EGF和hTERT基因多态性与乳腺癌易感性的关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳腺癌是全世界女性最常见的恶性肿瘤,已成为威胁女性健康的最重要疾病之一。世界范围内乳腺癌发病呈不断上升的趋势,我国虽属女性乳腺癌的低发病区,但近年来乳腺癌的发病率逐年快速增长,尤其在沪、京等地区,乳腺癌的发病率已高居女性恶性肿瘤发病率的第一、第二位。乳腺癌严重威胁着女性的健康和生命,对社会、经济、家庭和妇女心理造成极大的影响。如何识别乳腺癌的高危人群,降低乳腺癌的发病率,是摆在我们面前的重要问题。但乳腺癌病因尚不明确,发病机制也十分复杂,目前认为乳腺癌的发生、发展是环境与遗传因素共同作用的结果。不同遗传背景的个体在相同的危险因素暴露下发生乳腺癌的危险性不同,说明遗传背景的差异影响了个体癌症易感性的高低。因此,识别乳腺癌易感基因是鉴别乳腺癌高危人群的关键。众所周知,乳腺癌的高共显性基因BRCA1、BRCA2突变是乳腺癌的强危险因素,但BRCA1、BRCA2突变在一般人群中对乳腺癌发病的贡献很小,仅占5%以下,故认为大部分的乳腺癌易感性与常见的低共显性基因的遗传变异有关。寻找与乳腺癌遗传易感性相关的常见低共显性基因是目前研究的一个热点。
     研究表明,在乳腺癌的病理进程中,雌激素起了重要的作用。表皮生长因子(EGF)作为强有力的有丝分裂剂,具有类雌激素作用,同样在乳腺癌的发生发展过程中扮演了重要的角色。EGF在组织中的过表达可持续性激活多条信号传导通路,促进DNA合成,加速细胞的分裂和增殖,抑制细胞的凋亡,从而促进乳腺癌的发生、发展。已有研究发现,EGF基因启动子区的单核苷酸多态性(Single nucleotidepolymorphisms,SNPs)不仅与外周血EGF水平有关,而且与癌症的发病风险相关。同时,由于EGF可以通过启动Ras-MAPK信号通路,激活端粒酶逆转录酶(hTERT),上调hTERT mRNA的表达,而该酶的激活可促使端粒不再随细胞分裂而缩短,细胞得以无限制的增殖下去,最终导致肿瘤的发生。并且,hTERT在正常人类体细胞中不表达,但是在包括乳腺癌在内的多种肿瘤中表达。故推测EGF、hTERT的SNPs及血浆EGF水平可能与乳腺癌遗传易感性有关。
     本研究旨在通过血清流行病学和分子流行病学相结合的手段,采用病例对照研究方法,对血浆EGF水平以及EGF基因启动子区SNPs和hTERT的功能性SNPs与乳腺癌遗传易感性的关系进行研究,进一步阐明乳腺癌的发病机制和发现与我国人群乳腺癌遗传易感性相关的危险基因型,并将其作为分子标志物用于筛选高危人群,从而为今后乳腺癌的早期诊断和早期治疗提供科学依据。
     第一部分表皮生长因子基因(EGF)启动子区多态性、血浆EGF水平与乳腺癌易感性的病例对照研究
     研究发现,EGF启动子对EGF的表达起关键的调控作用,提示该区域的遗传变异可能影响不同个体EGF的表达水平,进而影响疾病的易感性。已有研究表明,EGF启动子区G61A位点的突变可降低外周血EGF的水平,且降低患恶性黑色素瘤的风险。因此,EGF基因启动子区域的多态性改变可能潜在地影响其表达(血浆水平)从而改变个体对肿瘤的易感性。
     本研究探讨了EGF基因启动子区稀有等位基因频率(MAF,minor allele frequency)高于0.05的多态性改变(G61A、G-1380A和A-1744G)及血浆中EGF水平与乳腺癌发病的关联。采用病例对照研究设计,选择经组织学确诊的629例新发乳腺癌病例和694例年龄和地区匹配的无肿瘤史的健康对照。采用PCR-RFLP(RestrictionFragment Length Polymorphism,限制性片断长度多态性)、PCR-PIRA(Primer Introduced Restriction Analysis,引物引入限制性分析)法设计引物和内切酶进行基因分型。采用ELISA(Enzyme-LinkedImmunosorbnent Assay,酶联免疫吸附试验)法进行血浆EGF水平的检测。此外,基因型检测采用盲法,并随机抽取10%样本重复检测进行实验室质量控制。最后,我们成功获得604例(96.0%)乳腺癌病例和654例(94.2%)对照的MNS16A基因型。
     结果发现:(1)各基因型在病例组和对照组之间的分布没有显著差异,单因素和多因素logistic回归分析未发现EGF基因启动子区的三个单核苷酸多态性改变(G61A、G-1380A和A-1744G)与乳腺癌发生存在关联。(2)乳腺癌患者中血浆EGF的平均水平(249.06±197.54 pg/ml)显著低于对照组(982.41±375.57 pg/ml,P<0.001)。血浆中EGF的高水平显著降低乳腺癌的发病风险,且血浆EGF水平与乳腺癌的发病风险呈现显著的剂量反应关系。(3)在对照人群中,携带EGF-1380AA基因型的个体血浆中EGF水平显著高于携带野生型(-1380GG)的个体(1308.87 pg/ml vs 946.87pg/ml,P=0.003)。
     本研究结果表明,血浆中高水平EGF可能对乳腺癌发病起保护作用,且EGF G-1380A的突变可能是血浆EGF水平的调节因子。
     第二部分端粒酶逆转录酶基因(hTERT)的功能性多态与乳腺癌易感性及表型的病例对照研究
     已有研究发现,hTERT的一个串连重复序列多态(MNS16A)可调控该基因的表达,影响端粒酶活性,从而可能潜在地影响个体对肿瘤的易感性。本病例对照研究中,我们探讨了hTERT基因串连重复序列多态(MNS16A)与乳腺癌发病风险及其表型的关联。我们选择经组织学确诊的1029例新发乳腺癌病例和1107例年龄和地区匹配的无肿瘤史的健康对照。采用PCR扩增的方法检测MNS16A的基因型,盲法进行基因型的判读,随机选择10%(213个)的样本进行盲法复测。最后,我们成功获得1006例(97.8%)乳腺癌病例和1095例(99.3%)对照的MNS16A基因型。
