风暴潮对黄河三角洲蚀积演变的控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄河三角洲地区地理环境特殊,沿岸极易发生风暴潮,是中国风暴潮重灾区之一,同时也是世界上少数的温带风暴潮频发区,风暴潮给黄河三角洲带来了巨大的损失。本文在国家自然科学基金项目“黄河口沉积物固结后再悬浮及输运过程研究(No.40876042)”、国家863计划项目“风暴过程中沉积物再悬浮通量原位监测技术(No.2008AA09Z109)”的资助下,开展了下列研究:?
     (1)研究了风暴潮对黄河三角洲北部废弃叶瓣蚀积演变的影响。利用10余次岸滩现场调查数据,使用GIS和Matlab等软件分别对常规因素(波浪、潮流等)和风暴潮的影响进行比较,并通过定量指标和地貌动力学理论分析风暴潮的影响程度。
     (2)研究了风暴潮对黄河水下三角洲蚀积演变的影响。利用黄河口水文水资源勘测局对黄河三角洲海域20个年份14条测线的水深观测数据及风暴潮资料,结合EOF&ANN模型对风暴潮年份黄河水下三角洲的蚀积变化量进行计算,将计算结果与实测值进行相比,提取了风暴潮对黄河水下三角洲蚀积演变的影响;然后就风暴潮对黄河水下三角洲的蚀积机制进行初步分析。
     经过研究,本文得出的结论主要有以下几个方面:
     (1)风暴潮对黄河三角洲北部废弃叶瓣岸滩作用显著,从车子沟渔村岸滩调查中捕获的风暴潮结果分析得出,一次风暴潮的作用超过了常规因素对黄河三角洲北部废弃叶瓣一年的全侵蚀或全淤积的改变量,这就证明了风暴潮对黄河三角洲北部废弃叶瓣的演变起到了控制作用。
     (2)对黄河水下三角洲水深资料进行处理后,提取了黄河水下三角洲在风暴潮年份的蚀积变化量,与实测值进行比对,发现风暴潮在黄河水下三角洲的蚀积演变中同样扮演了非常重要的角色,尤其是在离岸15km左右的范围内。但是风暴潮对黄河水下三角洲的影响结果并不确定,通过对三次风暴潮的作用效果分析后发现,有可能是表现为强烈侵蚀,也有可能是强烈淤积,也有可能作用不显著。因此对黄河水下三角洲的蚀积演变而言,不能简单的定义风暴潮的影响。
     (3)风暴潮对黄河水下三角洲的侵蚀机制与其他学者的观点一致,主要是风暴输沙所致,但是风暴潮对黄河三角洲的淤积机制尚不明确,因此本文提出了一种假设,风暴潮这样的高能事件,如果为向岸风,能够将携带有大量泥沙的高密度水体向近岸方向输送,然而近底回流流速若不足以提供足够的动力将泥沙全部输送走,这样就会导致淤积的发生。
     (4)对“北侵南淤”的现象,本文认为主要是由于风暴作用对渤海环流的加强,使得黄河三角洲北部侵蚀下来的泥沙和河口新近沉积的泥沙向南输送所致。而对“近侵远淤”现象则主要是风暴潮的横向输沙所致。
The Yellow River Delta is under unique geographic environment that storm surges frequently happen there. It’s one of the worst storm hazard areas in China and also in the world's. The storm surges happened in the Yellow River Delta have brought huge losses. Funded by the National High Technology Research and Development Program of China, this paper carried out the following research.
     (1) Researched the storm surge effects on evolution of erosion and deposition on the northern part of the abandoned lobe in Yellow River Delta. More than 10 field survey data were used to compare the impact of conventional factors (wave, tidal, etc.) and compare storm surges, using software such as GIS and Matlab. The effect levels were introduced with quantitative indicators and geomorphological dynamics theory.
     (2) The subaqueous delta evolution of erosion and deposition deduced by storm surge on the Yellow River was researched. Using the 14 surveying lines data in 20 years, observed by the Yellow River Water Resources Survey Bureau of the Yellow River Delta data, and combined EOF & ANN model, the erosion and deposition amount were recalculated in the years with storms. The results were compared with the measured values to extract the effect of storm surges on the Yellow River subaqueous delta; and then related mechanisms were discussed.
     After the study, conclusions are as follows:
     (1) storm surges have significant effect on the northern beaches of the Yellow River Delta abandoned lobe. From the data measured in Chezigou, the role of one storm surge is more than the whole year’s erosion and deposition changes caused by conventional factors, which proved that storm surges on the northern abandoned lobe of the Yellow River Delta plays a controlling role in its evolution.
