超磁致伸缩泵设计理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超磁致伸缩材料(GMM)具有伸缩应变大、输出力大、能量密度高、响应速度快和频带宽等优点,是一种新型智能材料。它在超声换能器、精密定位、超精密加工、微型马达和振动主动控制等领域有着广泛的应用。航空航天飞行器的发展,迫切需要体积小、重量轻、压力高,且易于控制输出流量的分布式液压系统。现有的液压泵难以满足以上要求,利用智能材料的诸多优势,研究基于智能材料的新型液压泵及其系统,既有开展理论研究的必要性,也有现实的迫切性。论文针对超磁致伸缩材料的特性,在结构优化设计、流场分析、系统建模与仿真和实验测试等方面开展理论和实验研究,旨在为超磁致伸缩泵及其液压系统的发展提供设计理论支持和实验数据积累。
     论文分析了现有的液压泵和基于智能材料的新型泵的工作原理。论述了磁致伸缩效应产生的机理、超磁致伸缩材料的基本特性及其应用。对超磁致伸缩泵的国内外研究现状进行了深入剖析,指出了开展超磁致伸缩泵设计理论和实验研究的重要意义。
     提出了超磁致伸缩泵的总体设计方案。通过研究和分析磁场强度在GMM棒轴线上的分布,确定了驱动线圈设计和优化的一般方法。通过建立系统的等效磁路,找到了提高电-磁-机械转换效率的方法。使用有限元方法对超磁致伸缩泵的磁场进行仿真和分析,并对磁回路结构进行了优化,改善了磁场的均匀性。分析了预压力机构、泵腔设计以及单向阀设计的主要参数对输出性能的影响。针对超磁致伸缩泵的结构特点,设计了静密封和动密封相结合的密封方式。
     基于流体力学连续性方程和动量方程,建立了超磁致伸缩泵泵腔流场的二维和三维模型,仿真结果显示泵腔压力差随频率增加而增大。使用有限元方法研究了不同泵腔高度下,腔内压力损失同活塞初始激励速度之间的关系,分析了泵腔内的压力分布状况以及造成压力损失的原因。通过对不同进出管路位置分布、进出管路直径以及进出管路倒角形状对泵腔内压力损失影响的研究,得到了优化设计的基本方案和思路,并对流场结构参数进行了最终的优化。采用流-固耦合的方法对不同单向阀阀片厚度下,流场内流动速度进行仿真分析,得到了单向阀阀片厚度选取以及单向阀几何结构优化的方法。对超磁致伸缩泵泵腔内层流和紊流状态以及泵的自吸能力进行了讨论。
     超磁致伸缩泵实验系统涉及到较为复杂的多物理场耦合。为了深入解析电场、磁场、机械场和流场之间的耦合过程,研究了超磁致伸缩泵的输入特性与输出流量特性和工作油缸驱动负载特性的关系。通过对超磁致伸缩棒、活塞、泵腔、管道和工作油缸的分段分析和建模,构建了超磁致伸缩泵实验系统的总体静态模型和动态模型。其中,使用状态空间建立了系统的动态模型,并将仿真结果同实验数据进行了对比分析。
     基于超磁致伸缩泵的设计理论,制作了实验样机,搭建了实验测试系统。对超磁致伸缩泵的输出特性进行了测试,得到了输出流量和输出压力随电流大小和频率变化的关系曲线。研究了无负载和不同负载情况下,工作油缸的输出速度同电流输入特性之间的关系。着重讨论了预压力对超磁致伸缩泵的输出性能和系统输出性能的影响。最后分析了系统中气泡产生的原因和解决方法。
As a new class of smart materials, Giant Magnetostrictive Material (GMM) has tremendous advantages of high strains, large output force, high energy density, fast response, and wide bandwidth, etc., leading to its wide application prospects in the fields of ultrasonic transducers, precision positioning, ultra-precision machining, micro motors, and active vibration control, etc. Currently, there is a growing demand in aviation and space aircraft for compact, light, and high-pressure hydraulic systems that can be distributed across the airframe with easy flow controls. Unfortunately, conventional hydraulic pumps cannot meet these needs. Therefore, it is significant but also necessary to develop novel hydraulic pumps and hydraulic systems based on novel smart materials. To provide theoretical supports and experimental data for further development of giant magnetostrictive pumps and hydraulic systems, research on structural optimum design, flow field analysis, system modeling and simulation, also experimental testing, were carried out in this dissertation.