     结果发现:(1)MNS16A多态性改变与乳腺癌的易感性有显著关联,其突变基因型可显著增加乳腺癌的发病风险,并且该作用在年龄≥50岁、绝经后、具有肿瘤家族史、初潮年龄早(<16岁)、首胎活产年龄晚(≥25岁)的妇女中更为显著。(2)将乳腺癌患者按有/无腋窝淋巴结转移进行分组后发现,MNS16A的302/271基因型在两组间分布存在显著差异(P=0.038)。与携带302/302基因型的乳腺癌患者相比较,携带302/271基因型的乳腺癌患者发生腋窝淋巴结转移的风险为2.13倍(95%CI=1.05-4.33)。
     本研究结果表明hTERT-MNS16A多态性改变可能与乳腺癌的发生及腋窝淋巴结的转移有关。这一结论尚需要功能学研究或其他种族人群的大样本研究进一步验证。
Breast cancer is the most common malignancy among women, accounting for nearly one in three cancers diagnosed among women in the United States. Although the incidence rate of breast cancer in China is about one-third of that in the United States, it has been significantly increasing in the last two decades in both urban and rural areas, especially in big cities as Shanghai and Beijing. However, the exact molecular mechanisms to breast cancer are still unclear. It is well accepted that interaction of environmental factors and genetic factors may contribute to the development of breast cancer. The individuals with different genetic background have different risk of breast cancer. So, identifying the breast cancer susceptibility genes is the most important task in recognizing high risk population. It is well known that the mutations in human family breast cancer susceptibility genes, BRCA1/2, are strong risk factors to breast cancer, but it only account for less than 5% of all breast cancer cases. Thus, it is crucial to investigate other genetic risk factors of breast cancer in general population. Mounting evidence indicates high level of endogenous estrogen is believed to contribute to the etiology of breast cancer. Epidermal growth factor (EGF), a potent mitogenic peptide, is in possession of estrogen-like property and also plays important role in breast carcinogenesis. Over-expression of EGF may increase proliferation, inhibit apoptosis and enhance the invasiveness of breast cancer cells by activating its signal transduction pathways. Studies showed the polymorphisms in the promoter of EGF gene are associated with plasma EGF level and risk of cancer. Meanwhile, EGF up-regulates telomerase reverse transcriptase (hTERT) activity and regulates telomere length maintenance and promotes cell proliferation uncontrolled, eventually leads to cancer. hTERT mRNA is absent in most normal human somatic cells, but is detected in many human cancers, including breast cancer. Thus, we conducted a case-control study aiming to investigate the association of plasma EGF levels and SNPs of EGF and hTERT genes with breast cancer risk in Chinese populations.
