裂纹损伤结构的振动功率流特性与损伤识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的研究工作是国家自然科学基金项目“基于振动能量流分析的损伤结构波动特性与损伤识别(50375059)”的一部分。本文对裂纹损伤结构的振动功率流特性进行了理论研究和实验研究,并在此基础上提出了基于结构功率流的裂纹识别方法。在理论上将振动功率流的研究发展到结构损伤识别领域,在应用上提出新的识别结构损伤的测量和分析方法。
     文中首先对梁结构和板壳结构中比较常见的裂纹进行了模拟研究。根据断裂力学相关理论推导了一维裂纹损伤结构在耦合外载荷作用下在裂纹区域的局部柔度矩阵,并详细推导了弯曲载荷作用下圆形截面和矩形截面裂纹梁的局部柔度并对局部柔度曲线进行了拟合。利用线弹簧模型来模拟板壳结构中的表面裂纹和内部裂纹,将三维裂纹模型简化为裂纹线上作用有分布线弹簧的二维穿透裂纹模型,推导出了线弹簧模型的局部柔度计算公式。
     接着分别对含有裂纹的Timoshenko梁结构和薄板结构的振动功率流特性进行了研究。对于梁结构,将裂纹模拟为转动弹簧,对于板结构,则将裂纹模拟为线弹簧。对裂纹梁和板结构的波动特性进行了理论分析,在此基础上对裂纹结构功率流输入和传播特性进行了计算;讨论了裂纹的位置、深度等参数与输入以及传播功率流之间的联系。构造不同裂纹位置和裂纹深度的组合下的归一化输入功率流等值线图。首次提出了利用不同激励频率下裂纹损伤结构的输入能量流等值线图识别结构的裂纹位置和裂纹深度的方法,利用该方法可以对裂纹进行有效的识别。对该方法在含噪声条件下的灵敏度进行了分析,表明此方法对噪声不太敏感。
     对工程中广泛使用的圆柱壳结构进行了研究,首次分析了含环向裂纹损伤的圆柱薄壳的振动功率流特性。利用线弹簧模型模拟裂纹,对裂纹的张开、滑移和剪切三种状态建立了裂纹区域的局部柔度矩阵,壳体的振动用Flügge方程来描述,考虑壳体中各种不同类型的波,利用波型叠加法得到了外激励力作用下输入到壳体中的输入能量以及能量的传播,讨论了功率流特性与裂纹位置和尺寸以及壳体特性等参数的关系。给出了利用归一化输入功率流对壳体裂纹进行识别的方法。
     利用有限单元法对裂纹损伤结构的功率流进行了可视化研究。首先引入了结构声强的概念,给出了有限元一维、二维和三维单元中结构声强的表达式。然后给出了流线可视化的概念,并应用到结构声强流线的可视化中。针对含有裂纹的弹性体,推导出了结构在动载荷作用下的结构声强和J积分之间的关系。计算得到了裂纹结构在不同裂纹参数和不同激励频率下的位移响应矢量图、声强矢量图和流线图。实现了对结构表面能量分布、传播以及在裂纹位置周围的分布规律的可视化,为掌握振动能量在损伤结构的传播、损伤的识别提供了新的手段。
     文章的最后对含有环向表面裂纹损伤的圆柱壳结构的振动功率流进行了试验研究。基于传感器技术提出了对裂纹圆柱壳输入功率流进行测量并进行裂纹识别的方法和程序。试验结果与理论计算结果基本吻合,表明本文的理论推导和计算方法正确,模型设计合理。最后对试验进行了误差分析。
The work of this thesis is a part of the research project”the wave characteristics of damaged structures based on vibrational power flow and the damage detection”. In this thesis, the vibrational power flow characteristics of cracked structures are researched theoretically and experimentally, and the crack detection method based on the vibrational power flow are proposed. The research enlarges the research scope of the vibration energy flow into the field of damage detection theoretically and proposes a new method to damage detection in engineering.
     Firstly, the modeling of cracks in the beam, plate and shell structures which often occur in engineering are investigated. Based on the fracture mechanics, the local flexibility matrix of the one-dimensional cracked structures under the coupled loads is deduced. Then the local flexibilities in a circular-section and solid rectangular-sectional beam under the bending moment are addressed respectively, by applying the least-squares method the best-fitted explicit expression of the local flexibility versus crack depth is given. The surface cracks and inner cracks in the plate and shell structures are modeled by line spring. By the transformation of three-dimensional crack issue into two-dimensional model, the local compliance of the line spring is obtained.
     Then the power flow characteristics of cracked Timoshenko beams and cracked thin plates are researched. The existence of the crack in the cracked structures induces the local compliance, which in turn changes the dynamic response of the cracked structures. The crack is modeled as a rational spring for beam structures and line spring for plate structures. The input power flow and transmitted power flow in cracked structures are calculated, then the relationship between the power flow characteristics and the crack information (location and depth) are discussed. The contour lines diagram of input power flow with two different driving frequencies is constructed to identify the crack, which can successfully indicate the crack’s information. The sensitivity of the method is discussed.