     (2)Processing the data of water depth on the yellow river delta, the variation of erosion and deposition in the storm tide years was obtained. Comparing with the measured value, it was found that the storm tide played a great role in the erosion and deposition evolution of the yellow river delta especially in the area which is 15km away from the shore. Although the role we found was great, the result it caused which is erosion or deposition is not certain. According to the analyze to the three storm tide, the influence can be intense erosion or intense deposition or even indistinctive. So it cant’t give an quick answer that what kind of influence is the storm tide on the yellow river delta.
     (3) The mechanism of erosion on the yellow river deta caused by storm tide which is obtain in this article is consistency with other scolar’s idea that it is the sediment transport caused by the storm that make the yellow river delta erode. But the mechanism of dispositon on the yellow rive delta is not very clear. So a hypothesis is proposed in this article that if the direction of the storm tide which is belong to a high-energe incident is shoreward, it can take lots of seawater which contains a high sand density which can’t be taken away by the bottom flux to the shore, the dispositon happens.
     (4) The phenomenon that erosion in north and deposition in south, this may be mainly because circumfluence caused by storm is strengthened, which makes the sands that eroded from the northern Yellow River Delta or newly deposited in the estuarine are transported to the southern of Yellow River Delta. Whereas the phenomenon that erosion in shore and deposition off shore is mainly due to transport sands alongshore caused by storm.
引文
[1]季子修.中国海岸带侵蚀特点与侵蚀加剧原因分析[J].自然灾害学报, 1996, 5(2): 65-75.
    [2] Nichols R L, Marston A F. Shoreline changes in Rhode island produced by hurricane of September 21, 1938[J]. Bulletin of the Geological Society of America, 1938, 50:1357-1370.
    [3] US Army Coastal Engineering Research Center. Shore protection manual[M]. Washington DC: US Government Printing Office, 1975: 30-280.
    [4] Hampton M, Dingler J, Sa llenger A, et al. Storm related changed of the northern San Mateo County coast[C]. Coastal Sediments. New York: American Society of Civil Engineers, 1999: 1311-1323.
    [5] Zhang K Q, Whitman D, Leatherman S, et a.l Quantification of beach changes cuased by hurricane floyd along Floridas' Atlantic coast using airborne laser surveys[J]. Journal of Coastal Research, 2005, 21(1): 123-134.
    [6] Sallenger A H, Stockdon H F, Laura F, et al. Hurricanes 2004: an overview of their characteristics and coastal chang[J]. Estuar ies and Coasts, 2006, 29: 880-888.
    [7] Dally W R, Osiecki D A. Nearshore wave and current measurements during Hurricane Jeanne[J]. Shore& Beach, 2005, 73(2): 29-33.
    [8]马小峰,赵冬至,张丰收,等.海岸线卫星遥感提取方法研究进展[J].遥感技术与应用, 2007, 24( 2): 575-580.
    [9] Irish J L, White T E. Coastal engineering applications of high-resolution lidar bathymetry[J]. Coastal Engineering, 1998, 35:47-71.
    [10] Sallenger A H, Wright C W, Lillycrop J. Coastal impacts of the 2004 hurricane measured with airborne lidar: Initial results[J]. Shore& Beach, 2005, 73(2): 10-15.
    [11] Cooper N J, Leggett D J. Beach Profile measurement, theory and analysis: practical guidance and applied case studies[J]. Water and Environment Journal, 2007, 14( 2): 79-88.
    [12] Baptista P, Bastos L, Bernardes C, et al. Monitoring sandy shores morphologies by DGPSA practical tool to generate digital elevation models[J]. Journal of Coastal Research, 2008, 24(6):1516-1528.
    [13] Alegria A R, Masselink G, Kingston K, et a.l Storm impacts on a gravel beach using the argus video system [C] Coastal Engineering 2008. Singapore: World Scientific, 2005: 2633-2645.
    [14]王文海,吴桑云,陈雪英.山东省9216号热带气旋风暴期间的海岸灾害[J].海洋地质与第四纪地质, 1994, 14(2): 71-78.
    [15]龚子平,柯亨玉,吴雄斌,等.“龙王”台风期间高频地波雷达数据分析[J].地球物理学报, 2007, 50(6): 1695-1702
    [16] Basco D R. Erosion of beaches on St. Martin island during hurricanes LUIS and MARILYN, September 1995 [J] . Shore and Beach, 1996, 64(4): 15-20.
    [17] Morton, R.A., Sallenger, A.H., 2003. Morphological impacts of extreme storms on sandy beaches and barriers. Jour. Coastal Res. 19, 560-573.