     Part I
     EGF Promoter SNPs, Plasma EGF levels and Risk of BreastCancer in Chinese Women
     EGF expression was suggested to be regulated by EGF promoter activity, suggesting the variants in EGF promoter region may affect the EGF expression in diffrent individuals, eventually influence the susceptibility to cancer. Shahbazi et al. found the variant of G61A in EGF promoter region led to a decreased EGF production in peripheral blood mononuclear cells and decreased susceptibility of malignant melanoma. Thus, the polymorphisms in EGF promoter may influence the plasma EGF level and contribute to inter-individual variability in susceptibility to breast cancer.
     The aim of this case-control study is to investigate the associations of plasma EGF levels and three EGF promoter SNPs (G61A, G-1380A and A-1744G) with breast cancer risk and the modification effects of EGF promoter SNPs on plasma EGF levels. This case-control study included 629 histologically confirmed incident breast cancer patients and 694 cancer-free controls frequency-matched for age and area. We genotyped the three promoter polymorphisms by PCR-RFLP (PCR-Restriction Fragment Length Polymorphism) and PCR-PIRA (PCR-Primer Introduced Restriction Analysis) method. In this case control study, the plasma EGF concentration was measured with ELISA (Enzyme-Linked Immunosorbnent Assay). In addition, genotyping was performed blindly and 10% of the samples were randomly selected for repeated assays. Finally, a total of 604 (96.0%) breast cancer cases and 654 (94.2%) controls were successfully genotyped.
     In this case-control study, we did not find any significant associations between the three EGF polymorphisms (G61A, G-1380A and A-1744G) and risk of breast cancer even after adjusting by confounder factors in multifactor logistic analysis. However, we found the mean plasma EGF levels in breast cancer patients (249.06±197.54pg/ml) were significantly lower than those in controls (982.41±375.57pg/ml, P<0.001). According to the quartile levels in the controls, the risks of breast cancer were decreased compared with the lowest quartile of EGF, and the trend of increase was significant (x~2=474.35, P<0.001). In addition, there was a significant difference of plasma EGF levels among different genotypes carriers of the G-1380A locus in controls (P=0.007). The individuals EGF-1380AA had significantly higher plasma EGF levels than -1380GG carriers did (1308.87 pg/ml vs 946.87pg/ml, P=0.003). These findings indicated that plasma EGF levels served as a protective marker against breast cancer in our study and EGF G-1380A variant might be a modifier on it.
     Part II
     A tandem repeat of human telomerase reverse transcriptase(hTERT) and risk of breast cancer development andmetastasis in Chinese women
     Studies showed a polymorphic tandem repeat minisatellite (termed MNS16A) in the downstream of hTERT gene was demonstrated to regulate the expression of hTERT rnRNA level, influence telomerase activity, and eventually may contribute to inter-individual variability in susceptibility to breast cancer. So, we hypothesized that the MNS16A variant may be associated with breast cancer risk and phenotypes in Chinese women. This case-control study included 1029 histologically confirmed incident breast cancer patients and 1107 cancer-free controls frequency-matched for age and area. We genotyped the MNS16A variant by PCR method. Genotyping was performed blindly and 10% of the samples were randomly selected for repeated assays. Finally, a total of 1006 (97.8%) cancer cases and 1095 (99.3%) controls were successfully genotyped.
     In this case-control study, we found a significantly increased risk of breast cancer associated with the MNS16A variant genotypes (302/271, 302/243 and 243/243) and the effects were more evident among the older women (≥50), postmenopausal women, and individuals with family history of cancer, with earlier menarche age (<16), with older age at first live birth (≥25). In breast cancer cases, 302/271 genotype was associated with an increased risk for axillary lymph node metastasis (adjusted OR=2.13, 95%CI=1.05-4.33).
     These results supported that hTERT-MNS16A variant might be associated with breast cancer development and metastasis in Chinese population.
引文
1.Parkin DM,Bray F,Ferlay J,et al.Global cancer statistics,2002.CA Cancer J Clin,2005,55:74-108.
    2.Yang L,Parkin DM,Li L,et al.Time trends in cancer mortality in China:1987-1999.Int J Cancer,2003,106:771-783.