     This dissertation analyzed the operational principle of existing hydraulic pumps and novel pumps based on smart materials. Mechanisms of magnetostrictive effect and the basic characteristics and their applications of GMM were also presented. Then, the state-of-art giant magnetostrictive pumps and the existing problems were described, explaining the significance of research on giant magnetostrictive pumps design and test.
     The overall design scheme of giant magnetostrictive pumps was proposed in this dissertation. Methodologies for actuation coil design and optimization were determined by analyzing the distribution of magnetic field intensity along the axes of GMM rod. The efficiency of electric-magnetic-mechanical conversion was improved by setting up equivalent magnetic circuits for the system. Moreover, with the application of Finite Element methods to simulation and analysis of the magnetic field of giant magnetostrictive pumps, the structure of magnetic loop was optimized, and the uniformity of magnetic fields was improved. Also, the influence on output performance caused by main parameters of preloading units, pumping chamber design, and one-way valve design was compared. On the basis of structural characteristics of giant magnetostrictive pumps, a novel sealing mode which combined static and dynamic sealing was designed.
     The2D and3D models for flow fields of giant magnetostrictive pumping chamber were established based on hydromechanical continuity equation and momentum equation. Simulation results indicated that the difference of chamber pressure increased with frequencies. Also, this dissertation analyzed the relationship between the loss of chamber pressure and the initial actuation speed of pistons under different chamber heights, described the distribution of pressure inside the pumping chamber, and discussed the causes of pressure loss. By analyzing the influence of the distributions, diameters, and chamfering shapes of inlet and outlet pipelines on pressure loss, the optimum design scheme was obtained, and parameters of the flow field structure were optimized. For one-way valve design, based on simulation results of flow velocity under different valve plate thickness using fluid-solid coupling, approaches for thickness selection and geometric structure optimization were proposed. In addition, laminar and turbulent conditions inside the pumping chamber as well as self-priming capability were also discussed.
     The experimental system of giant magnetostrictive pumps always involves sophisticated coupling of multiple physical fields. To understand the coupling among electrical, magnetic, mechanical, and flow fields, the relationship between the input characteristics and output flow rate, as well as the driving load velocity of hydrocylinder was investigated. Then, the static and state space based dynamic models of experimental system for giant magnetostrictive pumps were established by analysis and modeling of the GMM rod, piston, pump chamber, pipeline and hydrocylinder respectively. We conducted comparative analysis of the simulation results and experimental data finally.
     In this research, a prototype was designed and constructed, and an experimental system was established. We tested the output characteristics of giant magnetostrictive pumps, and discovered the relationship between output flow rate and pressure and input current and frequency. Moreover, the relationship between output velocity and input current under certain circumstances with and without loads was investigated. We discussed the influence of pre-load on the output performance of giant magnetostrictive pump and hydraulic system. Finally, causes and solutions of air bubbles in the system were discussed.