     For the circular cylindrical shell structure widely used in the engineering, the vibrational power flow characteristics of thin shell with circumferential crack are investigated for the first time. The equivalent distributed line spring is designed to model the surface or inner crack in the shell. The local compliance matrix due to the presence of the crack is deduced from fracture mechanics and three modes of the crack stress intensity factors and their coupling are considered in the local compliance matrix. The vibration of the shell is descirbed by Flugge’s shell equations. Under the excitation of radial harmonic line force, the input power flow and transmitted power flow of uncracked and cracked shells are obtained. The results show that the vibrational power flow of cracked shell changes substantially due to the presence of crack, and the change is strongly related to the depth and location of crack. Contours of input power flow under different frequencies are constructed to identify the location and depth of the crack.
     The visualization of power flow in the cracked structures are studied based on finite element method(FEM) for the first time. By introducing the concept of structural intensity(SI), the detail expressions of SI in one-dimensional, two-dimensional and three-dimensional structures are given. The streamline techque is empolyed in the visualization of SI vector field. For the elastic solid with crack, the relationship between the J integal and SI is deduced. The displacement vector plot, SI vector plot and streamline plot are obtained for different crack parameters and different dirving frequencies. The distrubition and propagation of surface energy flow in cracked structure and near the crack are given, which provides a new tool for crack detection.
     At last, the experimental research on the cracked cylindrical shell’s input power flow is implemented. Based on sensor technology, the input power flow of cracked shell are measured. The experimental results and theoretical results show a agreement in substance, which demonstrate the accuracy of the theory and the reasonability of the experimental model’s setup. The errors in the experiment are analyzed as well.
引文
[1] Doebling S W, Farrar C R, Prime M B. Summary review of vibration-based damage identification methods. Shock and Vibration Digest. 1998, 30(2): 91-105.
    [2] Dimarogonas A D. Vibration of cracked structures: A state of the art review. Engineering Fracture Mechanics. 1996, 55(5): 831-857.
    [3] Ostachowicz W, Krawczuk M. On modelling of structural stiffness loss due to damage. Key Engineering Materials. 2001, 204-205: 185-200.
    [4] Thomson W T, Madison W. Vibration of slender bars with discontinuities in stiffness. Journal of Applied Mechanics. 1969, 17: 203-207.
    [5] Springer W T, Lawrence K L, Lawley T J. Effect of a symmetric discontinuity on adjacent material in a longitudinally vibrating uniform beam. Experimental Mechanics. 1987, 27(2): 168-171.
    [6] Yuen M M F. Numerical study of the eigenparameters of a damaged cantilever. Journal of Sound and Vibration. 1985, 103(3): 301-310.
    [7] Pandey A K, Biswas M, Samman M M. Damage detection from changes in curvature mode shapes. Journal of Sound and Vibration. 1991, 145(2): 321-332.
    [8] Salawu O S. Detection of structural damage through changes in frequency: A review. Engineering Structures. 1997, 19(9): 718-723.
    [9] Bowness D, Lee M M K. Crack curvature under the weld toe in a tubular joint: a three-dimensional numerical investigation. in Osaka, Japan: Publ by Int Soc of Offshore and Polar Engineerns (ISOPE), Golden, CO, USA, 1994,4,664-669.
    [10] Bowness D, Lee M M K. Finite element study of stress fields and stress intensity factors in tubular joints. Journal of Strain Analysis for Engineering Design. 1995, 30(2): 135-139.
    [11] Keiner H, Gadala M S. Crack identification in a slow rotating drum using vibration measurements and 3-D finite element analysis. International Journal of COMADEM. 2004, 7(3): 15-23.
    [12] Henshell R D, Shaw K G. Crack tip finite elements are unnecessary. International Journal for Numerical Methods in Engineering. 1975, 9(3): 495-507.
    [13] Rice J R, Levy N. The part-through surface crack in an elastic plate. Journal of Applied Mechanics. 1972, 3: 185-194.
    [14] Delale F, Erdogan F. Line-spring model for surface cracks in a reissner plate.International Journal of Engineering Science. 1981, 19(10): 1331-1340.
    [15] Delale F, Erdogan F. Application of the line-spring model to a cylindrical shell containing a circumferential or axial part-through crack. Journal of Applied Mechanics. 1982, 49(1): 97-102.
    [16] Parks D M, White C S. Elastic-plastic line-spring finite elements for surface-cracked plates and shells. Journal of Pressure Vessel Technology. 1982, 104(4): 287-292.
    [17] Mohan R. Fracture analyses of surface-cracked pipes and elbows using the line-spring/shell model. Engineering Fracture Mechanics. 1998, 59(4): 425-438.
    [18] Ostachowicz W, Krawczuk M, Zak A, Kudela P. Damage detection in elements of structures by the elastic wave propagation method. Computer Assisted Mechanics and Engineering Sciences. 2006, 13(1): 109-124.
    [19] Jayadevan K R, Berg E, Thaulow C, Ostby E, et al. Numerical investigation of ductile tearing in surface cracked pipes using line-springs. International Journal of Solids and Structures. 2006, 43(7-8): 2378-2397.
    [20] Krawczuk M, Palacz M, Ostachowicz W. Wave propagation in plate structures for crack detection. Finite Elements in Analysis and Design. 2004, 40(9-10): 991-1004.