    3.Parkin DM,Whelan SL,Ferky L,et al.Cancer incidence in five continents.Volume Ⅶ.IARC Sci Publ,1997,ⅰ-ⅹⅹⅹⅳ:1-1240.
    4.王启俊,祝伟星,邢秀梅,等.北京城区居民1982年-1997年癌症发病趋势.中国肿瘤,2001,10:507-509.
    5.郑莹,李德禄,向泳梅,等.上海市区乳腺癌流行现状及趋势分析.外科理论与实践,2001,6:219-221.
    6.陈可欣,何敏,董淑芬,等.天津市女性乳腺癌发病率死亡率和生存率分析.中华肿瘤杂志,2002.24:573-575.
    7.Gao YT,Shu XO,Dai Q,et al.Association of menstrual and reproductive factors with breast cancer risk:Results from the Shanghai breast cancer study.Int J Cancer,2000,87:295-300.
    8.Wakai K,Dillon DS,Ohno Y,et al.Fat intake and breast cancer risk in an area where fat intake is low:a case-control study in Indonesia.Int J Epidemiol,2000,29:20-28.
    9.Clavel Chapelon F,E3N-EPIC Group.Differential effects of reproductive factors on the risk of pre- and postmenopausal breast cancer.Results from a large cohort of French women.Br J Cancer,2002,86:723-727.
    10.Tamakoshi K,Yatsuya H,Wakai K,et al.Impact of menstrual and reproductive factors on breast cancer risk in Japan:results of the JACC study.Cancer Sci,2005,96:57-62.
    11.Fentiman IS.Fixed and modifiable risk factors for breast cancer.Int J Clin Pract,2001,55:527-530.
    12.Coughlin SS,Piper M.Genetic polymorphisms and risk of breast cancer.Cancer Epidemiol Biomarkers Prey,1999,8:1023-1032.
    13.Dumitrescu RG,Cotarla I.Understanding breast cancer risk - where do we stand in 2005? J Cell Mol Med,2005,9:208-221.
    14.Clemons M,Goss P.Estrogen and the risk of breast cancer.N Engl J Med,2001,344:276-285.
    15.Martinez LI,Dickson RB.Dual Regulation of the Epidermal Growth Factor Family of Growth Factors in Breast Cancer by Sex Steroids and Protein Kinase C.J Steriod Biochem Mol Biol, 1996, 57:1-11.
    16. Yarden Y. The EGFR family and its ligands in human cancer: signalling mechanisms and therapeutic opportunities. European Journal of Cancer, 2001, 37: S3-S8.
    17. Harari PM. Epidermal growth factor receptor inhibition strategies in oncology. Endocr Relat Cancer, 2004, 11:689-708.
    18. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol, 2001,2:127-137.
    19. Garcia R, Franklin RA, McCubrev JA. EGF induces cell motility and multi-drug resistance gene expression in breast cancer cells. Cell Cycle, 2006, 5: 2820-2826.
    20. Salomon DS, Brandt R, Ciardiello F, et al. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol, 1995, 19: 183-232.
    21. Murphy LC, Dotzlaw H, Wong MS, et al. Epidermal growth factor: receptor and ligand expression in human breast cancer. Semin Cancer Biol, 1990, 1: 305-315.
    22. Maida Y, Kyo S, Kanaya T, et al. Direct activation of telomerase by EGF through Ets-mediated transactivation of TERT via MAP kinase signaling pathway. Oncogene, 2002, 21:4071-4079.
    23. Ju Z, Rudolph KL. Telomeres and telomerase in cancer stem cells. Eur J Cancer, 2006, 42: 1197-1203.
    24. Nakamura TM, Morin GB, Chapman KB, et al. Telomerase catalytic subunit homologs from fission yeast and human. Science, 1997, 277: 955-959.
    25. Kolquist KA, Ellisen LW, Counter CM, et al. Expression of TERT in early premalignant lesions and a subset of cells in normal tissues. Nature Genetics, 1998, 19: 182-186.
    26. Wang L, Soria JC, Kemp BL, et al. hTERT expression is a prognostic factor of survival in patients with stage I non-small cell lung cancer. Clin Cancer Res, 2002, 8: 2883-2889.
    27. Clark GM, Osborne CK, Levitt D, et al. Telomerase activity and survival of patients with node-positive breast cancer. J Natl Cancer Inst, 1997, 89: 1874-1881.
