux E, Watson A L. Maternal arterial connections to the placental intervillous space during the first trimester of human pregnancy:the Boyd collection revisited.[J]. Am J Obstet Gynecol.1999,181(3):718-724.
    6. Gray C A, Bartol F F, Tarleton B J, et al. Developmental biology of uterine glands.[J]. Biol Reprod.2001,65(5):1311-1323.
    7. Gray C A, Taylor K M, Ramsey W S, et al. Endometrial glands are required for preimplantation conceptus elongation and survival.[J]. Biol Reprod.2001,64(6): 1608-1613.
    8. Punyadeera C, Verbost P, Groothuis P 2003 Oestrogen and progestin responses in human endometrium. J Steroid Biochem Mol Biol 84:393-410.
    9. Uchida H, Maruyama T, Nagashima T, et al. Histone deacetylase inhibitors induce differentiation of human endometrial adenocarcinoma cells through up-regulation of glycodelin.[J]. Endocrinology.2005,146(12):5365-5373.
    10.陈小章,王子栋,杨冠群.外分泌生理学,科学出版社,7030097130,2003(1),P13-17.
    11. Lourenco S V, Coutinho-Camillo C M, Buim M E, et al. Human salivary gland branching morphogenesis:morphological localization of Claudins and its parallel relation with developmental stages revealed by expression of cytoskeleton and secretion markers.[J]. Histochem Cell Biol.2007,128(4):361-369.
    12. Neville M C. Introduction:tight junctions and secretory activation in the mammary gland.[J]. J Mammary Gland Biol Neoplasia.2009,14(3):269-270.
    13. Furuse M, Hirase T, Itoh M, et al. Occludin:a novel integral membrane protein localizing at tight junctions.[J]. J Cell Biol.1993,123(6 Pt 2):1777-1788.
    14. Mccarthy K M, Skare I B, Stankewich M C, et al. Occludin is a functional component of the tight junction. [J]. J Cell Sci.1996,109 (Pt 9):2287-2298.
    15. Feldman G J, Mullin J M, Ryan M P. Occludin:structure, function and regulation.[J]. Adv Drug Deliv Rev.2005,57(6):883-917.
    16. Osanai M, Murata M, Nishikiori N, et al. Epigenetic silencing of Occludin promotes tumorigenic and metastatic properties of cancer cells via modulations of unique sets of apoptosis-associated genes.[J]. Cancer Res.2006,66(18): 9125-9133.
    17. Liu HC, Teng C. Estradiol metabolism in isolated human endometrial epithelial glands and stromal cells[J]. Endocrinology 1979; 104:1674-1681.
    18. Tanaka M, Kyo S, Takakura M, Kanaya T, Sagawa T, Yamashita K, Okada Y, Hiyama E, Inoue M. Expression of telomerase activity in human endometrium is localized to epithelial glandular cells and regulated in a menstrual phase-dependent manner correlated with cell proliferation. Am J Pathol 1998; 153:1985-1991.
    19. Osanai M, Murata M, Nishikiori N, et al. Epigenetic silencing of Occludin promotes tumorigenic and metastatic properties of cancer cells via modulations of unique sets of apoptosis-associated genes.[J]. Cancer Res.2006,66(18): 9125-9133.
    20. Arkwright PD, Rademacher TW, Dwek RA, et al. Pre-eclampsia is associated with an increase in trophoblast glycogen content and glycogen synthase activity, similar to that found in hydatidiform moles. [J].J Clin Invest,1993,91:2744-2753.
    21. Flores-Benitez D, Rincon-Heredia R, Razgado L F, et al. Control of tight junctional sealing:roles of epidermal growth factor and prostaglandin E2.[J]. Am J Physiol Cell Physiol.2009,297(3):C611-C620.
    22. Catizone A, Ricci G, Galdieri M. Hepatocyte growth factor modulates Sertoli-Sertoli tight junction dynamics.[J]. J Cell Physiol.2008,216(1):253-260.