    [18] Ferreira O. Storm groups versus extreme single storms: predicted erosion and management consequences[J].2006,42:221-227.
    [19] Lee G H, Nicholls R J, Birkemeier W A. Storm driven variability of the beach near shore profile at Duck, North Carolina, USA,1981-1991[J]. M arin e Geology, 1998, 148(3-4): 163-177.
    [20] Otvos E G. Beach aggradation following hurricane landfall: impact comparisons from two contrasting hurricanes, Northern Gulf of Mexico[J]. Journal of Coastal Research, 2004, 20(1): 326-339.
    [21] Sallenger A H. Storm impact scale for barrier island[J]. Journal of Coastal Research, 2000, 16(3): 890-895.
    [22] Judge E K, Orerton M F, Fisher J S. Vulnerability indicators for coastal dunes[J]. Journal of Waterways, Port Coastal and Ocean Engineering, 2003, 126: 270-278.
    [23] Stott J K, Richard A, Davis Jr. Geologic development and morphodynamics of Egmont Key, Florida[J]. Marine Geology, 2003, 200:61-76.
    [24] Morton R A, Sallenge Jr. Moprhological impacts of extreme stomrs on sand beaehes and barriers[J]. Journal of Coastal Reseacrh, 2003, 19(3):560-573.
    [25] NorwoodNelson, C.S.. An introductory perspective on non-tropical shelf carbonates[J]. Sedimentary Geology. 1988,60, 3-12.
    [26]倪孟书,福建岸滩动态变化[J],台湾海峡,1988,7(2).
    [27]蔡爱智,海滩循环与海岸工程[J],海洋工程,1989,7(3),57~63
    [28]蔡锋,苏贤泽,杨顺良,等.厦门岛海滩剖面对9914号台风大浪波动力的快速响应[J].海洋工程, 2002, 20(2) : 85-90
    [29]蔡锋,苏贤泽,夏东兴.热带气旋前进方向两侧海滩风暴效应差异研究[J].海洋科学进展, 2004, 22(4): 436-445
    [30]蔡锋,雷刚,苏贤泽.台风艾利对福建砂质海滩影响过程研究[J].海洋工程, 2006, 24(1) : 98-109
    [31]陈子燊.弧形海岸海滩地貌对台风大浪的响应特征[J].科学通报, 1995, 40(23): 2168-2170.
    [32]陈子燊.海滩剖面时空变化过程分析[J].海洋通报, 2000, 19 (2):42-48.
    [33] Bruun p.Sea leavel rise as a cause of shore erosion[J]. Journal of Waterway, Port,Coast,and Ocean Engineering,ASCE, 1962, 88:117-130.
    [34] Kraus N C, Larson M, Kriebel D L.Evaluation of Beaeh Erosion and Aeeertion Predictors,Proceedings of Conferernce on Coastal Sediments‘91[J],American Society of Civil Engineers,1991, 572-587.
    [35] Williams H F L, Flanagan W M. Contribution of Hurricane Rita Storm Surge Deposition to Long-Term Sedimentation in Louisiana Coastal Woodlands and Marshes[J]. Journal of Coastal Research, 2009, 56: 1671-1675.
    [36] Lippman T C, Holman R A, Hataway K K. Episodic nonstationnary behaviour of double bar system at Duck, N. C[J]. Journal of Coastal Research, 1993,15:49-75.
    [37] Hequette, A. and Hill, P.R. Response of the seabed to storm generated combined flows on a sandy Arctic shoreface, Canadian Beaufort Sea[J]. Journal of Sedimentary Research, 1995,65(3): 461-471.
    [38] Wright, L.D., Short, A.D. Morphodynamic variability of surf zones and beaches: a synthesis[J]. Mar. Geol. 1984,56:93-118.
    [39] Dean, R. G. Equilibrium beach profiles: U.S. and Atlantic Gulf Coast. Ocean Engineering Rep. Dept. of Civil Engineering, Univ. of Delaware, Newark, Del. 1977,12.
    [40] Kriebel, D L, Dean, R G. Beach and dune erosion response to severe storms[J]. Proc. 19th ICCE, Houston, USA.1984. 1584-1599.
    [41]庞家珍,司书亨.黄河河口演变Ⅱ:河口水文特征及泥沙淤积分布[J].海洋与湖沼.1980,11(4).
    [42]庞家珍,姜明星.黄河河口演变(1)-(一)河口水文特征[J].海洋湖沼通报, 2003, 03:01-13.
