微泵的理论建模及静动态特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如今,在微机械电子系统(MEMS)领域,人们对微流体系统的研究逐渐升温,即化学分析系统和微制剂系统。微泵是微流体系统的基本组件之一。最近几年研制出几种基于不同的驱动原理和用途的微泵,有的已经进入实用阶段。
     本文对微泵进行了理论分析,建立了微泵模型的基本方程,求出了流量、压力。建立了静电、压电驱动的微泵薄膜变形的模型,推导出了圆形薄板固有频率。
     提出了一种双腔微泵结构设计方案,这种泵分为上下两个泵腔,上面泵腔由腔壁与上下两层薄膜围成,每层薄膜上都有一层PZT片;而下面泵腔则由腔壁与围成上面泵腔的下层硅薄膜及一层玻璃围成,出入口处采用环形阀门结构,泵膜和阀片的材料为硅。泵体半径为3mm,泵膜半径为2mm,泵膜厚度为5μm,PZT片厚度为10μm,泵体高度为1000μm,方波驱动电压为50V,驱动频率为4000Hz。
     建立了微泵膜片的有限元模型,采用直接耦合法模拟分析了微泵膜片在压电驱动下产生的形变和由此引起的微泵腔体体积的变化,得出了膜片厚度、形状、和压电驱动电压对微泵腔体体积变化的影响。微泵膜片的动态特性与微泵的工作效率密切相关,本文得出了膜片振动的固有频率与膜片厚度之间的关系,并进行了模态分析、瞬态动力学分析、谐响应分析。微泵的流量和压力是微泵的重要工作参数,应用有限元流固耦合分析对流体进行模拟,经过分析计算,得到微泵的输出流量为145.5μl/min,并模拟出流速和压力的变化情况,从而较为全面的认识了微泵系统的流体特性。等效电路方法是一种建立微系统模型的方式,对微泵系统进行等效电路模拟,得出微泵输出压力以及流量变化情况。序贯耦合法是有限元耦合分析方法之一,适用于静电—结构耦合场。应用序贯耦合法对静电驱动微泵进行模拟分析,得出了膜片厚度、驱动电压以及泵腔高度的变化对泵腔体积变化的影响,研究结果为静电驱动的微泵结构设计提供了依据,具有一定的参考价值。
Today, there is growing interest in research on microfluidic systems, e.g., for chemical analysis systems and microdosage systems. One of the basic components in microfluidic systems is micropumps. During recent years several different micropumps have been presented based on different pump principles and using different actuation principles, some micropumps have come into practice.
    This thesis analyzed theory of micropump and built the basic equation of micropump model, solved the flux and pressure of micropump. This thesis built the model of the distortion of the electrostatic and piezoelectric micropump, resolved the inherent frequency of the circular film.
    In this thesis, the design of a kind of two cavities micropump was put forward. The micropump is divided into two cavities. The cavity above is composed of the wall of cavities and two layers films lies up and down, each of them has a layer of PZT chip. The cavities underside is composed of the wall of cavities, the film and a layer of class. There is circular valves lies in the import and export, and the material of the micropump films and the valves is silicon. The radius of the micropump is 3mm, the radius of the films of micropump is 2mm, the thickness of the films of the micropump is 5 m, the thickness of the PZT chip is 10 m, the tall of the micropump is 1000 m, the drive voltage is 50V, the drive frequency of the micropump is 4000Hz.
    This thesis built the model of micropump, the deformation of the micropump membrane and the volume change of the micropump chamber under piezoelectric-drive were simulated by finite element method (FEM). The effects of the membrane thickness, shape and piezoelectric voltage on the volume change of membrane were analyzed. The relation between intrinsic frequency and membrane thickness was also discussed. The
    
    
    
    output flux of the micropump, which is 145. 5 l/min. The change of fluid velocity and pressure of the micropump was also simulated, thus we could recognize the property of the liquid of the microsystems more completely. The equivalent circuit method is a way of building micro system model. The thesis simulated the micropump system with the equivalent circuit method, worked out the change of output pressure and flux of the micropump. The sequential coupling analysis method is one of the FEM analysis method, which is suit of electrostatic-structural coupled-field analysis. The thesis applied the sequential coupling analysis method to simulate the electrostatic-drive micropump. The effects of the membrane thickness, shape and electrostatic voltage on the volume change of membrane were analyzed. The analysis results provided foundation for the structural design of the electrostatic-drive micropump and have some reference value.
引文
[1] 丁衡高.微米/纳米技术-面向21世纪的军民两用技术[J].仪器仪表学报,1995,16(1):1-4
    [2] 邵培革,王立鼎.微机械元件和仪器新近展[J].光学精密工程,7(1)1999:10—15
    [3] 才海男,马秀兰,李鸥生等.微机械技术发展现状[J].哈尔滨工业大学学报,6(29)1997:57—61
    [4] 赵志诚.微电子机械技术的现状与发展[J].仪表技术与传感器,1997,6:1-3
    [5] Government of United States of America. Report of the national critical technologies Panel[M]. 1991, 3: 102-110
    [6] 王立鼎.微型机械研究的现状及展望[J].科技导报,1993,12:45-45
    [7] 干东英,王立鼎.微型机械的现状与发展[J].机械工程学报,30(2)1994:1-8
    [8] KeithW. Brendley. Military applications microelectromechanical systems[J]. RAND. 1993: 43-45
    [9] H.T.G.VAN LINTEL. A piezoelectric micropump based on micromaching of silicon [J]. Sensors and Actuators,(15) 1988:153-167
    [10] Christopher J Morris and K Forster. Optimization of a circular piezoelectric bimorph for a micropump driver[J]. J. Micromech.Microeng,(10)2000:459-465
    [11] H.Q.Li,D.C.Roberts,J.L.Sten, etc. A high frequency high flow rate piezo- electrically driven MEMS micropump[J]. Proceedings IEEE Solid State Sensors Workshop, Hilton Head. June 2000:56-60
    [12] Linneman R., Woias P. ,Senfft C.-D.,Ditterich J.A. A self-priming and bubble-tolerant piezoelectric silicon micropump for liquids and gases[J].IEEE 11th International Workshop on Micro Eletro Mechanical Systems(MEMS'98), Heidelberg, Germany, Jan. 25-29,1998: 532-537
    [13] Michael koch etal. A novel micromachined pump based on thick-film pizeoelectricactuation[J]. Sensors and Actuators, 1998, A70: 98-103
    [14] R.Zengerle etal. A bidirectional silicon micropump[J]. Sensors and Actuators, 1995,A50: 81-86
    