    23. Zeng R, Li X, Gorodeski G I. Estrogen abrogates transcervical tight junctional resistance by acceleration of Occludin modulation.[J]. J Clin Endocrinol Metab. 2004,89(10):5145-5155.
    24. Timmons BC, Mitchell SM, Gilpin C, Mahendroo MS. Dynamic changes in the cervical epithelial tight junction complex and differentiation occur during cervical ripening and parturition. [J].Endocrinology,2007;148(3):1278-1287.
    25. Saitou M, Furuse M, Sasaki H, et al. Complex phenotype of mice lacking Occludin, a component of tight junction strands.[J]. Mol Biol Cell.2000,11(12):4131-4142.
    26. Li D, Mrsny R J. Oncogenic Raf-1 disrupts epithelial tight junctions via downregulation of Occludin.[J]. J Cell Biol.2000,148(4):791-800.
    27. Nishida M, Kasahara K, Kaneko M, Iwasaki H, Hayashi K. Establishment of a new human endometrial adenocarcinoma cell line, Ishikawa cells, containing estrogen and progesterone receptors. [J]. Nippon Sanka Fujinka Gakkai Zasshi 1985; 37: 1103-1111.
    28. Uchida H, Maruyama T, Nagashima T, et al. Histone deacetylase inhibitors induce differentiation of human endometrial adenocarcinoma cells through up-regulation of glycodelin.[J]. Endocrinology.2005,146(12):5365-5373.
    29. Castelbaum AJ, Ying L, Somkuti SG, Sun J, Ilesanmi AO, Lessey BA. Characterization of integrin expression in a well differentiated endometrial adenocarcinoma cell line (Ishikawa). J Clin Endocrinol Metab. [J].1997; 82: 136-142.
    30. Lessey BA, Ilesanmi AO, Castelbaum AJ, Yuan L, Somkuti SG, Chwalisz K, Satyaswaroop PG. Characterization of the functional progesterone receptor in an endometrial adenocarcinoma cell line (Ishikawa):progesterone-induced expression of the alphal integrin. J Steroid Biochem Mol Biol. [J].1996; 59:31-39.
    31. Evans J, Catalano RD, Morgan K, et al. Prokineticin 1 signaling and gene regulation in early human pregnancy. Endocrinology. [J].2008,149(6):2877-87.
    1. Farquhar M G, Palade G E. Junctional complexes in various epithelia.[J]. J Cell Biol.1963,17: 375-412.
    2.钟秀容,周稚璞,陈文列,吴翊软,林曦.三种电镜技术在细胞紧密连接研究中的应用.福建医科大学学报2002,36(1):103-105.
    3. Claude P, Goodenough D A. Fracture faces of Zonulae occludentes from "tight" and "leaky" epithelia.[J]. J Cell Biol.1973,58(2):390-400.
    4. Wade J B, Karnovsky M J. Fracture faces of osmotically disrupted Zonulae occludentes.[J]. J Cell Biol.1974,62(2):344-350.
    5. Shin K., Fogg V. C., Margolis B. Tight junctions and cell polarity.[J]. Annu Rev Cell Dev Biol,2006,22:207-235.
    6. Watson, A.J.M., C.A. Duckworth, Y. Guan, et al.. Mechanisms of epithelial cell shedding in the mammalian intestine and maintenance of barrier function. [J] Ann N Y Acad Sci,2009,1165:135-142.
    7. Schulzke J. D., Fromm M. Tight junctions:molecular structure meets function.[J]. Ann N Y Acad Sci,2009,1165:1-6
    8. Guillemot L., Paschoud S., Pulimeno P., et al. The cytoplasmic plaque of tight junctions:a scaffolding and signalling center.[J]. Biochim Biophys Acta, 2008,1778(3):601-613.
    9. Schneeberger E. E., Lynch R. D. The tight junction:a multifunctional complex.[J]. Am J Physiol Cell Physiol,2004,286(6):C1213-C1228.