    [43]庞家珍,姜明星.黄河河口演变(2)-(二)1855年以来黄河三角洲流路变迁及海岸线变化及其他.海洋湖沼通报. 2003, 04:0001-0013.
    [44]陈小英,陈沈良,于洪军等.黄河三角洲海岸剖面类型与演变规律,海洋科学进展. 2005, 23(4):438-445.
    [45]孙效功,杨作升,陈彰榕.现行黄河口海域泥沙蚀积的定量计算及其规律探讨.海洋学报. 1993,15(1):129-136.
    [46]武桂秋.现行黄河口烂泥形成的动力机制.海岸工程, 1992, 11(2):44-52.
    [47]仲德林,刘建立.煌岛油田海区海底地形变化及预防措施.海岸工程. 2001,3:14-18.
    [48]丁东,任于灿.黄河三角洲及邻区的风暴潮沉积.海洋地质与第四纪地质, 1995,15(3): 25-33.
    [49]耿秀山,张曹年,傅命佐等.黄河口海港蚀积变化的定量分析与评价.海洋学报, 1988, 10(6):712-719.
    [50]陈沈良,张国安,陈小英等.黄河三角洲飞雁滩海岸的侵蚀及机理,海洋地质与第四纪地质, 2005,25(3):9-14.
    [51]黄世光.套尔河湾海域泥沙蚀积特征-兼论黄河改道后三角洲的蚀积演化.海洋与湖沼1993, 24(2):197-204.
    [52]任于灿.现代黄河水下三角洲的地貌特征及演化.海洋地质于第四纪地质. 1992, 12 (4):23-29.
    [53]周永青.黄河三角洲北部海岸水下岸坡蚀退过程及主要特征.海洋地质与第四纪地质,1998, 18(3):79-85.
    [54]李广雪,成国栋.现代黄河口区流场切变带.科学通报, 1994, 39(10): 928-932.
    [55]董年虎.黄河口清水沟流路泥沙淤积分布及扩散.黄渤海海洋. 1997,15(2):33-37.
    [56]李希宁,刘曙光,李从先.黄河三角洲蚀积平衡的来沙量临界值分析.人民黄河. 2001, 23(3):20-21.
    [57]许炯心.黄河三角洲造陆过程中的陆域水沙临界条件研究.地理研究. 2002,2 1(2):164-170.
    [58]宋红霞,刘红珍,汪习文等.黄河河口三角洲风暴潮灾害特点及其预防对策[J].海岸工程. 2000, 19 (4): 70-74.
    [59]赵东坡,李广雪,魏合龙等.风暴期间黄河水下三角洲波浪变形[J].中国海洋大学学报. 2005, 35 (1): 57-61.
    [60]孙永福,董立峰,蒲高军等.风暴潮作用下黄河水下三角洲斜坡稳定性研究[J].工程地质学报. 2006, 14 (05): 582-587.
    [61]张晓龙,李培英,刘月良.黄河三角洲风暴潮灾害及其对滨海湿地的影响[J].自然灾害学报. 2006, 15 (2): 10-13.
    [62]陈沈良,谷传国,吴桑云.黄河三角洲风暴潮灾害及其防御对策[J].地理与地理信息科学. 2007, 23(3): 100-104.
    [63]刘桂卫,黄海军,刘艳霞等.风暴潮前后莱州湾西岸岸滩演化特征研究[J].海洋科学集刊. 2010, 50: 32-39.
    [64]尹宝树,徐艳青,任鲁川等.黄河三角洲沿岸海浪风暴潮耦合作用漫堤风险评估研究[J].海洋与湖沼. 2006, 37(5): 457-463.
    [65]虞志英,张国安,金镠等.波流共同作用下废黄河河口水下三角洲地形演变预测模式[J].海洋与湖沼. 2002, 33(6): 583-590.
    [66]李陆平,孔祥德,廖启煜.风暴浪对堤岛油田海域海底冲刷的影响[J].海岸工程. 1996, 15(2): 1-8.
    [67]许国辉,单红仙,贾永刚等.风暴浪导致的黄河口水下土体破坏试验研究[J].青岛海洋大学学报. 2003, 33(5): 675-679.
    [68]冯秀丽,沈渭全,杨荣民等,现代黄河水下三角洲软土沉积物工程地质特性,青岛海洋大学学报,1994.12:132-137
    [69]刘高焕,叶庆华,刘庆生等,黄河三角洲生态环境动态监测与数字模拟,北京:科学出版社,2003:1-15.
    [70]杨占宝,黄河三角洲地震地质特征研究,中国海洋大学硕士学位论文,2002.
    [71]臧启运,等著.黄河三角洲近岸泥沙[M].北京:海洋出版社,1996.