引文
[1]路甬祥.液压气动技术手册[M].北京:机械工业出版社,2002
    [2]路甬祥.流体传动与控制技术的历史进展与展望[J].机械工程学报,2001,37(10):1-9
    [3]闻邦椿.机械设计手册[M].北京:机械工业出版社,2010
    [4]刘和平.液压与气压传动[M].上海:上海交通大学出版社,2011
    [5]Joshua Ellison, Jayant Sirohi and Inderjit Chopra. Investigation of active materials as driving elements of a Hydraulic Hybrid Actuator[J]. Smart Structures and Materials 2005: Smart Structures and Integrated Systems,2005, Vol.5764:274-289
    [6]Chaudhuri A, Yoo J.-H and Wereley N.M. Dynamic modeling of a magnetostrictive hydraulic pump[C].2006 ASME International Mechanical Engineering Congress and Exposition, Chicago, Illinois, USA, November 5-10,2006,331-337
    [7]John Shaju, Sirohi Jayant, Gang Wang, et al. Comparison of Piezoelectric, Magnetostrictive, and Electrostrictive Hybrid Hydraulic Actuators[J]. Journal of intelligent material systems and structures,2007, vol.18:1035-1048
    [8]Ren Z, Ionescu B, Besbes M, and Razek A. Calculation of mechanical deformation of magnetic materials in electromagnetic devices[J]. IEEE Trans. Magn.,1995,31(3): 1873-1876
    [9]Ling-Sheng Jang, Wai-Hong Kan, Ming-Kun Chen and Yao-Min Chou. Parameter extraction from BVD electrical model of PZT actuator of micro-pumps using time-domain measurement technique[J]. Microfluid Nanofluid,2009,7:559-568
    [10]Ma H.K. and Hou B.R, et al. Development of one-sided actuating piezoelectric micropump combined with cold plate in a laptop[C].24th IEEE SEMI-THERM Symposium,2007, 124-131
    [11]Zhao-xin Geng, Da-fu Cui, Hai-ning Wang and Xing Chen. Disposable PDMS diaphragm micropump actuated by PZT[C].1st IEEE international conference on Nano/Micro engineered and molecular systems, zhuhai, China,2006,1436-1439
    [12]Kwangchul Lee and Nam Seo Goo. Performance evaluation of a Valveless micropump considering electro-structural-fluid interaction[J]. Key Engineering Materials,2007,345: 749-752
    [13]Mauck L.D. and Lynch C.S. Piezoelectric hydraulic pump development[J]. Journal of intelligent material systems and structures,2000,11:758-764
    [14]Choi S.B, Yoo J.K, Cho M.S and Lee Y.S. Positon control of a cylinder system using a piezoactuator-driven pump[J]. Mechatronics,2005,15:239-249
    [15]Marta F.T. Ribeiro, Joao L.M. Santos and Jose L.F.C. Lima. Piezoelectric pumping in flow analysis:application to the spectrophotometric determination of gabapentin[J]. Analytica chimica acta,2007,600:14-20
    [16]Dong-Ho Ha, Van Phuoc Phan, Nam Seo Goo and Cheol Heui Han. Three-dimensional electro-fluid-structural interaction simulation for pumping performance evaluation of a valveless micropump[J]. Smart structures and materials,2009,18:1-8
    [17]张建辉,王大康.压电泵的研究-泵阀滞后性[J].机械工程学报,2003,39(5):107-110
    [18]Eric G. Chapman, Scott L. Herdic, Chaz A. Keller and Christopher S. Lynch. Development of miniaturized Piezo-hydraulic pumps[J]. Smart structures and materials,2005,5762: 299-310
    [19]Lindler J.E and Anderson E.H. Design and testing of piezoelectric-hydraulic actuators[J]. Smart structures and materials,2003,5054:96-107
    [20]Shaju John, Christopher Cadou, Jin-Hyeong Yoo and Norman M. Wereley. Application of CFD in the Design and Analysis of a Piezoelectric Hydraulic Pump[J]. Journal of intelligent material systems and structures,2006,17:967-979