    10. Furuse M, Hirase T, Itoh M, et al. Occludin:a novel integral membrane protein localizing at tight junctions.[J]. J Cell Biol.1993,123(6 Pt 2):1777-1788.
    11. Sakakibara A, Furuse M, Saitou M, et al. Possible involvement of phosphorylation of Occludin in tight junction formation.[J]. J Cell Biol.1997,137(6):1393-1401.
    12. Rao R. Occludin phosphorylation in regulation of epithelial tight junctions.[J]. Ann N Y Acad Sci.2009,1165:62-68.
    13. Mccarthy K M, Skare I B, Stankewich M C, et al. Occludin is a functional component of the tight junction. [J]. J Cell Sci.1996,109 (Pt 9):2287-2298.
    14. Furuse M, Fujimoto K, Sato N, et al. Overexpression of Occludin, a tight junction-associated integral membrane protein, induces the formation of intracellular multilamellar bodies bearing tight junction-like structures.[J]. J Cell Sci.1996,109 (Pt 2):429-435.
    15. Balda M S, Whitney J A, Flores C, et al. Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein.[J]. J Cell Biol.1996,134(4):1031-1049.
    16. Nusrat A, Brown G T, Tom J, et al. Multiple protein interactions involving proposed extracellular loop domains of the tight junction protein Occludin.[J]. Mol Biol Cell.2005,16(4):1725-1734.
    17. Hirase T, Staddon J M, Saitou M, et al. Occludin as a possible determinant of tight junction permeability in endothelial cells.[J]. J Cell Sci.1997,110 (Pt 14): 1603-1613.
    18. Moroi, S., Saitou, M., Fujimoto, K., et al. Occludin is concentrated at tight junctions of mouse/rat but not human/guinea pig Sertoli cells in testes. [J].Am. J. Physiol.1998,274, C1708-C1717.
    19. Saitou M, Fujimoto K, Doi Y, et al. Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions.[J]. J Cell Biol. 1998,141(2):397-408.
    20. Saitou, M., M. Furuse, H. Sasaki, et al.2000. Complex phenotype of mice lacking Occludin, a component of tight junction strands. Mol. Biol. Cell 11:4131-4142.
    21. Nusrat A, Brown G T, Tom J, et al. Multiple protein interactions involving proposed extracellular loop domains of the tight junction protein Occludin.[J]. Mol Biol Cell.2005,16(4):1725-1734
    22. Gumbiner, T. Lowenkopf, D. Apatira. Identification of a 160 kDa polypeptide that binds to the tight junction protein ZO-1, Proc. Natl. Acad. Sci. [J]. 1991,88:3460-3464.
    23. E. Willott, M.S. Balda, A.S. Fanning, et al. The tight junction protein ZO-1 is homologous to the Drosophila discs-large tumor suppressor protein of septate junctions.[J].Proc. Natl. Acad. Sci.1993,90,7834-7838.
    24. Itoh M, Furuse M, Morita K, et al. Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of Claudins.[J]. J Cell Biol.1999,147(6):1351-1363.
    25. Umeda K, Ikenouchi J, Katahira-Tayama S, et al. ZO-1 and ZO-2 independently determine where Claudins are polymerized in tight-junction strand formation.[J]. Cell.2006,126(4):741-754.
    26. Utepbergenov D I, Fanning A S, Anderson J M. Dimerization of the scaffolding protein ZO-1 through the second PDZ domain.[J]. J Biol Chem.2006,281(34): 24671-24677.
    27. G. Bazzoni, O.M.Martinez-Estrada, F. Orsenigo,M. et al. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and Occludin. [J].J. Biol. Chem.2000,275:20520-20526.
    28. G. Joberty, C. Petersen, L. Gao, et al. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42.Nat. Cell Biol. [J].2000:531-539.
    29. Feldman G J, Mullin J M, Ryan M P. Occludin:structure, function and regulation.[J]. Adv Drug Deliv Rev.2005,57(6):883-917.
