大型客机B787三维重建及其气动特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着航空航天技术的进步,计算流体力学(CFD)技术发展迅速,并在飞机设计领域得到广泛应用,成为飞机空气动力设计过程中一种崭新的设计手段。CFD技术目前已经成为和风洞试验、飞行试验相辅相成的三大手段之一,广泛运用于各种飞行器设计之中。
     本文以具“流线型”特点的大型客机B787为研究对象,依据基于多角度图片重建三维外形的理论方法,对其进行三维重建,为了分析B787曲线后缘机翼设计的特点,本文基于B787三维模型设计了一个相应的折线后缘机翼的飞机三维模型。对以上两种模型使用计算流体力学方法进行数值模拟,对比分析两者之间由于流线型机翼和折线后缘机翼差别而产生的气动性能差异,并揭示了之所以产生这些差异的气动机理,从而为类似流线型飞机设计提供参考。在航空工业技术已经步入科学、理性的发展轨道的中国,大型客机项目因其对众多相关产业的促进性、对国家综合实力的带动性强,使得我国的航空工业迎来了新的发展机遇。因此对国外经典大型客机进行三维重建,研究其气动性能优势,并分析其机理,是十分具有研究价值的课题。
In decades, with the dramatic development of aeronautics and astronautics, CFD (Computational Fluid Dynamic) is widely used in the aerodynamic design of aircraft due to the efficiency and applicability. CFD as well as the wind tunnel, and the flight-test, becomes one of the most three significant methods in the aircraft design.
     This paper presented the 3-D model of Boeing 787 with outstanding streamed characteristic by utilizing the multi-angle reconstruction theory, a straight trailing-edge wing model was also designed based on the original model of Boeing 787 for the analysis of the streamed wing characteristic. Numerical simulation was employed in the two models above; the mechanism of the different flow behaviors of the two models can be analyzed by CFD. The study aimed to provide the valuable reference to the practical engineering. Increasingly, the Chinese government and industry organization investigate plenty of funds to the aeronautic industry especially the large civil aircraft which leads a precious opportunity to promote the national power. Therefore, through the 3-D reconstruction and aerodynamic analysis to study the mechanism of the dominate points of the classical large civil aircraft in the world is of great value.
引文
[1] Gloth, G., Degener, M., Fuellekrug, U., Gschwilm, J., Sinapius, M.,Fargette, P., Levadoux, B., and Lubrina, P.,“New Ground Vibration Testing Techniques for Large Aircraft,”Sound and Vibration, Vol. 35,No. 11, 2001, pp. 14–18.
    [2] Reneaux J. Overview on Drag Reduction Technologies for Civil Transport Aircraft: European Congress on Computational Methods in Applied Sciences and Engineering [C]. ECCOMAS,2004.
    [3] Perraud J, Cliquet J, Houdeville R, et al. Transport Aircraft Three-Dimensional High-Lift-Wing Numerical Transition Prediction [J]. Journal of Aircraft, 2008, 45(5).
    [4] Lin J C. Review of Research on Low-Profile Vortex Generators to Control Boundary-Layer Separation [J]. Progress in Aerospace Sciences, 2002, 38. 389-420.
    [5] Dennis Goege. Fast Identification and Characterization of Nonlinearities in Experimental Modal Analysis of Large Aircraft, AIAA 20847-882.
    [6] Kawashima T. Yoshino K, Aok Y. Qualititative image analysis of group behavior [A]. Proc Comp Vis and Pattern Rec, June 1994.
    [7] Matsui K\Iwase M, Agete M, Tanaka T, Ohnishi N. Soccer Image Sequerce Computed by a Virtual Camera [A]. CVPR98 [C].860-865.
    [8] Seo Y, Choi S, Kim H, Hong K-S. Where are the ball and players? Soccer game analysis with color-based tracking and image mosaick. In Proceedings of the International Conference on Image Analysis and Processing, Florence, Italy, 1997, 196-203.
    [9] Gloth, G., Degener, M., Fuellekrug, U. etc, New Ground Vibration Testing Techniques for Large Aircraft. Sound and Vibration, Vol. 35, No. 11,2001,pp. 14-18.
    [10] F. A. Cleveland. Size Effects in Conventional Aircraft Design, AIAA 44204-467.
    [11] George C. Greene. An Approximate Model of Vortex Decay in the Atmosphere, AIAA 45345-940
    [12] Vernon J. Rossow and Bruce E. Tinling. Research on Aircraft/Vortex-Wake Interactions to Determine Acceptable Level of Wake Intensity, AIAA 45610-938.
    [13] Gloth, G., and Sinapius, M.,“Swept-Sine Excitation During ModalIdentification of Large Aerospace Structures,”Deutsches Zentrum fürLuft- und Raumfahrt, DLR-Forschungsbericht 2002–18, 2002.