    [21]Jayant sirohi, Christopher Cadou and Inderjit Chopra. Investigation of the Dynamic Characteristics of a Piezohydraulic Actuator [J]. Journal of intelligent material systems and structures,2005,16:481-492
    [22]Shaju John, Jin-Hyeong Yoo, Jayant Sirohi, Norman M. Wereley. Bidirectional actuation of a piston using MR valves and a piezoelectric pump[C].2005 ASME International Mechanical Engineering Congress and Exposition, Orlando, Florida, USA, November 5-11, 2005,411-420
    [23]Kim Gi-Woo and Wang K.W. Piezoelectric-Hydraulic Pump Based Band Brake Actuation System for Automotive Transmission Control[J]. Active and Passive Smart Structures and Integrated Systems 2007,6525:1E1-10
    [24]Richter M, Congar Y, Nissen J, Neumayer G, Heinrich K, and Wackerle M. Development of a multi-material micropump[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science,2006,220(11):1619-1624
    [25]刘国君.迭片式系列微型压电泵的设计理论和实验研究[D].长春:吉林大学,2006
    [26]Shuxiang Guo and Toshio Fukuda. A novel type of micropump for biomedical application[C]. Proceedings of 2004 International Conference on Information Acquisition, 2004:532-537
    [27]Liuke Xia, Fengxiang Wang and Jun Lu. A valveless micropump driven 1:Jy differential SMA actuator[C]. International Conference on Smart Material and Nanotechnology in Engineering,2007,6423:0Y1-7
    [28]Kazuyoshi Tsuchiya, Naoyuki Nakanishi, Yasutomo Uetsuji and Eiji Nakamachi. Development of blood extraction system for health monitoring system[J]. Biomedical Microdevices,2005,7(4):347-353
    [29]Yongqing Fu, Hejun Du, Weimin Huang, Sam Zhang and Min Hu. TiNi-based thin films in MEMS applications:areview[J]. Sensors and Actuators A,2004,112:395-408
    [30]Kazuyoshi Tsuchiya, Naoyuki Nakanishi, Yasutomo Uetsuji and Eiji Nakamachi. Development of Blood Extraction System for Health Monitoring System[J]. Biomedical Microdevices,2005,7(4):347-353
    [31]Xuesong Sun, Shuxiang Guo and Xiaonan Yan. A novel type of peristaltic micropump for biomedical applications[C]. Proceedings of 2008 IEEE International Conference on Mechatronics and Actuation,2008:696-701
    [32]Fumihiro Sassa, Yazan Al-Zain, Takahiro Ginoza, Shuichi Miyazaki and Hiroaki Suzuki. Miniaturized shape memory alloy pumps for stepping microfluidic transport[J]. Sensors and Actuators B,2012,165:157-163
    [33]Daniel D. Shin, Kotekar P. Mohanchandra, Gregory P. Carman. Development of hydraulic linear actuator using thin film SMA[J]. Sensors and Actuators, A:Physical,2005,119(1): 151-156
    [34]孟爱华,项占琴,吕福在.微型超磁致伸缩高速阀致动器的优化设计[J].浙江大学学报(工学版),2006,40(2):216-220
    [35]王传礼,程霞,安平.GMM高频微小泵的性能分析[J].液压与气动,2010,9:70-73
    [36]G. Nick Weisensel, O. Dale McMasters, Robert G. Chave. Cryogenic magnetostrictive transducers and devices for commercial, military and space applications[J]. Proc. SPIE 3326, Smart Structures and Materials,1998:459-470
    [37]Joshua Ellison, Jayant Sirohi, IndeJjit Chopra. Design and testing of a bidirectional magnetostrictive-hydraulic hybrid actuator[J]. Proc. SPIE 5390, Smart Structures and Materials,2004:483-494
    [38]Anirban Chaudhuri, Jin-Hyeong Yoo and Norman M Wereley. Design, test and model of a hybrid magnetostrictive hydraulic actuator[J]. Smart Mater. Struct,2009,18:1-21