    30. E.S.Wittchen, J. Haskins, B.R. Stevenson.Protein interactions at the tight junction. Actin has multiple binding partners, and Zo-1 forms independent complexes with Zo-2 and Zo-3. [J]. J. Biol. Chem.1999,274:35179-35185.
    31. M. Furuse, K. Fujita, T. Hiiragi, et al. Claudin-1 and -2 novel integral membrane proteins localizing at tight junctions with no sequence similarity to Occludin. [J]. J. Cell Biol.1998 (141):1539-1550.
    32. M. Furuse, S. Tsukita.Claudins in Occludin junctions of humans and flies. [J]. Trends Cell Biol.2006(16):181-188.
    33. Furu Krause G, Winkler L, Mueller S L, et al. Structure and function of Claudins.[J]. Biochim Biophys Acta.2008,1778(3):631-645.
    34. Furuse M, Sasaki H, Fujimoto K, et al. A single gene product, Claudin-1 or -2, reconstitutes tight junction strands and recruits Occludin in fibroblasts.[J]. J Cell Biol.1998,143(2):391-401.
    35. Balkovetz D F. Claudins at the gate:determinants of renal epithelial tight junction paracellular permeability.[J]. Am J Physiol Renal Physiol.2006,290(3): F572-F579.
    36. S. Amasheh, N. Meiri, A.H. Gitter, et, al.Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells.[J] J. Cell Sci.2002 (115):4969-4976.
    37. M.D. Alexandre, Q. Lu, Y.H. Chen. Overexpression of Claudin-7 decreases the paracellular Cl-conductance and increases the paracellular Na+conductance in LLC-PK1 cells.[J] J. Cell Sci.2005 (118):2683-2693.
    38. C.M. Van Itallie, C. Rahner, J.M. Anderson. Regulated expression of Claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability.[J] J. Clin. Invest.2001 (107):1319-1327.
    39. P.J. Kausalya, S. Amasheh, D. Gunzel, et al. Disease-associated mutations affect intracellular traffic and paracellular Mg2+transport function of Claudin-16. [J].J. Clin. Invest.2006 (116):878-891.
    40. M. Konrad, A. Schaller, D. Seelow, et al. Mutations in the tight-junction gene Claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. [J] Am. J. Hum. Genet. (2006) 79:949-957.
    41. Watson A J, Duckworth C A, Guan Y, et al. Mechanisms of epithelial cell shedding in the Mammalian intestine and maintenance of barrier function.[J]. Ann NYAcadSci.2009,1165:135-142.
    42. Wolburg H, Lippoldt A. Tight junctions of the blood-brain barrier:development, composition and regulation.[J]. Vascul Pharmacol.2002,38(6):323-337.
    43. Gye M C. Expression of Claudin-1 in mouse testis.[J]. Arch Androl.2003,49(4): 271-279.
    44. Forster C. Tight junctions and the modulation of barrier function in disease.[J]. Histochem Cell Biol.2008,130(1):55-70.
    45. Guttman J A, Finlay B B. Tight junctions as targets of infectious agents.[J]. Biochim Biophys Acta.2009,1788(4):832-841.
    46. Li Q, Zhang Q, Wang C, et al. Invasion of enteropathogenic Escherichia coli into host cells through epithelial tight junctions.[J]. FEBS J.2008,275(23):6022-6032.
    47. Lee N P, Luk J M. Hepatic tight junctions:from viral entry to cancer metastasis.[J]. World J Gastroenterol.2010,16(3):289-295.
    48. Shah, G.V, Muralidharan, A, Gokulgandhi, M, Soan, K, Thomas, S. Cadherin switching and activation of beta-catenin signaling underlie proinvasive actions of calcitonin-calcitonin receptor axis in prostate cancer. J Biol Chem,2009.284(2):p. 1018-30.