    [14] William A. McGowan. Aircraft Wake Turbulence Avoidance, AIAA 58956-492.
    [15] J. C. Vaughan III. Concept for a Large Multimission Amphibian Aircraft, AIAA 57896-225.
    [16] Vernon J. Rossow. Wake-Vortex Separation Distances when Flight-Path Corridors are Constrained, AIAA 46978-210.
    [17] Liu Shiping, Quan long. Mathematical Model of Hydrodynamic Torque Converter and Analytic Description of Streamline, Chinese Journal of Mechanical Engineering, 2009,22(1):70-77.
    [18] Kammerer S, Mayer J F, Stetter H, et al. Development of a three-dimensional geometry optimization method for turbomach-inery applications[J]. International Journal of Rotating Machinery,2004,10(5):373-385.
    [19] Cargo Logistics Airlift Systems Study (CLASS), Vol. IV, Future Requirements of Dedicated Freighter Aircraft to Year 2008, Douglas Aircraft Co., NASA CR-158950, April 1979.
    [20]吴光辉,陈迎春,大型民用飞机总体气动设计,The Application and Development of CFD in Large Civil Aircraft.
    [21] Prince S A, Singh C, Peake D J, et al. Vortex Generating Jet Flow Control [R]. KATnet 2008 Workshop.
    [22] Kothari, A P, Anderson J D. Flows Over Low Reynolds Number Airfoils-compressible Navier-Stokes Numerical Solutions [R]. AIAA-85-0107.
    [23] Baldwin B S, Lomax H. Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows [R]. AIAA 78-257.
    [24] Koomullil R P, Soni B K. Flow Simulation Using Generalized Static and Dynamic Grids [J]. AIAA Journal ,1999,37(12):1551-1557.
    [25] Blazek J. Computational Fluid Dynamic; Principles and Applications [M]. Elsevier,2001.
    [26] Jameson A J, Schmidt W, Turkel E. Numerical Solutions of the Euler Equation By Time-Stepping Schemes [R]. AIAA Paper 81-1259.
    [27] Jameson A, Schmidt W, Whitfield D. Finite Volume Solution for the Euler Equation for Transonic Flow over Airfoils and Wings including Viscous Effects [R]. AIAA Paper 81-1265.
    [28] Swason R C, Turkel E. A Multistage Time-Stepping Scheme for Navier Stokes Equations [R]. AIAA Paper 85-0035,January 1985.
    [29] Li W, Krist S, Campbell R. Transonic Airfoil Shape Optimization in Preliminary Design Environment [J]. Journal of Aircraft 2006,43,(3).
    [30] Masahiro Kanazaki, Taro Imamura, Shinkyu Jeong, et al. High-lift Wing Design in Consideration of Sweep Angle Effect Using Kriging Model [C]. AIAA 2008-175.
    [31] Balaji R, Bramkamp F, Hesse M, et al. Effect of Flap and Slat Riggings on 2-D High-lift Aerodynamics [J]. Journal of Aircraft 2006,43,(5).
    [32] Guilherme L. Oliveira, Luis Gustavo Trapp and Antonini Puppin-Macedo. Integration Methodology for Regional Jet Aircraft with Underwing Engines [C]. AIAA 2003-934.
    [33] Yao C S, et al. Flow-Field Measurement of Device-Induced Embedded Streamwise Vortex on a Flat Plate [R]. AIAA 2002-3126,2002
    [34] Allan B G, et al. Simulation of Embedded Streamwise Vortex on a Flat Plate [R]. NASA/CR-2002-211654, ICASE Report, No. 2002-14,2002.
    [35] Song W, Keane A. Surrogate-based Aerodynamic Shape Optimization of a Civil Aircraft Engine Nacelle [J]. AIAA Journal,2007,45(10):2565-2574.
    [36] Hicks R M, Henne P A. Wing Design by Numerical Optimization [J]. Journal of Aircraft,1978,15(7):407-412.
    [37] Jones D R. A Taxonomy of Global Optimization Methods Based on Response Surfaces [J]. Journal of Global Optimization,2001,21:345-383.
    [38] Peng S H. Numerical Computation on the DLR-F6 Aircraft Configuration Using Different Turbulence Models [R]. FOI-R-1154-SE.2004.1.
    [39] Levy D W, et al. Summary of Data from the First AIAA CFD Drag Prediction Workshop [R]. AIAA-2002-0841,2002.
    [40] Laflin K, et al. Summary of Data from the Second AIAA CFD Drag Prediction Workshop [R]. AIAA-2004-0555,2004.
    [41] Barth T J, Jespersen D C, The Design and Application of Upwind Schemes on Unstructured meshes [R]. AIAA 89-0366,1989.