    [21] Sethuraman R, Reddy G S S, Ilango I T. Finite element based evaluation of stress intensity factors for interactive semi-elliptic surface cracks. International Journal of Pressure Vessels and Piping. 2003, 80(12): 843-859.
    [22] Dimarogonas A, Massouros G. Torsional vibration of a shaft with a circumferential crack. Engineering Fracture Mechanics. 1981, 15(3-4): 439-444.
    [23] Dimarogonas A D, Papadopoulos C A. Vibration of cracked shafts in bending. Journal of Sound and Vibration. 1983, 91(4): 583-593.
    [24] Papadopoulos C A, Dimarogonas A D. Coupled longitudinal and bending vibrations of a rotating shaft with an open crack. Journal of Sound and Vibration. 1987, 117(1): 81-93.
    [25] Papadopoulos C A, Dimarogonas A D. Coupled longitudinal and bending vibrations of a cracked shaft. Journal of Vibration, Acoustics, Stress, and Reliability in Design. 1988, 110(1): 1-8.
    [26] Papadopoulos C A, Dimarogonas A D. Stability of cracked rotors in the coupled vibration mode. Journal of Vibration, Acoustics, Stress, and Reliability in Design. 1988, 110(3): 356-359.
    [27] Gounaris G, Dimarogonas A. Finite element of a cracked prismatic beam for structural analysis. Computers and Structures. 1988, 28(3): 309-313.
    [28] Chaudhari T D, Maiti S K. Study of vibration of geometrically segmented beamswith and without crack. International Journal of Solids and Structures. 2000, 37(5): 761-779.
    [29] Bamnios Y, Douka E, Trochidis A. Crack identification in beam structures using mechanical impedance. Journal of Sound and Vibration. 2002, 256(2): 287-297.
    [30] Zheng D Y, Fan S C. Vibration and stability of cracked hollow-sectional beams. Journal of Sound and Vibration. 2003, 267(4): 933-954.
    [31] Alvandi A, Cremona C. Assessment of vibration-based damage identification techniques. Journal of Sound and Vibration. 2006, 292(1-2): 179.
    [32] Anifantis N K, Actis R L, Dimarogonas A D. Vibration of cracked annular plates. Engineering Fracture Mechanics. 1994, 49(3): 371-379.
    [33] Khadem S E, Rezaee M. An analytical approach for obtaining the location and depth of an all-over part-through crack on externally in-plane loaded rectangular plate using vibration analysis. Journal of Sound and Vibration. 2000, 230(2): 291-308.
    [34] Khadem S E, Rezaee M. Introduction of modified comparison functions for vibration analysis of a rectangular cracked plate. Journal of Sound and Vibration. 2000, 236(2): 245-258.
    [35] Nikpour K. Diagnosis of axisymmetric cracks in orthotropic cylindrical shells by vibration measurement. Composites Science and Technology. 1990, 39(1): 45-61.
    [36] Abohadima S, Nassar M. The crack problem for a circular cylinder shell embedded in nonlinear elastic medium. Journal of Engineering and Applied Science. 2003, 50(4): 637-651.
    [37]姚德源,王其政.统计能量分析原理及其应用.北京:北京理工大学出版社, 1994.
    [38] Lyon R H, Richard H. Statistical energy analysis of dynamical systems: theory and applications. Cambridge: Mass MIT Press, 1975.
    [39] Nefske D J, Sung S H. Power flow finite element analysis of dynamic systems: Basic theory and application to beams. Journal of Vibration, Acoustics, Stress, and Reliability in Design. 1989, 111(1): 94-100.
    [40] Buchmann P, Cuschieri J M, Yong Y. Structural power flow analysis using finite element. in. Fort Lauderdale, FL, USA: Institute of Noise Control Engineering, Poughkeepsie, NY, USA, 1994. 557-562.
    [41] Mace B R, Shorter P J. Energy flow models from finite element analysis. Journal of Sound and Vibration. 2000, 233(3): 369-389.
    [42] He Y N, He L, Lu Z Q, Shu L H. Radiation noise analysis using the results of power flow finite element method. Journal of Ship Mechanics. 2006, 10(5): 150-154.
    [43] Goyder H G D, White R G. Vibrational power flow from machines into built-up structures. I. Introduction and approximate analyses of beam and plate-like foundations. Journal of Sound and Vibration. 1980, 68(1): 59-75.
    [44] Goyder H G D, White R G. Vibrational power flow from machines into built-up structures. II. Wave propagation and power flow in beam-stiffened plates. Journal of Sound and Vibration. 1980, 68(1): 77-96.
    [45] Goyder H G D, White R G. Vibrational power flow from machines into built-up structures. III. Power flow through isolation systems. Journal of Sound and Vibration. 1980, 68(1): 97-117.
    [46] Guyader J L, Boisson C, Lesueur C. Energy transmission in finite coupled plates - 1. Theory. Journal of Sound and Vibration. 1982, 81(1): 81-92.
    [47] Boisson C, Guyader J L, Millot P, Lesueur C. Energy transmission in finite coupled plates - 2. Application to an L shaped structure. Journal of Sound and Vibration. 1982, 81(1): 93-105.