    49. Itoh, M, M.J. Bissell, The organization of tight junctions in epithelia:implications for mammary gland biology and breast tumorigenesis. J Mammary Gland Biol Neoplasia,2003.8(4):p.449-62
    50. Timmons, B.C., et al., Dynamic changes in the cervical epithelial tight junction complex and differentiation occur during cervical ripening and parturition. Endocrinology,2007.148(3):p.1278-87
    51. Al-Sadi, R.M.,T.Y. Ma, IL-lbeta causes an increase in intestinal epithelial tight junction permeability. J Immunol,2007.178(7):p.4641-9.
    52. Seth A, Sheth P, Elias B C, et al. Protein phosphatases 2A and 1 interact with Occludin and negatively regulate the assembly of tight junctions in the CACO-2 cell monolayer.[J]. J Biol Chem.2007,282(15):11487-11498.
    53. Colosetti P, Tunwell R E, Cruttwell C, et al. The type 3 inositol 1,4,5-trisphosphate receptor is concentrated at the tight junction level in polarized MDCK cells.[J]. J Cell Sci.2003,116(Pt 13):2791-2803.
    54. Kedinger V, Alpy F, Baguet A, et al. Tumor necrosis factor receptor-associated factor 4 is a dynamic tight junction-related shuttle protein involved in epithelium homeostasis.[J]. PLoS One.2008,3(10):e3518
    55. Ramirez S H, Potula R, Fan S, et al. Methamphetamine disrupts blood-brain barrier function by induction of oxidative stress in brain endothelial cells.[J]. J Cereb Blood Flow Metab.2009,29(12):1933-1945.
    56. Canfield P E, Geerdes A M, Molitoris B A. Effect of reversible ATP depletion on tight-junction integrity in LLC-PK1 cells.[J]. Am J Physiol.1991,261(6 Pt 2): F1038-F1045.
    57. Rao R. Occludin phosphorylation in regulation of epithelial tight junctions. [J]. Ann N Y Acad Sci.2009,1165:62-68.
    58. Sakakibara A, Furuse M, Saitou M, et al. Possible involvement of phosphorylation of Occludin in tight junction formation.[J]. J Cell Biol.1997,137(6):1393-1401.
    59. Suzuki T, Elias B C, Seth A, et al. PKC eta regulates Occludin phosphorylation and epithelial tight junction integrity. [J]. Proc Natl Acad Sci U S A.2009,106(1): 61-66.
    60. Zeng R, Li X, Gorodeski G I. Estrogen abrogates transcervical tight junctional resistance by acceleration of Occludin modulation.[J]. J Clin Endocrinol Metab. 2004,89(10):5145-5155.
    61. Banan A, Zhang L J, Farhadi A, et al. Critical role of the atypical{lambda}
    isoform of protein kinase C (PKC-{lambda}) in oxidant-induced disruption of the microtubule cytoskeleton and barrier function of intestinal epithelium.[J]. J Pharmacol Exp Ther.2005,312(2):458-471.
    62. Traweger A, Fang D, Liu Y C, et al. The tight junction-specific protein Occludin is a functional target of the E3 ubiquitin-protein ligase itch.[J]. J Biol Chem.2002, 277(12):10201-10208.
    63. C.M. Van Itallie, O.R. Colegio, J.M. Anderson. The cytoplasmic tails of Claudins can influence tight junction barrier properties through effects on protein stability.[J] J. Membr. Biol.2004 (199):29-38.
    64. M. Fujibe, H. Chiba, T. Kojima, et al. Thr203 of Claudin-1, a putative phosphorylation site for MAP kinase, is required to promote the barrier function of tight junctions. [J]Exp. Cell. Res.2004 (295):36-47.
    65. T. D'Souza, R. Agarwal, P.J. Morin.Phosphorylation of Claudin-3 at threonine 192 by cAMP-dependent protein kinase regulates tight junction barrier function in ovarian cancer cells. [J]. J. Biol. Chem.2005 (280):26233-26240.
    66. T. Soma, H. Chiba, Y. Kato-Mori, et al. Thr(207) of Claudin-5 is involved in size-selective loosening of the endothelial barrier by cyclic AMP. [J].2004Exp. Cell Res. (300):202-212.