    [39]Ryan C. Sneed, Roland R. Smith and Michael F. Cash. Development of smart material-hydraulic pumps and actuators[C].2006 ASME International Mechanical Engineering Congress and Exposition, Chicago, Illinois, USA,2006:435-443
    [40]Keith Bridger, John M. Sewell, Arthur V. Cooke. High-pressure magnetostrictive pump development:a comparison of prototype and modeled performance[J]. Proc. SPIE 5388, Smart Structures and Materials,2004:246-257
    [41]Chaudhuri A, Yoo J.-H. and Wereley N.M. SCALING-UP ISSUES WITH A MAGNETOSTRICTIVE HYDRAULIC PUMP[C].2006 ASME International Mechanical Engineering Congress and Exposition, Chicago, Illinois, USA,2006:403-408
    [42]Ryan C. Sneed, Roland R. Smith, Michael F. Cash and Eric H. Anderson. Smart-Material Based Hydraulic Pump System for Actuation of a Morphing Wing[C].48th AIAA/ASME/ASCE/AHS/ASC structure, structural dynamics and materials conference, Honolulu, Hawaii,2007:14-23
    [43]Michael J. Rupinsky and Marcelo J. Dapino. SMART MATERIAL ELECTROHYDROSTATIC ACTUATOR FOR INTELLIGENT TRANSPORTATION SYSTEMS[C].2006 ASME International Mechanical Engineering Congress and Exposition, Chicago, Illinois, USA,2006:721-730
    [44]Gerver M.J, Berry J.R. and Dozor D.M. Theory and application of large stroke Terfenol-D actuators[J]. Materials Research Society,1997,459:521-526
    [45]Shaju John and Christopher Cadou. Unsteady Fluid Flow in Smart Material Actuated Fluid Pumps[J]. Smart structures and materials,2005,5764:703-714
    [46]Quandt E. Giant magnetostrictive thin film materials and applications[J]. Journal of Alloys and Compounds,1997,258:126-132
    [47]Quandt E and Seemann K. Fabrication and simulation of magnetostrictive thin-film actuators[J]. Sensors and actuators A,1995,50:105-109
    [48]Quandt E, Gerlach B and Seemann K. Preparation and applications of magnetostrictive thin films[J]. Journal of Applied Physics,1994,76(10):7000-7002
    [49]邬义杰.超磁致伸缩材料发展及其应用现状研究[J].机电工程,2004,21(4):55-59
    [50]贾振元,杨兴,武丹,郭东明.超磁致伸缩执行器及其在流体控制元件中的应用[J].机床与液压,2000,2:3-4,27
    [51]Kellogg R and Flatau A. Blocked force investigation of a Terfenol-D transducer [J]. SPIE's 6th Annual International Symposium on Smart Structures and Materials,1999: 3668-19
    [52]ETREMA Products, Inc. ULTRASONIC TRANSDUCER CU18A technical manual. http://www.etrema.com/
    [53]Nanjia Zhou, Charles C. Blatchley and Christopher C. Ibeh. Design and construction of a novel rotary magnetostrictive motor[J]. Journal of applied physics,2009,105:07F113,1-3
    [54]European Commission Researche and Innovation. Magnetoelastic Energy Systems for Even More Electric Aircraft. http://ec.europa.eu/research/transport/projects/items/mesemaen.htm
    [55]甘肃天星稀土功能材料有限公司.http://www.txre.com.cn/index.html
    [56]深圳市天星飞锐新材料有限公司.http://www.txaudio.cn/about-us/index.shtml
    [57]Kleinke, D.K and Uras, H.M. A Magnetostrictive Force sensor[J]. Rev. Sci. Instrum.,1994, 65(5):1699-1710
    [58]Kleinke, D.K. and Uras, H.M. A Noncontact Magnetostrictive Strain Sensor[J]. Rev. Sci. Instr,1994,64(8):2361-2367
    [59]Rongge Yan, Qingxin Yang and Wenrong Yang et al. Research on dynamic characteristics of gaint magnetostrictive acceleration sensors[J]. International Journal of Applied Electromagnetics and Mechanics,2010,33:293-298