    [48] Miller D W, von Flotow A. Travelling wave approach to power flow in structural networks. Journal of Sound and Vibration. 1989, 128(1): 145-162.
    [49] Cuschieri J M. Structural power flow analysis using a mobility approach of a L-shaped plate. Journal of the Acoustical Society of America. 1990, 87(3): 1159-1165.
    [50] Cuschieri J M. Vibration transmission through periodic structures using a mobility power flow approach. Journal of Sound and Vibration. 1990, 143(1): 65-74.
    [51] Langley R S. Analysis of power flow in beams and frameworks using the direct-dynamic stiffness method. Journal of Sound and Vibration. 1990, 136(3): 439-452.
    [52] Pavic G. Vibration energy flow in elastic circular cylindrical shells. Journal of Sound and Vibration. 1990, 142(2): 293-310.
    [53] Pavic G. Vibration energy flow through straight pipes. Journal of Sound and Vibration. 1992, 154(3): 411-429.
    [54] Langley R S. Wave motion and energy flow in cylindrical shells. Journal of Sound and Vibration. 1994, 169(1): 43-53.
    [55] Beale L S, Accorsi M L. Power flow in two- and three-dimensional frame structures. Journal of Sound and Vibration. 1995, 185(4): 685-702.
    [56] Bercin A N. Assessment of the effects of in-plane vibrations on the energy flow between coupled plates. Journal of Sound and Vibration. 1996, 191(5): 661-680.
    [57] Cuschieri J M M M D. In-plane and out-plane waves power transmission through anL-plate junction using the mobility power flow approach. Journal of the Acoustic Society of America. 1996, 100(2): 857-870.
    [58] Bercin A N. Analysis of energy flow in thick plate structures. Computers and Structures. 1997, 62(4): 747-756.
    [59] Grice R M, Pinnington R J. Method for the vibration analysis of built-up structures, Part I: introduction and analytical analysis of the plate-stiffened beam. Journal of Sound and Vibration. 2000, 230(4): 825-849.
    [60] Grice R M, Pinnington R J. Method for the vibration analysis of built-up structures, Part II: analysis of the plate-stiffened beam using a combination of finite element analysis and analytical impedances. Journal of Sound and Vibration. 2000, 230(4): 851-875.
    [61] Li W L, Daniels M, Zhou W. Vibrational power transmission from a machine to its supporting cylindrical shell. Journal of Sound and Vibration. 2002, 257(2): 283-299.
    [62] Seo S H, Hong S Y, Kil H G. Power flow analysis of reinforced beam-plate coupled structures. Journal of Sound and Vibration. 2003, 259(5): 1109-1129.
    [63] Park D H, Hong S Y, Kil H G. Power flow model of flexural waves in finite orthotropic plates. Journal of Sound and Vibration. 2003, 264(1): 203-224.
    [64] Xing J T, Price W G, Xiong Y P. Substructure-subdomain methods for power flow analysis of fluid-structure interaction dynamics. in. Stockholm, Sweden: Institute of Acoustics, 2003. 1115-1122.
    [65] Sorokin S V. Analysis of vibrations and energy flows in sandwich plates bearing concentrated masses and spring-like inclusions in heavy fluid-loading conditions. Journal of Sound and Vibration. 2002, 253(2): 485-505.
    [66] Sorokin S V, Nielsen J B, Olhoff N. Green's matrix and the boundary integral equation method for the analysis of vibration and energy flow in cylindrical shells with and without internal fluid loading. Journal of Sound and Vibration. 2004, 271(3-5): 815-847.
    [67] Ji L, Mace B, Pinnington R. A mode-based approach to the vibration analysis of coupled long- and short-wavelength subsystems. in. Stockholm, Sweden: Institute of Acoustics, 2003. 1075-1082.
    [68] Ji L, Mace B R, Pinnington R J. A power mode approach to estimating vibrational power transmitted by multiple sources. Journal of Sound and Vibration. 2003, 265(2): 387-399.
    [69] Ji L, Mace B R, Pinnington R J. Estimation of power transmission to a flexible receiver from a stiff source using a power mode approach. Journal of Sound andVibration. 2003, 268(3): 525-542.
    [70] Ji L, Mace B R, Pinnington R J. A mode-based approach for the mid-frequency vibration analysis of coupled long- and short-wavelength structures. Journal of Sound and Vibration. 2006, 289(1-2): 148-170.
    [71] Kessissoglou N J. Power transmission in L-shaped plates including flexural and in-plane vibration. Journal of the Acoustic Society of America. 2004, 115(2): 467-474.
    [72] Kudlicka J. Energy flow of axisymmetric elastic waves in a three-layered, transtropic-isotropic-transtropic, composite cylinder. Journal of Sound and Vibration. 2004, 277(4-5): 1093-1100.
    [73] Xu X D, Lee H P, Wang Y Y, Lu C. The energy flow analysis in stiffened plates of marine structures. Thin-Walled Structures. 2004, 42(7): 979-994.
    [74] Savin E. Transient transport equations for high-frequency power flow in heterogeneous cylindrical shells. Waves Random Media. 2004, 14(3): 303.