    67. M. Tanaka, R. Kamata, R. Sakai. EphA2 phosphorylates the cytoplasmic tail of Claudin-4 and mediates paracellular permeability. [J]J. Biol. Chem,2005, (280):42375-42782.
    68. A. Ikari, S. Matsumoto, H. Harada, et al. Phosphorylation of paracellin-1 at Ser217 by protein kinase A is essential for localization in tight junctions.[J]. J. Cell Sci. 2006 (119):1781-1789.
    69. J.C. Li, D. Mruk, C.Y. Cheng, The inter-Sertoli tight junction permeability barrier is regulated by the interplay of protein phosphatases and kinases:an in vitro study.[J]. J. Androl.2001, (22):847-856.
    70. C. Klingler, U. Kniesel, S.D. Bamforth, et al., Disruption of epithelial tight junctions is prevented by cyclic nucleotide-dependent protein kinase inhibitors.[J].Histochem. Cell Biol.2000:(113) 349-361.
    71. T.J. Raub. Signal transduction and glial cell modulation of cultured brain microvessel endothelial cell tight junctions.[J]. Am. J. Physiol.1996 (271): C495-C503.
    72. D.W. Lawrence, K.M. Comerford, S.P. Colgan. Role of VASP in reestablishment of epithelial tight junction assembly after Ca2+ switch.[J].Am J. Physiol., Cell Physiol.2002 (282):C1235-C1245.
    73. L.M. Perez, P. Milkiewicz, J. Ahmed-Choudhury, et, al.Oxidative stress induces actin-cytoskeletal and tight-junctional alterations in hepatocytes by a Ca2+-dependent, PKC-mediated mechanism:protective effect of PKA, Free Radic..[J].Biol. Med.2006 (40):2005-2017.
    74. J.M. Mullin, J.A. Kampherstein, K.V. Laughlin, et al. Transepithelial paracellular leakiness induced by chronic phorbol ester exposure correlates with polyp-like foci and redistribution of protein kinase C-alpha.[J].Carcinogenesis 1997 (18): 2339-2345.
    75. A. Sjo, K.E. Magnusson, K.H. Peterson. Distinct effects of protein kinase C on the barrier function at different developmental stages.[J]. Biosci. Rep.2003(23): 87-102.
    76. B. Ellis, E.E. Schneeberger, C.A. Rabito. Cellular variability in the development of tight junctions after activation of protein kinase C. [J]. Am. J. Physiol.1992 (263):F293-F300.
    77. P.J. Plant, J.P. Fawcett, D.C. Lin, A,et al.A polarity complex of mPar-6 and atypical PKC binds,phosphorylates and regulates mammalian Lgl.[J]Nat. Cell Biol. 2003 (5):301-308.
    78. T. Yamanaka, Y. Horikoshi, Y. Sugiyama. Mammalian Lgl forms a protein complex with PAR-6 and aPKC independently of PAR-3 to regulate epithelial cell polarity.[J]Curr. Biol.2003,(13):734-743.
    79. T.W. Hurd, L. Gao, M.H. Roh. Direct interaction of two polarity complexes implicated in epithelial tight junction assembly.[J]. Nat. Cell Biol.2003 (5):137-142.
    80. T.S. Jou, E.E. Schneeberger, W.J. Nelson. Structural and functional regulation of tight junctions by RhoA and Racl small GTPases.[J]. J. Cell Biol. 1998,(142):101-115.
    81. M. Bruewer, A.M. Hopkins, M.E. Hobert, et al.Rac1, and Cdc42 exert distinct effects on epithelial barrier via selective structural and biochemical modulation of junctional proteins and F-actin. Am. J. Physiol., Cell Physiol. [J].2004 (287): C327-C335.
    82. S.V. Walsh, A.M. Hopkins, J. Chen, S. Narumiya, C.A. Parkos, A. Nusrat, Rho kinase regulates tight junction function and is necessary for tight junction assembly in polarized intestinal epithelia.[J]Gastroenterology,2001 (121): 566-579.