    [60]Nyce, D. Magnetostriction-based Linear Position Sensors[J]. Sensors,1994,Apri1:22-26
    [61]Anirban Chaudhuri and Norman Wereley. Compact hybrid electrohydraulic actuators using smart materials:A review[J]. Journal of Intelligent Material Systems and Structures,2012, 23:597-634
    [62]Olabi A. G. and Grunwald A. Design and application of magnetostrictive materials[J]. Materials and Design,2008,29:469-483
    [63]Dariusz A. Bushko and James H. Goldie. High Performance Magnetostrictive Actuators[J]. IEEE AES Systems Magazine,1991:21-25
    [64]Gerver M. J, et al. Magnetostrictive Water Pump[J]. SPIE Conference on smart structures and integrated systems,1998,3329:694-705
    [65]夏春林,丁凡,陈大军等.超磁致伸缩材料在流体控制元件中的应用研究展望[J].液压气动与密封,1997,2:2-4
    [66]王传礼.基于GMM转换器喷嘴挡板伺服阀的研究[D].杭州:浙江大学,2005
    [67]王传礼,程霞,安平.GMM高频微小泵的性能分析[J].液压与气动,2010,9:70-73
    [68]王传礼,方紫剑.基于超磁致伸缩材料高频微小泵的建模[J].煤矿机械,2008,29(12):62-64
    [69]卢全国.基于GMM的微致动研究及应用[D].武汉:武汉理工大学,2007
    [70]Shaju John. Development of A Magneto-rheological Fluid Based Hybrid Actuation System[D]. College Park:University of Maryland,2007
    [71]Anirban Chaudhuri. Self-Contamed Hybrid Electro-Hydraulic Actuators Using Magnetostrictive and Electrostrictive Materials[D]. College Park:University of Maryland,2008
    [72]唐志峰.超磁致伸缩执行器的基础理论与实验研究[D].杭州:浙江大学,2005
    [73]Joshua Ellison. Investigation of Active Materials as Driving Elements in a Hydraulic-Hybrid Actuator[D]. College Park:University of Maryland,2004
    [74]Raghavendra Angara. High Frequency High Amplitude Magnetic Field Driving System for Magnetostrictive Actuators[D]. Baltimore County:University of Maryland,2009
    [75]电气工程师手册(第二版)[M].北京:机械工业出版,2002年.
    [76]Engdahl G. Design Procedures for Optimal Use of Giant Magnetostrictive Materials in Magnetostrictive Actuator Applications[J]. Proceedings of 8th International Conference on New Actuators,2002,41:554-557
    [77]McMasters O.D. Development, Application, Markets, and Patent Situation of Magnetostrictive TERFENOL-D[J]. Journal of Rare Earths,1995,13(4):295-301.
    [78]王以真.实用磁路设计[M].北京:国防工业出版社,2008
    [79]Benbouzid M. E. H, Reyne G, and Meunier G. Finite element modelling of magnetostrictive devices:Investigations for the design of the magnetic circuit[J]. IEEE Transactions on Magnetics,1995,31(3):1813-1816
    [80]陈定方,卢全国等.现代设计理论与方法[M].武汉:华中科技大学出版社,2010
    [81]马慧,王刚.COMSOL Multiphysics基本操作指南和常见问题解答[M].北京:人民交通出版社,2009
    [82]Richter M, Linnemann R and Woias P. Robust design of gas and liquid micropumps[J]. Sensors and Actuators A,1998,68:480-486.
    [83]Jung-Ho Park, Kazuhiro Yoshida, Shinichi Yokota. Resonantly driven piezoelectric micropump:Fabrication of a micropump having high power density[J]. Mechatronics, 1999,9(7):687-702.
    [84]尹执中,胡桅林,过增元.悬臂梁式微型阀的启动和过流特性[J].传感技术学报,2000(01):1-6
    [85]尹执中,庞江涛,胡桅林等.悬臂梁式微型阀[J].仪表技术与传感器,2000(03):3843
    [86]杜广生.工程流体力学[M].北京:中国电力出版社,2004
    [87]朱红钧,林元华,谢龙汉.Fluent流体分析及仿真实用教程[M].北京:人民邮电出版社,2010
    [88]张鸣远.高等工程流体力学[M].西安:西安交通大学出版社,2008
    [89]Singiresu S. Rao. Mechanical Vibrations[M]. US:Prentice Hall,2003
    [90]刘鸿文.材料力学[M].北京:高等教育出版社,2009
    [91]Richter M. Linneman R, Woias P. Robust of gas and liquid micropumps[J]. Sensors and [92] Sebatian Bohm, Wouter Olthuis, Bergveld Piet. A plastic micropump constructed with