    [75] Savin E. Radiative transfer theory for high-frequency power flows in fluid-saturated, poro-visco-elastic media. Journal of the Acoustical Society of America. 2005, 117(3 I): 1020-1027.
    [76] Liu Z S, Swaddiwudhipong S, Lu C, Hua J. Transient energy flow in ship plate and shell structures under low velocity impact. Structural Engineering and Mechanics. 2005, 20(4): 451-463.
    [77] Xiong Y P, Xing J T, Price W G. Interactive power flow characteristics of an integrated equipment - Nonlinear isolator - Travelling flexible ship excited by sea waves. Journal of Sound and Vibration. 2005, 287(1-2): 245-276.
    [78] Wester E C N, Mace B R. Wave component analysis of energy flow in complex structures - Part I: A deterministic model. Journal of Sound and Vibration. 2005, 285(1-2): 209-227.
    [79] Wester E C N, Mace B R. Wave component analysis of energy flow in complex structures - Part II: Ensemble statistics. Journal of Sound and Vibration. 2005, 285(1-2): 229-250.
    [80] Wester E C N, Mace B R. Wave component analysis of energy flow in complex structures - Part III: Two coupled plates. Journal of Sound and Vibration. 2005, 285(1-2): 251-265.
    [81] Peng S Z, Pan J. Flexural wave propagation and power flow in an axisymmetrical circular plate by the acoustical wave propagator technique. Journal of Sound and Vibration. 2006, 296(4-5): 1013-1027.
    [82] Park Y H, Hong S Y. Vibrational energy flow analysis of corrected flexural waves in Timoshenko beam - Part I: Theory of an energetic model. Shock and Vibration. 2006, 13(3): 137-165.
    [83] Park Y H, Hong S Y. Vibrational energy flow analysis of corrected flexural waves in Timoshenko beam - Part II: Application to coupled Timoshenko beams. Shock and Vibration. 2006, 13(3): 167-196.
    [84] Park Y H, Hong S Y. Hybrid power flow analysis using coupling loss factor of SEA for low-damping system-Part I: Formulation of 1-D and 2-D cases. Journal of Sound and Vibration. 2007, 299(3): 484-503.
    [85] Park Y H, Hong S Y. Hybrid power flow analysis using coupling loss factor of SEA for low-damping system-Part II: Formulation of 3-D case and hybrid PFFEM. Journal of Sound and Vibration. 2007, 299(3): 460-483.
    [86] Hambric S A. Power flow and mechanical intensity calculations in structural finite element analysis. Journal of Vibration, Acoustics, Stress, and Reliability in Design. 1990, 112(4): 542-549.
    [87] Gavric L, Pavic G. Finite element method for computation of structural intensity by the normal mode approach. Journal of Sound and Vibration. 1993, 164(1): 29-43.
    [88] Rook T E, Singh R. Structural intensity calculations for compliant plate-beam structures connected by bearings. Journal of Sound and Vibration. 1998, 211(3): 365-386.
    [89] Hambric S A, Szwerc R P. Predictions of structural intensity fields using solid finite elements. Noise Control Engineering Journal. 1999, 47(6): 209-217.
    [90] Wilson A M, Josefson L B. Combined finite element analysis and statistical energy analysis in mechanical intensity calculations. AIAA Journal. 2000, 38(1): 123-130.
    [91] Ahmida K M, Arruda J R F. Spectral element-based prediction of active power flow in Timoshenko beams. International Journal of Solids and Structures. 2001, 38(10-13): 1669-1679.
    [92] Xu X D, Lee H P, Lu C, Guo J Y. Streamline representation for structural intensity fields. Journal of Sound and Vibration. 2005, 280(1-2): 449-454.
    [93] Wang F, Lee H P, Lu C. Relations between structural intensity and J-integral. Engineering Fracture Mechanics. 2005, 72(8): 1197.
    [94] Lee H P, Lim S P, Khun M S. Diversion of energy flow near crack tips of a vibrating plate using the structural intensity technique. Journal of Sound and Vibration. 2006, 296(3): 602-622.
    [95]张小铭,张维衡.周期简支梁的振动功率流.振动与冲击. 1990, (3): 28-34.
    [96]张小铭,张维衡.在任意位置激励时周期简支梁的振动功率流.振动工程学报. 1990, 3(4): 75-81.
    [97] Zhang X M, Zhang W H. Reduction of vibrational energy flow in a periodically supported beam. Journal of Sound and Vibration. 1991, 151(1): 1-7.
    [98]张小铭,张维衡.圆柱壳体中的振动功率流.中国造船. 1990, 108(1): 78-87.
    [99]张小铭,张维衡.加肋圆柱壳体的振动功率流.中国造船. 1993, 120:95-104.
    [100]张小铭,张维衡.周期粘弹性复合壳的功率流.振动工程学报. 1993, 6(1): 1-9.
    [101]李天匀,张小铭.周期简支曲梁的振动波与功率流.华中理工大学学报. 1995, 23(9): 112-115.
    [102]仪垂杰,陈天宁,李伟等.板结构功率流的参数研究.应用力学学报. 1995, 12(4): 21-27.