    83. J.M. Mullin, J.M. Leatherman, M.C.Valenzano, et, al.Ras mutation impairs epithelial barrier function to a wide range of nonelectrolytes.[J]. Mol. Biol. Cell 2005 (16):5538-5550.
    84. J.H. Lipschutz, S. Li, A. Arisco, D.F. Balkovetz, Extracellular signalregulated kinases 1/2 control Claudin-2 expression in Madin-Darby canine kidney strain Ⅰ and Ⅱ cells, J. Biol. Chem.280 (2005) 3780-3788.
    85. Y. Araki, T. Katoh, A. Ogawa, S. Bamba, et al. Bile acid modulates transepithelial permeability via the generation of reactive oxygen species in the Caco-2 cell line.[J]. Free Radic. Biol. Med.2005 (39):769-780.
    86. M. Murata, T. Kojima, T. Yamamoto, et al. Down-regulation of survival signaling through MAPK and Akt in Occludin-deficient mouse hepatocytes in vitro.[J]. Exp. Cell Res.2005 (310):140-151.
    87. Umeda K, Matsui T, Nakayama M,et al. Establishment and characterization of cultured epithelial cells lacking expression of Zo-1. [J]J Biol Chem 2004(279):44785-44794.
    88. Frankel P, Aronheim A, Kavanagh E, et al. RalA interacts with ZONAB in a cell-density dependent m2002,278:2692-2700.
    89. Li D, Mrsny RJ.Oncogenic Raf-1 disrupts epithelial tight junctions via downregulation of Occludin. [J].J Cell Biol 2000,148:791-800.
    90. Osanai M, Murata M, Nishikiori N, et al. Epigenetic silencing of Occludin promotes tumorigenic and metastatic properties of cancer cells via modulations of unique sets of apoptosis-associated genes.[J]. Cancer Res.2006,66(18): 9125-9133.
    91. Xie L, Law BK, Chytil AM, et al. Activation of the Erk pathway is required for TGF-b1-induced EMT in vitro.. [J].Neoplasia 2004,6:603-610.anner and regulates its transcriptional activity. [J].EMBO J 2005(24):54-62.
    92. Chlenski A, Ketels KV, Korovaitseva GI, et al.Organization and expression of the human Zo-2 gene (tjp-2) in normal and neoplastic tissues. [J]. Biochim Biophys Acta 2000,1493:319-324.
    93. Matter K, Balda MS.Signalling to and from tight junctions.. [J].Nat Rev Mol Cell Biol 2003,4:225-236.
    94. Traweger A, Fuchs R, Krizbai IA, et al. The tight junction protein Zo-2 localizes to the nucleus and interacts with the hnRNP protein SAF-B.. [J].J Biol Chem
    95. D. Lin, A.S. Edwards, J.P. Fawcett, et al. A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Racl and aPKC signalling and cell polarity.[J]. Nat.Cell Biol. 2000 (2):540-547.
    96. G. Joberty, C. Petersen, L. Gao, et al. The cell polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42.[J]. Nat. Cell Biol.2000 (2):531-539.
    97. M. Itoh, H. Sasaki, M. Furuse, H. Ozaki, T. Kita, S. Tsukita, Junctional adhesion molecule (JAM) binds to PAR-3:a possible mechanism for the recruitment of PAR-3 to tight junctions, J. Cell Biol.154 (2001) 491-497.
    98. Wodarz A, Ramrath A, Grimm A, et al. Drosophila atypical protein kinaseCassociates with Bazooka and controls polarity of epithelia and neuroblasts.[J]. J. Cell Biol.2000(150):1361-1374.
    99. Rolls MM, Albertson R, Shih HP, et al. Drosophila aPKC regulates cell polarity and cell proliferation in neuroblasts and epithelia. [J]. J. Cell Biol. 2003(163):1089-1098.
    100.Du D, Xu F, Yu L, et al. The tight junction protein, Occludin, regulates the directional migration of epithelial cells.[J]. Dev Cell.2010,18(1):52-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700