    28. Hiyama E, Yokoyama T, Tatsumoto N, et al. Telomerase activity in gastric cancer. Cancer Res, 1995, 55: 3258-3262.
    29. Wisman GB, De Jong S, Meersma GJ, et al. Telomerase in (pre)neoplastic cervical disease. Hum Pathol, 2000, 31: 1304-1312.
    30. Tatsumoto N, Hiyama E, Murakami Y, et al. High telomerase activity is an independent prognostic indicator of poor outcome in colorectal cancer. Clin Cancer Res, 2000, 6: 2696-2701.
    31. Falchetti ML, Pallini R, D'Ambrosio E, et al. In situ detection of telomerase catalytic subunit mRNA in glioblastoma multiforme. Int J Cancer, 2000, 88: 895-901.
    32. Shpitz B, Zimlichman S, Zemer R, et al. Telomerase activity in ductal carcinoma in situ of the breast. Breast Cancer Res Treat, 1999,58: 65-69.
    33. Hoos A, Hepp HH, Kaul S, et al. Telomerase activity correlates with tumor aggressiveness and reflects therapy effect in breast cancer. Int J Cancer, 1998, 79: 8-12.
    34. Fenton SE, Groce NS, Lee DC. Characterization of the Mouse Epidermal Growth Factor Promoter and 5'-Flanking Region. Role for an atypical TATA sequence. J Biol Chem, 1996, 271:30870-30878.
    35. Mullhaupt B, Feren A, Jones A, et al. DNA sequence and functional characterization of the human and rat epidermal growth factor promoter: regulation by cell growth. Gene, 2000, 50: 191-200.
    36. Shahbazi M, Pravica V, Nasreen N, et al. Association between functional polymorphism in EGF gene and malignant melanoma. Lancet, 2002, 359: 397-401.
    37. Bhowmick DA, Zhuang Z, Wait SD, et al. A functional polymorphism in the EGF gene is found with increased frequency in glioblastoma multiforme patients and is associated with more aggressive disease. Cancer Res, 2004, 64: 1220-1223.
    38. Hamai Y, Matsumura S, Matsusaki K, et al. A single nucleotide polymorphism in the 5-untranslated region of the EGF gene is associated with occurrence and malignant progression of gastric cancer. Pathobiology, 2005, 72: 133-138.
    39. Tomaszewski J, Miturski R, Kotarski J. Concentration of epidermal growth factor (EGF) in serum of women with endometrial cancer. Ginekol Pol, 1996, 67: 248-253.
    40. Pawlikowski M, Cieslak D, Stepien H, et al. Elevated blood serum levels of epidermal growth factor in some patients with gastric cancer. Endokrynol Pol, 1989,40: 149-153.
    41. Wick M, Zubov D, Hagen G. Genomic organization and promoter characterization of the gene encoding the human telomerase reverse transcriptase (hTERT). Gene, 1999, 232: 97-106.
    42. Ducrest AL, Szutorisz H, Lingner J, et al. Regulation of the human telomerase reverse transcriptase gene. Oncogene, 2002, 21: 541-552.
    43. Wang L, Soria JC, Chang YS, et al. Association of a functional tandem repeats in the downstream of human telomerase gene and lung cancer. Oncogene, 2003, 22: 7123-7129.
    44. Carpentier C, Lejeune J, Gros F, et al. Association of telomerase gene hTERT polymorphism and malignant gliomas. J Neurooncol, 2007, 84: 249-253.
    45. Carpenter G, Cohen S. Epidermal growth factor. J Biol Chem, 1990, 265: 7709-7712.
    46. Jin G, Miao R, Deng Y, et al. Variant genotypes and haplotypes of the epidermal growth factor gene promoter are associated with a decreased risk of gastric cancer in a high-risk Chinese population. Cancer Science, 2007, 98: 864-868.
    47. Ke X, Collins A, Ye S. PIRA PCR designer for restriction analysis of single nucleotide polymorphisms. Bioinformatics. 2001, 17: 838-839.
    48. Olayioye MA, Neve RM, Lane HA, et al. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J, 2000, 19: 3159-3167.
    49. Normanno N, Luca AD, Bianco C, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 2006, 366: 2-16.
    50. Navarro MA, Mesia R, Diez-Gibert O, et al. Epidermal growth factor in plasma and saliva of patients with active breast cancer and breast cancer patients in follow-up compared with healthy women. Breast Cancer Res Treat, 1997,42: 83-86.
    51. Normanno N, Bianco C, Strizzi L, et al. The ErbB receptors and their ligands in cancer: an overview. Curr Drug Targets, 2005, 6: 243-257.