    [42] Venkatakrishnan V. A Perspective on Unstructured Grid Flow Solvers [R]. AIAA 95-0667,1995.
    [43] Kravchenko A G, Moin P. On the Effect of Numerical Errors in Large Eddy Simulations of Turbulent Flows [J]. J. Comput Phys 1997,131,310-22.
    [44] Redeker G, Schmidt N, Muller R. Design and Experimental Verification of a Transonic Wing for Transport Aircraft [C]. Proceedings of the FDP Symposium on Subsonic/Transonic Configuration Aerodynamics, AGARD-CP-285,1980.
    [45] Neal J P. Reflections on the Second Drag Prediction Workshop [R]. AIAA-2004-0557,2004.
    [46] Wilcox D C. Turbulence Modelling for CFD [R]. DCW Industries, Inc., 5354 Palm Drive, La Canada, Calif., 1993.
    [47] Jameson A, Vassberg J C, Shankaran S, et al. Aerodynamic-Structural Design Studies of Low-Sweep Transonic Wings [C]//AIAA 2008-145, 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada,2008.
    [48]张彦仲,大飞机气动总体技术的发展.中国工程科学,2009,,11(5):4-17.
    [49]陈迎春,张淼,刘铁军等,大型客机高超声速超临界机翼设计初探,The Application and Development of CFD in Large Civil Aircraft.
    [50]陈迎春,刘洪,张彬乾等,大型客机减阻机理与应用技术研究综述,The Application and Development of CFD in Large Civil Aircraft.
    [51]周铸,黄勇,邱玉鑫等,CFD在超临界机翼设计中的应用,The Application and Development of CFD in Large Civil Aircraft.
    [52]王勋年,祝明红,汤伟,大型民机低速风洞试验技术现状与差距,The Application and Development of CFD in Large Civil Aircraft.
    [53]吴文华,陶洋,王元靖等,基于伴随算子的大飞机机翼气动布局优化设计,The Application and Development of CFD in Large Civil Aircraft.
    [54]白文,CFD在大型客机气动设计中的应用技术探讨,The Application and Development of CFD in Large Civil Aircraft.
    [55]高正红,白俊强,李栋,CFD与机翼设计.
    [56] Johnson F T, Tinoco E N, Yu N J. Thirty Years of Development and Application of CFD at Boeing Commercial Airplanes, Seattle [R], AIAA 2033-3439,2003.
    [57]孙刚,陈杰,金鑫,基于人工神经网络方法的大型客机气动设计,The Application and Development of CFD in Large Civil Aircraft.
    [58]张宇飞,陈海昕,符松等,基于先进CFD方法的大型客机气动优化设计,The Application and Development of CFD in Large Civil Aircraft.
    [59] Chen H X, Fu S, Li F W. Navier-Stokes Simulation for Transport Aircraft Wing/Body High-Lift Configurations [J]. Journal of Aircraft,2003,40(5).
    [60]张武,陈迎春,封卫兵等,格子Boltzmann方法及其在大型客机气动力计算中的应用,The Application and Development of CFD in Large Civil Aircraft..
    [61] Johnson F T, Tinoco E N, Yu N J. Thirty Years of Development and Application of CFD at Boeing Commercial Airplanes[J], Computers& Fluids, 2005,34:1115-1151.
    [62]舒信伟,谷传纲,梁习锋等,具有流线型头部的告诉磁浮列车气动性能数值模拟.上海交通大学学报,2006,40(6):1034-1037.
    [63]杜月中,闵健,郭字洲,流线型回转体外形设计综述与线型拟合.声学技术,2004,23(2):93-101.
    [64]陈德华,尹陆平,吴文华等,2.4米跨声速风洞大展弦比飞机测力试验技术研究.空气动力学学报,2009,27(5):542-546
    [65]宋保维,李福新,回转体最小阻力外形优化设计[J].水动力学研究与进展,1994,9(5):23-28..
    [66] Angus J A S. The Effect of Diffusers on Frequency Dependent Room Mode Decay[R]. Presented at the 107th AES Convention. 1999.9.
    [67]昂海松,余雄庆,飞行器先进设计技术.北京:国防工业出版社,2008:143-168
    [68]昂海松,浅析国外大飞机的总体布局设计特点.中国航空学会2007年学术年会.
    [69]肖天航低雷诺数非定常流场的数值方法及其在微型飞行器上的应用,硕士学位论文.南京航空航天大学
    [70]阎超,计算流体力学方法及应用.北京:北京航空航天大学,2006.
    [71]吴德铭,郜冶,实用计算流体力学基础.哈尔滨:哈尔滨工程大学,2006.
    [72]陆志良等,空气动力学.北京:北京航空航天大学出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700