    [103]李伟,仪垂杰,胡选利.梁板结构功率流的导纳法研究.西安交通大学学报. 1995, 29(7): 29-35.
    [104]李天匀,张小铭.有不连续材料层的组合板结构振动功率流研究.声学学报. 1997, 22(3): 274-281.
    [105]李天匀,张维衡,张小铭. L形加筋板结构的导纳功率流研究.振动工程学报. 1997, 10(1): 112-117.
    [106]徐慕冰.圆柱壳—流场耦合系统的振动波传播与能量流研究: [博士学位论文].武汉:华中科技大学图书馆, 1999.
    [107]王敏庆,盛美萍.筋受力激励下加筋板结构振动功率流研究.西北工业大学学报. 1998, 16(2): 237- 240.
    [108]刘雁梅,黄协清,陈天宁.非阻塞性颗粒阻尼加筋板振动功率流的研究.西安交通大学学报. 2001, 35(1): 61- 65.
    [109]刘雁梅,黄协清.有限长圆柱壳中振动功率的输入与传播.农业工程学报. 2001, 17(2): 28-32.
    [110]严谨.水下复杂圆柱壳振动能量流和声辐射特性研究: [博士学位论文].武汉:华中科技大学图书馆, 2006.
    [111]汪国和,吴广明,沈荣瀛.振动控制中的功率流方法研究现状.华东船舶工业学院学报. 2003, 17(4): 17-22.
    [112]王术新,姜哲.振动结构功率流的研究现状及进展.现代制造工程. 2004, 8(1): 104-106.
    [113]伍先俊,朱石坚,曹建华.振动能量流的计算方法研究.力学进展. 2006, 36(3): 363-372.
    [114] Mandal N K, Biswas S. Vibration power flow: A critical review. The Shock and Vibration Digest. 2005, 37(1): 3-11.
    [115] Jiles D C. Review of magnetic methods for nondestructive evaluation. NDT International. 1988, 21(5): 311-319.
    [116] Burdekin F M. Nondestructive testing of welded structural steelwork. Proceedings of the Institute of Civil Engineers Structures and Buildings. 1993, 99(1): 89-95.
    [117] Popovics J S. A survey of developments in ultrasonic NDE of concrete. IEEE Transactions oil Ultrasonic Ferroelectrics and Frequency Control. 1994, 41(1): 140-143.
    [118] Bowler J R. Review of eddy current inversion with application to nondestructive evaluation. International Journal of Applied Electromagnetics and Mechanics. 1997, 8(1): 3-16.
    [119] Zalameda J N. A field deployable nondestructive impact damage assessment methodology for composite structures. Journal of Composite Technology and Research. 1994, 16(2): 161-169.
    [120] Rens K L, Wipf T J, Klaiber F W. Review of nondestructive evaluation techniques of civil infrastructure. Journal of Performance of Constructed Facilities. 1997, 11(4): 152-160.
    [121] Jenks W G. Squids for nondestructive evaluation. Journal of Physics and Applied Physics. 1997, 30(3): 293-323.
    [122] Wang X, Chang C C, Fan L. Nondestructive damage detection of bridges: A status review. Advances in Structural Engineering. 2001, 4(2 SPECISS): 75-91.
    [123] Maev R G, Green, Jr., Siddiolo A M. Review of advanced acoustical imaging techniques for nondestructive evaluation of art objects. Research in Nondestructive Evaluation. 2006, 17(4): 191-204.
    [124] Adamas R D. A vibration technique for node structively assessing the integrity of structures. Journal of Mechanical Engineering Science. 1978, 20(2): 115-121.
    [125] Cawley P. The location of defects in structures from measurements of natural frequencies. Journal of Strain Analysis. 1979, 14(2): 68-72.
    [126] Cawley P. A vibration technique for nondestructive testing of fiber composite structures. Journal of Composite Materials. 1979, 13: 102-108.
    [127] Sa Jane H J. Identification of modal properties of bridges. Journal of Structural Engineering. 1990: 2008-2021.
    [128] Shi Z Y, Law S S, M. Z L. Damage localization by directly using incomplete mode shapes. Journal of Engineering Mechanics. 2000, 126(6): 656-660.
    [129] Ndambi J M, Vantomme J, Harri K. Damage assessment in reinforced concrete beams using eigenfrequencies and mode shape derivatives. Engineering Structures.2002, 24(4): 501-515.
    [130] Kim B S, Yoo S H, Lee S J, Baik S K. Characteristics of crack detection on plates using strain mode shapes; Sensor grids and geometry. Key Engineering Materials. 2006, 321-323 (2): 1620-1623.
    [131] Li G Q, Hao K C, Lu Y, Chen S W. Flexibility approach for damage identification of cantilever-type structures with bending and shear deformation. Computers and Structures. 1999, 73(6): 565-572.
    [132] Stutz L T, Castello D A, Rochinha F A. A flexibility-based continuum damage identification approach. Journal of Sound and Vibration. 2005, 279(3-5): 641-647.
    [133] Yan A, Golinval J C. Structural damage localization by combining flexibility and stiffness methods. Engineering Structures. 2005, 27(12 SPEC ISS): 1752-1761.