    52. McCarron SL, Bateman AC, Theaker JM, et al. EGF +61 gene polymorphism and susceptibility to and prognostic markers in cutaneous malignant melanoma. Int J Cancer, 2003, 107: 673-675.
    
    53. Amend KL, Elder JT, Tomsho LP, et al. EGF gene polymorphism and the risk of incident primary melanoma. Cancer Res, 2004, 64: 2668-2672.
    54. Randerson-Moor JA, Gaut R, Turner F, et al. The relationship between the epidermal growth factor (EGF) 5'UTR variant A61G and melanoma/nevus susceptibility. J Invest Dermatol, 2004, 123:755-759.
    
    55. James MR, Hayward NK, Dumenil T, et al. Epidermal growth factor gene (EGF) polymorphism and risk of melanocytic neoplasia. J Invest Dermatol, 2004, 123: 760-762.
    56. Goto Y, Ando T, Goto H, et al. No association between EGF gene polymorphism and gastric cancer. Cancer Epidemiol Biomarkers Prev, 2005, 14: 2454-2456.
    57. Costa BM, Ferreira P, Costa S, et al. Association between functional EGF+61 polymorphism and glioma risk. Clin Cancer Res, 2007, 13: 2621-2626.
    58. Kang S, Kim JW, Park NH, et al. Epidermal growth factor 61 A/G polymorphism and uterine cervical cancer. Int J Gynecol Cancer. 2007, 17: 492-496.
    59. Kang HG, Choi JE, Lee WK, et al. +61A>G polymorphism in the EGF gene does not increase the risk of lung cancer. Respirology. 2007,12: 902-905.
    60. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell, 2000, 100: 57-70.
    61. Loeb KR, Loeb LA. Significance of multiple mutations in cancer. Carcinogenesis, 2000, 21: 379-385.
    62. Loeb LA, Loeb KR, Anderson, JP. Multiple mutations and cancer. Proc Natl Acad Sci USA, 2003, 100:776-781.
    63. Murnane JP. Telomeres and chromosome instability. DNA repair, 2006, 5: 1082-1092.
    64. Chin K, de Solorzano CO, Knowles D, et al. In situ analyses of genome instability in breast cancer. Nat Genet, 2004, 36: 984-988.
    65. Wang L, Wei Q, Wang LE, et al. Survival Prediction in Patients With Glioblastoma Multiforme by Human Telomerase Genetic Variation. J Clin Oncol, 2006, 24: 1627-1632.
    66. Yager LD, Liehr JG. Molecular mechanisms of estrogen carcinogenesis. Annu Rev Pharmacol Toxicol, 1996,36:203-232.
    67. Kelsey JL, Gammon MD, John EM. Reproductive factors and breast cancer. Epidemiol Rev, 1993, 15: 36-47.
    68. Talamini R, Franceschi S, La Vecchia C, et al. The role of reproductive and menstrual factors in cancer of the breast before and after menopause. Eur J Cancer, 1996, 32: 303-310.
    69. Goodman MT, Cologne JB, Moriwaki H, et al. Risk factors for primary breast cancer in Japan: 8-year follow-up of atomic bobm survivors. Prev Med, 1997, 26: 144-153.
    70. Chie WC, Hsieh C, Newcomb PA, et al. Age at any full-term pregnancy and breast cancer risk. Am J Epidemiol, 2000,151: 715-722.
    71. Andrieu N, Prevost T, Rohan TE, et al. Variation in the interaction between familial and reproductive factors on the risk of breast cancer according to age, menopausal status, and degree of familiality. Int J Epidemiol, 2000, 29: 214-223.
    72. Russo J, Tay LK, Russo IH. Differentiation of the mammary gland and susceptibility to carcinogenesis. Breast Cancer Res Treat, 1982, 2: 5-73.
    73. Russo J, Russo IH. Toward a physiological approach to breast cancer prevention. Cancer Epidemiol Biomarkers Prev, 1994, 3: 353-364.
    74. Cuny M, Kramar A, Courjal F, et al. Relating genotype and phenotype in breast cancer: an analysis of the prognostic significance of amplification at eight different genes or loci and of p53 mutations. Cancer Res, 2000, 60: 1077-1083.
    75. Han W, Kang D, Park IA, et al. Associations between breast cancer susceptibility gene polymorphisms and clinicopathological features. Clin Cancer Res, 2004, 10: 124-130.