    conventional techniques and materials[J]. Sensors and Actuators,1999,77(1-3):223-228
    [93]刘光宗.流体力学原理与分析方法[M].北京:高等教育出版社,1992
    [94]郑洽余,鲁钟琪.流体力学[M].北京:机械工业出版社,1981
    [95]吕智君,兰才有.自吸泵研究现状及发展趋势[J].排灌机械,2005,23(3):14
    [96]吴丽萍.扁锥腔无阀压电泵的理论与实验研究[D].长春:吉林大学,2008
    [97]Janocha H, Schaefer J.J.D and Jendritza J. Piezoelectric and Magnetostrictive Materials for use in Smart Actuators[C]. Proceedings of the Joint Hungarian-British International Mechatronics Conference, Budapest, Hungary.US,1994,397-404
    [98]Pomirleanu R. and Giurgiutiu V. High-Field Characterization of Piezoelectric and Magnetostrictive Actuators[J]. Journal of Intelligent Material Systems and Structures,2004, 15(3):161-180
    [99]Yoo J-H, Sirohi J and Wereley N.M. A Magnetorheological Piezohydraulic Actuator[J]. Journal of Intelligent Material Systemsand Structures,2005,16(11-12):945-953
    [100]Calkins F and Flatau A. Design, Analysis and Modeling of Giant Magnetostrictive Transducers[D]. College Park:University of Maryland,1997
    [101]Yoo J-H and Wereley N M. Performance of a magnetorheological hydraulic power actuation system[J]. Intell. Mater. Syst. Struct.2004,15:847-58
    [102]Dapino M J. On magnetostrictive materials and their use in adaptive structures[J]. Struct. Eng. Mech.2004,17:303-29
    [103]Moffett M B, Clark A E, Wun-Fogle M, Lindberg J, Teter J P and McLaughlin E A. Characterization of Terfenol-D for magnetostrictive transducers[J]. J. Acoust. Soc. Am. 1991,89:1448-55
    [104]陈复民,李春福,李国俊等.稀土对铍青铜(QBe2)组织性能的影响与机理研究[J].天津大学学报,1987,4:69-77
    [105]刘杰.铍青铜复杂零件外形及薄壁件的热处理工艺改进[J].新技术新工艺,2005,1:39-40
    [106]狄平.铍青铜形变时效工艺的优化[J].金属热处理,2003,28(2):63-69
    [107]王荣滨.铍青铜的固熔淬火和双重时效强化处理研究[J].有色金属加工,2007,36(6):17-20
    [108]杨复建,梅敬军.铍青铜热处理工艺的改进[J].机电元件,2004,24(3):18-20
    [109]郁龙贵.热处理对铍青铜组织和性能的影响[J].物理测试,2000,4:5-8
    [110]徐华,文庆明,海争平.铍青铜的铸造技术[J].金属铸锻焊技术,2009,38(15):56-65
    [111]Chowdhury H.A, Mazlan S.A. and Olabi A.G. A simulation study of Magnetostrictive Material Terfenol-D in Automotive CNG Fuel Injection Actuation[J]. Solid State Phenomena,2009,154:41-46
    [112]David Nosse, Brett Burton and Marcelo Dapino. Compact actuation through magnetorheological flow control and rectification of magnetostrictive vibrations[C].2004 ASME International Mechanical Engineering Congress and Exposition, Anaheim, California, USA,2004:187-195
    [113]Olabi A.G. and Grunwald A. Design and application of magnetostictive materials[J]. Materials and Design,2008,29:469-483
    [114]Tongxun Yi and Ephraim J. Gutmark. Dynamics of a high-frequency fuel actuator and its applications for combustion instability control[J]. Transactions of the ASME,2007,129: 648-654
    [115]Kazim M. Ali, Reza Kashanni and Kevin Hallinan. High-performance micro-electrohydrodynamic pump actuator[C]. ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference,2003:1979-1987
    [116]Chowdhury H.A, Mazlan S.A. and Olabi A.G. Implementation of Magnetostrictive material Terfenol-D in CNG Fuel injection Actuation[J]. Advanced Materials Research, 2008,47-50:630-633
    [117]David T. Nosse and Marcelo J. Dapino. Magnetorheological valve for hybrid electrohydrostatic actuation[J]. Journal of Intelligent Material Systems and Structures, 2007,18:1121-1136

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700