    [72]薛春汀.现代黄河三角洲叶瓣的划分和识别[J].地理研究,1994,13(2):59-66.
    [73]侍茂崇,赵进平.黄河三角洲半日潮无潮区位置及水位特征分析[J].山东海洋学院学报,1985,15(1):129-131.
    [74]赵东波.黄河三角洲刁口叶瓣海岸的侵蚀研究[D].青岛:中国海洋大学,2004.
    [75] Hu, C. H., Ji, Z. W., Wang, T. Characteristics of ocean dynamics and sediment diffusion in the Yellow River estuary [J]. J. Sediment. Res., 1996, 4:1-10.
    [76] Chu, Z. X., Sun, X. G., Zhai, S. K., Xu, K. H. Changing pattern of accretion/erosion of the modern Yellow River (Huanghe) subaerial delta, China: Based on remote sensing images[J]. Marine geology, 2006, 227:13-30.
    [77]刘高焕.黄河三角洲可持续发展图集[M].北京:测绘出版社,1997
    [78]吕海燕.现代黄河三角洲陆海划界问题研究[硕士论文][D] .青岛:中国海洋大学,2005.
    [79]韩晓庆.河北省近百年海岸线演变研究[硕士论文] [D] .石家庄:河北师范大学,2008.
    [80]《2009年中国海平面公报》.国家海洋局,2010.
    [81]《2009年中国海洋灾害公报》.国家海洋局,2010.
    [82] Bird, E.F.C.. Coastal erosion and sea-level rise , in Milliman, J.D. and Haq, B.U. (editors) Sealevel Rise and Coastal Subsidence, Kluwer Academic Publishers, Dordrecht, The Netherlands. 1996, 84–104
    [83]孟祥梅.现代黄河三角洲岸滩沉积物侵蚀过程研究[博士论文][D] .青岛:中国海洋大学,2009.
    [84]王厚杰,原晓军,王燕等.现代黄河三角洲废弃神仙沟—钓口叶瓣的演化及其动力机制[J],泥沙研究,2010,4:51-60.
    [85] Reimnitz E., Barnes, P.W. and Harper, J.R.. A review of beach nourishment from ice transport of shoreface materials, Beaufor Sea,Alaska. Journal of Coastal Research. 1990,6:439–470.
    [86] Kelley, J.T., Belknap, D.F. and Shipp, R.C.. Sedimentary framework of the southern Maine inner continental shelf: influence of glaciation and sea-level change. Marine Geology. 1989,90:139–147.
    [87] Wright L D , Xu J P and Madsen O S . Across-shelf benthic transports on the inner shelf of the Middle Atlantic Bight during the“Halloween storm”of 1991. Marine Geology. 1994,118:61–77.
    [88] Wright L D, Short A D. Morphodynamic variability of surf zones and beaches: A synthesis. Marine Geol ogy, 1984, 56: 9 -118.
    [89] Masselink G, Short A D, T he effect of tide range on beach morphodynamics and morphology: A conceptual beach model. Journal of Coast al Research.1993, 9: 785-800.
    [90] Komar P D, Gauhan M K. Airy wave theory and breaker height prediction. Proceedings of the 13th Coastal Engineering Conference. American Society of Civil Engineers , 1973, 405-418.
    [91] Gibbs R J, Mathews M D, Link D A. The relationship between sphere siz e and settling velocit y. Journal of Sedimen tary Petrology, 1971, 41: 7– 18.
    [92] Benavente J, Gracia F J. Empirical model of morphodynamic beach face behaviour for low-energy mesotidal environments. Marin Geology, 2000, 167:375-390.
    [93] Guza R T, Inman D L. Edge waves and beach cusps. Journal of Geophys Reseach, 1975, 80: 2997-3012.
    [94] Ruessink B G, Wijnberg K M, Holman R A. Intersite comparison of interannual nearshore bar behavior. JOURNAL OF GEOPHYSICAL RESEARCH. 2003,108(5):1-13.
    [95] Ogston A S, Sternberg R W,. Storm and river flood-driven sediment transport on the northern California continental shelf, Cont. Shelf Res. 2004, 20, 2141– 2162.
    [96] Traykovski, P., W.R. Geyer, J.D. Irish and J.F. Lynch. The role of wave-induced density-driven fluid mud flows for cross-shelf transport on the Eel River continental shelf. Continental Shelf Reserch. 2000, 20, 2113-2140.
    [97]顾玉荷,休日晨.渤海海流概况及其输沙作用初析[J].黄渤海海洋.1996,14(1):1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700