    1.Parkin DM,Bray F,Ferlay J,et al.Global cancer statistics,2002.CA Cancer J Clin,2005,55:74-108.
    2.Yang L,Parkin DM,Li L,et al.Time trends in cancer mortality in China:1987-1999.Int J Cancer,2003,106:771-783.
    3.Yang L,Parkin DM,Ferlay J,et al.Eimates of cancer incidence in China for 2000 and projections for 2005.Cancer Epidemiol Biomarkers Prev,2005,14:243-250.
    4.王启俊,祝伟星,邢秀梅,等.北京城区居民1982年-1997年癌症发病趋势.中国肿瘤.2001,10:507-509.
    5.郑莹,李德禄,向泳梅,等.上海市区乳腺癌流行现状及趋势分析.外科理论与实践,2001.6:219-221.
    6.Yager JD,Davidson NE.Estrogen carcinogenesis in breast cancer.N Engl J Med,2006,354:270-282.
    7.Carpenter G,Cohen S.Epidermal growth factor.J Biol Chem,1990,265:7709-7712.
    8.袁宇,张倩,黄培勇,等.hEGF和hTGF-A结构与C结构域的功能差异.生物化学与生物物理学报,1999,31:519-522.
    9.Pearson G,Robinson F,Beers-Gibson T,et al.Mitogen-activated protein(MAP)kinase pathways:regulation and physiological functions.Endocr Rev,2001,22:153-183.
    10.Squires MS,Nixon PM,Cook SJ.Cell-cycle arrest by PD184352 requires inhibition of extracellular signal-regulated kinases(ERK)1/2 but not ERK5/BMK1.Biochem J,2002,366:673-680.
    11.Tsang KJ,Crowe DL.Retinoic acid and extracellular matrix metalloproteinase 9 expression is mediated by the mitogen activated protein kinase pathway.Int J Oncol,2001,18:369-374.
    12.Maidal Y,Kyo S,Kanayal T,et al.Direct activation of telomerase by EGF through Ets-mediated transactivation of TERT via MAP kinase signaling pathway.Oncogene,2002,21:4071-4079.
    13.Fresno Vara JA,Casado E,de Castro J,et al.PI3K/Akt signaling pathway and cancer.Cancer Treat Rev,2004,30:193-204.
    14.Jordan NJ,Gee JM,Barrow D,et al.Increased constitutive activity of PKB/Akt in tamoxifen resistant breast cancer MCF-7 cells.Breast Cancer Res Treat,2004,87:167-180.
    15.Lee SH,Kim HS,Park WS,et al.Non-small cell lung cancers frequently express phosphorylated Akt; an immunohistochemical study. APMIS, 2002, 110: 587-592.
    16. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer, 2002, 2: 489-501.
    17. Murray SA, Yang S, Demicco E, et al. Increased expression of MDM2, cyclin D1, and p27Kipl in carcinogen-induced rat mammary tumors. J Cell Biochem, 2005, 95: 875-884.
    18. Anderson D, Koch CA, Grey L, et al. Binding of SH2 domains of phospholipase C gamma 1, GAP, and Src to activated growth factor receptors. Science, 1990, 250: 979-982.
    19. Sovak MA, Bellas RE, Kim DW, et al. Aberrant nuclear factor-kappaB/Rel expression and the pathogenesis of breast cancer. J Clin Invest, 1997, 100: 2952-2960.
    20. Bromberg JF, Wrzeszczynska MH, Devgan G, et al. Stat3 as an oncogene. Cell, 1999, 98: 295-303.
    21. Xu Q, Briggs J, Park S, et al. Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathway. Oncogene, 2005, 24: 5552-5560.
    22. Niu G, Wright KL, Huang M, et al. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene, 2002, 21: 2000-2008.
    23. Niu G, Wright KL, Ma Y, et al. Role of Stat3 in regulating p53 expression and function. Mol Cell Biol, 2005, 25: 7432-7440.
    24. Yahata Y, Shirakata Y, Tokumaru S, et al. Nuclear translocation of phosphorylated STAT3 is essential for vascular endothelial growth factor-induced human dermal microvascular endothelial cell migration and tube formation. J Biol Chem, 2003, 278: 40026-40031.
    25. Itoh M, Murata T, Suzuki T, et al. Requirement of STAT3 activation for matrix collagenase-1 (MMP-1) induction by epidermal growth factor and malignant characteristics in T24 bladder cancer calls. Oncogene, 2006, 25: 1195-1204.