    [134] Bernal D. Flexibility-based damage localization from stochastic realization results. Journal of Engineering Mechanics. 2006, 132(6): 651-658.
    [135] Jaishi B, Ren W X. Damage detection by finite element model updating using modal flexibility residual. Journal of Sound and Vibration. 2006, 290(1-2): 369-387.
    [136] Catbas F N, Brown D L, Aktan A E. Use of modal flexibility for damage detection and condition assessment: Case studies and demonstrations on large structures. Journal of Structural Engineering. 2006, 132(11): 1699-1712.
    [137] Pandey A K, Biswas M. Damage detection in structures using changes in flexibility. Journal of Sound and Vibration. 1994, 169(1): 3-17.
    [138] Sheinman I. Damage detection and updating of stiffness and mass matrices using mode data. Computers and Structures. 1996, 59(1): 149-156.
    [139] Maeck J, Wahab M A, Peeters B, De Roeck G, et al. Damage identification in reinforced concrete structures by dynamic stiffness determination. Engineering Structures. 2000, 22(10): 1339-1349.
    [140] Yan A, Golinval J C. Structural damage localization by combining flexibility and stiffness methods. Engineering Structures. 2005, 27(12): 1752.
    [141]张启伟,范立础.利用静动力测量数据的桥梁结构损伤识别.同济大学学报(自然科学版). 1998, (5): 35-41.
    [142] Sampaio R P C, Maia N M M, Silva J M M. Damage detection using the frequency-response-function curvature method. Journal of Sound and Vibration. 1999, 226(5): 1029-1042.
    [143] Owolabi G M, Swamidas A S J, Seshadri R. Crack detection in beams using changes in frequencies and amplitudes of frequency response functions. Journal of Sound and Vibration. 2003, 265(1): 1-22.
    [144]郑渝,杨铁梅,熊诗波.结构梁损伤的频响函数幅值变化特征分析.振动、测试与诊断. 2004, (4): 942-946.
    [145] Lew Jiann shin, Nan J J. Structural damage detection using virtual passive controllers. 2002, 25(3): 419-422.
    [146] Ray L R, Tian L. Damage detection in smart structures through sensitivity enhancing feedback control. Journal of Sound and Vibration. 1999, 227(5): 987-1002.
    [147] Koh B H, Ray L R. Localisation of damage in smart structures through sensitivity enhancing feedback control. Mechanical Systems and Signal Processing. 2003, 17(4): 837-855.
    [148] Koh B H, Ray L R. Feedback controller design for sensitivity-based damage localization. Journal of Sound and Vibration. 2004, 273(1-2): 317-335.
    [149]程远胜,汪刚,杨振宇.基于受控结构动力特性和信息融合的损伤识别.振动、测试与诊断. 2005, 25(4): 268-271.
    [150]程远胜,杨振宇,汪刚.基于受控结构振型的损伤定位分步识别方法.工程力学. 2006, 23(6): 54-59.
    [151] Douka E, Loutridis S, Trochidis A. Crack identification in plates using wavelet analysis. Journal of Sound and Vibration. 2004, 270(1-2): 279-295.
    [152]吕大刚,王光远.结构智能健康诊断的信息融合原理.哈尔滨建筑大学学报. 2002, 35(4): 1-5.
    [153] Li T Y, Zhang W H, Liu T G. Vibrational power flow analysis of damaged beam structures. Journal of Sound and Vibration. 2001, 242(1): 59-68.
    [154] Li T Y, Zhang T, Liu J X, Zhang W H. Vibrational wave analysis of infinite damaged beams using structure-borne power flow. Applied Acoustics. 2004, 65(1): 91-100.
    [155] Li T Y, Liu J X, Zhang T. Vibrational power flow characteristics of circular plate structures with peripheral surface crack. Journal of Sound and Vibration. 2004, 276(3-5): 1081-1091.
    [156]林言丽,郭杏林.含裂纹的周期简支梁振动功率流特性.大连理工大学学报学报. 2004, 44(2): 181-185.
    [157] Noiseux D U. Measurement of power flow in uniform beams and plates. Journal of the Acoustical Society of America. 1970, 47(1): 238-247.
    [158] Fahy F J. Measurement of mechanical input power to a structure. Journal of Sound and Vibration. 1969, 10(3): 517-518.
    [159] Pavic G. Measurement of structure borne wave intensity 1. Formulation of the methods. Journal of Sound and Vibration. 1976, 49(2): 221-230.
    [160] Verheij J W. Cross-spectral density method for measuring structure borne powerflow on beams and pipes. Journal of Sound and Vibration. 1980, 70(1): 133-139.
    [161] Pinnington R J, White R G. Power flow through machine isolators to resonant and non-resonant beams. Journal of Sound and Vibration. 1981, 75(2): 179-197.
    [162] Kruppa P. Measurement of structural intensity in building constructions. Applied Acoustics. 1986, 19(1): 61-74.
    [163] Craik R J M, Ming R, Wilson R. The measurement of structural intensity in buildings. Applied Acoustics. 1995, 44(3): 233-248.