    26. Dotzlaw H, Miller T, Karvelas J, et al. Epidermal Growth Factor Gene Expression in Human Breast Cancer Biopsy Samples: Relationship to Estrogen and Progesterone Receptor Gene Expression. Cancer Res, 1990, 50: 4204-4208.
    27. Artagaveytia N, Le Penven S, Falette N, et al. Epidermal growth factor and transforming growth factor alpha mRNA expression in human breast cancer biopsies; analysis in relation to estradiol, progesterone and EGF receptor content. J Steroid Biochem Mol Biol, 1997, 60: 221-228.
    28. Pirinen R, Lipponen P, Aaltomaa S, et al. Prognostic value of epidermal growth factor expression in breast cancer. J Cancer Res Clin Oncol, 1997, 123: 63-68.
    29. Navarro MA, Mesia R, Diez-Gibert O, et al. Epidermal growth factor in plasma and saliva of patients with active breast cancer and breast cancer patients in follow-up compared with healthy women. Breast Cancer Res Treat, 1997,42: 83-86.
    30. Wang Y, Tian T, Hu Z, et al. EGF promoter SNPs, plasma EGF levels and risk of breast cancer in Chinese women. Breast Cancer Res Treat. 2007 Oct 17.
    31. Mullhaupt B, Feren A, Jones A, et al. DNA sequence and functional characterization of the human and rat epidermal growth factor promoter: regulation by cell growth. Gene, 2000, 50: 191-200.
    32. Fenton SE, Groce NS, Lee DC. Characterization of the Mouse Epidermal Growth Factor Promoter and 5'-Flanking Region. Role for an atypical TATA sequence. J Biol Chem, 1996, 271:30870-30878.
    33. Shahbazi M, Pravica V, Nasreen N, et al. Association between functional polymorphism in EGF gene and malignant melanoma. Lancet, 2002, 359: 397-401.
    34. McCarron SL, Bateman AC, Theaker JM, et al. EGF +61 gene polymorphism and susceptibility to and prognostic markers in cutaneous malignant melanoma. Int J Cancer, 2003, 107:673-675.
    
    35. Amend KL, Elder JT, Tomsho LP, et al. EGF gene polymorphism and the risk of incident primary melanoma. Cancer Res, 2004, 64: 2668-2672.
    36. Randerson-Moor JA, Gaut R, Turner F, et al. The relationship between the epidermal growth factor (EGF) 5'UTR variant A61G and melanoma/nevus susceptibility. J Invest Dermatol, 2004, 123:755-759.
    
    37. James MR, Hayward NK, Dumenil T, et al. Epidermal growth factor gene (EGF) polymorphism and risk of melanocytic neoplasia. J Invest Dermatol, 2004, 123: 760-762.
    38. Bhowmick DA, Zhuang Z, Wait SD, et al. A functional polymorphism in the EGF gene is found with increased frequency in glioblastoma multiforme patients and is associated with more aggressive disease. Cancer Res, 2004, 64: 1220-1223.
    39. Costa BM, Ferreira P, Costa S, et al. Association between functional EGF+61 polymorphism and glioma risk. Clin Cancer Res, 2007, 13: 2621-2626.
    40. Hamai Y, Matsumura S, Matsusaki K, et al. A single nucleotide polymorphism in the 5-untranslated region of the EGF gene is associated with occurrence and malignant progression of gastric cancer. Pathobiology, 2005, 72: 133-138.
    41. Goto Y, Ando T, Goto H, et al. No association between EGF gene polymorphism and gastric cancer. Cancer Epidemiol Biomarkers Prev, 2005, 14: 2454-2456.
    42. Jin G, Miao R, Deng Y, et al. Variant genotypes and haplotypes of the epidermal growth factor gene promoter are associated with a decreased risk of gastric cancer in a high-risk Chinese population. Cancer Science, 2007, 98: 864-868.
    43. Kang S, Kim JW, Park NH, et al. Epidermal growth factor 61A/G polymorphism and uterine cervical cancer. Int J Gynecol Cancer, 2007, 17: 492-496.
    44. Kang HG, Chio JE, Lee WK, et al. +61A>G polymorphism in the EGF gene does not increase the risk of lung cancer. Respirology, 2007, 12: 902-905.
    45. Spindler KL, Nielsen JN, Ornskov D, et al. Epidermal growth factor (EGF) A61G polymorphism and EGF gene expression in normal colon tissue from patients with colorectal cancer. Acta Oncol, 2007,46: 1113-1117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700