    [164]赵其昌.振动结构中功率流的测量.声学学报. 1989, 14(2): 258-269.
    [165] Verheij J W. Measurements of structure-borne wave intensity on lightly damped pipes. Noise Control Engineering Journal. 1990, 35(2): 69-76.
    [166] Jong C A F D, Verheij J W. Measurement of energy flow along pipes. in: Proceedings of the 2nd International Congress on Recent Developments in Air and Structure-borne sound and vibration. Auburn University USA: 1992. 577-585.
    [167] Bauman P D. Measurement of structural intensity: analytic and experimental evaluation of various techniques for the case of flexural waves in one-dimensional structures. Journal of Sound and Vibration. 1994, 174(5): 677-694.
    [168]周保国.复杂隔振系统的功率流研究: [博士学位论文].上海:上海交通大学, 1994.
    [169] Pinnington R J, Briscoe A R. Externally applied sensor for axisymmetric waves in a fluid filled pipe. Journal of Sound and Vibration. 1994, 173(4): 503-516.
    [170] Briscoe A R, Pinnington R J. Axisymmetric vibrational power measurement in empty and fluid filled pipes. Journal of Sound and Vibration. 1996, 192(4): 771-791.
    [171] Ming R S, Craik R J M. Errors in the measurement of structure-borne power flow using two-accelerometer techniques. Journal of Sound and Vibration. 1997, 204(1): 59-71.
    [172] Pan J, Ming R, Hansen C H, Clark R L. Experimental determination of the total vibratory power transmission in an elastic beam. The Journal of the Acoustical Society of America. 1998, 104(2): 898-906.
    [173]李天匀,刘土光.结构声强测量方法及其误差分析.振动.测试与诊断. 1999, 19(1): 30-34.
    [174] Ming R, Pan J, Norton M P. The measurement of structural mobilities of a circular cylindrical shell. Journal of the Acoustical Society of America. 2000, 107(3): 1374-1382.
    [175] Ming R S, Pan J, Norton M P. The measurement of structure-borne sound energy flow in an elastic cylindrical shell. Journal of Sound and Vibration. 2001, 242(4):719-735.
    [176]朱显明,朱英富,张国良.壳式管道管壁振动能量流的测量方法.中国造船. 2004, 45(4): 29-34.
    [177] Williams E G, Dardy H D, Fink R G. A technique for measurement of structure-borne intensity in plates. The Journal of the Acoustical Society of America. 1985, 78(6): 2061-2068.
    [178] Maynard J D, Williams E G, Lee Y. Nearfield acoustic holography: I. Theory of generalized holography and the development of NAH. The Journal of the Acoustical Society of America. 1985, 78(4): 1395-1413.
    [179] Saijyou K, Yoshikawa S. Structural intensity measurement of cylindrical shell based on NAH technique and influences of a rib on the acoustic energy flow. Journal of the Acoustical Society of Japan. 1999, 20(2): 125-136.
    [180] Bokelberg E H, Sommer H J, III, Trethewey M W. Six-degree-of-freedom laser vibrometer, Part I: Theoretical development. Journal of Sound and Vibration. 1994, 178(5): 643-654.
    [181] Bokelberg E H, Sommer H J, III, Trethewey M W. Six-degree-of-freedom laser vibrometer, Part II: Experimental validation. Journal of Sound and Vibration. 1994, 178(5): 655-667.
    [182] Pascal J C, Loyau T, Carniel X. Complete determination of structural intensity in plates using laser vibrometers. Journal of Sound and Vibration. 1993, 161(3): 527-531.
    [183] Arruda J R F, Mas P. Localizing energy sources and sinks in plates using power flow maps computed from laser vibrometer measurements. Shock and Vibration. 1998, 5(4): 235-253.
    [184] Freschi A A, Pereira A K A, Ahmida K M, Frejlich J, et al. Analyzing the total structural intensity in beams using a homodyne laser doppler vibrometer. Shock and Vibration. 2000, 7(5): 299-308.
    [185] Krawczuk M, Palacz M, Ostachowicz W. Wave propagation in plate structures for crack detection. Finite Elements in Analysis and Design. 2004, 40(9-10): 991.
    [186] Srinivasan M G, Kot C A. Damage index algorithm for a circular cylindrical shell. Journal of Sound and Vibration. 1998, 215(3): 587-591.
    [187] Murigendrappa S M, Maiti S K, Srirangarajan H R. Experimental and theoretical study on crack detection in pipes filled with fluid. Journal of Sound and Vibration. 2004, 270(4-5): 1013-1032.
    [188] Flugge W. Stress in Shells. Berlin and New York: Spring-Verlag, 1973.
    [189] Fuller C R. Effects of wall discontinuities on the propagation of flexural waves in cylindrical shells. Journal of Sound and Vibration. 1981, 75(2): 207-228.
    [190] Tada H, Paris P C, Irwin G R. The stress analysis of cracks handbook. Hellertown,Pennsylvania: Del Research Corporation, 1973.
    [191]胡星,杨光.流线可视化技术研究与进展.计算机应用研究. 2002, (5): 8-11.
    [192]张维衡,熊志明,杜润生.振动测试技术.武汉:华中理工大学出版社, 1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700