    
    [15] STEPHEN F.BART. Microfabricated electrohydrodynamic pumps[J]. Sensors and Actuators, A21-A23 (1990):193-197
    [16] Si-Hong Ahn etal. A micromachined electrohydrodynamic pump[J]. Sensors and Actuators, 1995, A50: 81-86
    [17] J. Darabi, M.M.Ohadi, and D.DeVoe. An electrohydrodynamic polarization micropump for electronic cooling[J]. Journal of microelectromechanical systems, 10(1)March 2001
    [18] R.Rapp,W.K.Schomburg,D.Maas,J.Schulz,and W.Stark. LIGA micropump for gases and liquids[J].Sensors and Actuators, A, 40 (1994): 57-61
    [19] F.C.M.VANDEPOL. A thermo-pneumatic actuation principle for a microminiature pump and other micromechanical devices[J]. Sensors and Actuators, 17 (1989): 139-143
    [20] F.C.M.VANDEPOL. A thermopneumatic micropump based on micro-engineering techniques [J]. Sensors and Actuators, A21-A23 (1990): 198-202
    [21] P. Krulevitch, A.P. Lee, P.B. Ramsey et al. Thin film shape memory alloy microactuators[J]. Journal of Microelectromechanical System, a5(4), 1996:270-281
    [22] Benard W L.Kabo H,Hemer A H.etal. Thin film shape memory actuated micropump[J].J.of Micro Electro Mechanical Systems, 1998,7(2):245-249
    [23] AnsonHatch. A ferrofluidic magneticmicropump[J]. Journal of MEMS 2001 IEEE, 10(2)
    [24] 白韶红.微型阀和微型泵的原理与应用[J].传感器世界,(4)2000:1-8
    [25] Eeik Stemme. A valveless diffuser/nozzle-based fluid pump[J]. Sensors and Actuators, A, (39)1993:159-167
    [26] A. Ullman. The piezoelectric valve-less pump-performance enhancement analysis[J]. Sensors and Actuators, vol. A69 (1998): 97-105.
    [27] Anders olsson, Goran Stemme and Erik Stemme. The first valve-less diffuser gas pump[J]. 1997 IEEE International Workshop on MEMS,1997
    [28] Torsen Geriach, Helmut Wurmus. Dynamic micropump[J].1995 IEEE International Workshop on MEMS, 1995
    [29] M.stehr,S.Messner, H.Sandmaler, R.Zengerle. A new micropump with bidirectional fluid transport and selfblocking effect[J]. 1996 IEEE International Workshop on MEMS,1996
    
    
    [30]J. Ulrich, M. Stehr, and R. Zengerle. Simulation of a bidirectional pumping microvalve using FEM[J]. Eurosensor X, Leuven, Belgium, Sept. 8-11, 1996: 1241-1244.
    [31]Anders olsson. Valve-less diffuser micropumps fabricated using thermoplastic replication[J]. 1997 IEEE International Workshop on MEMS, 1997
    [32]Anders olsson. A valveless plar fluid with two pump chambers[J]. Sensors and Actuators, 1995,A47:549-556
    [33]Anders olsson, Goran Stemme and Erik Stemme. Micromachined diffuser/nozzle elements for valve-less pumps[J]. 1996 IEEE International Workshop on MEMS ,1996
    [34]SHUICHI SHOJI. Micropump and sample-injector for integrated chemical analyzing systems[J]. Sensors and Actuators, A21-A23 (1990): 189-192
    [35]JAN G.SMITS. Piezoelectric micropump with three valves working peristaltically[J]. Sensors and Actuators, A21-A23 (1990): 203-206
    [36]Charles Grosjean and Yu-Chong Tai. A thermopneumatic peristaltic micropump[J]. Technical Digest of Transducers'99, Sendi, Japan
    [37]刘晓为,王蔚,王喜莲等.微传感器和执行器的计算机模拟技术[J].传感器技术,3(19) 2000:18-20
    [38]Senturia Stephen D. Simulation and design of microsystems: a 10-year perspective[J]. Sensors and Actuators A, 1998,67:1~7
    [39]Osterberg P M, Senturia S D. M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures[J]. J Microelectromeching System, 1997, 6:107~118
    [40]陈愚,钟先信,黎凯等.微系统CAD的研究现状及展望[J].光学精密工程,7(6)1999.
    [41]Fariborz Maseeh. A CAD architecture for Micro-Electro-Mechanical-System[J]. Proceedings of the 9th Annual International Workshop on MEMS, 1996, 11-15:44-48
    [42]郝一龙,张立宪,李婷等.硅基MEMS技术[J].机械强度,23(4)2001:523-526
    [43]刘晓为,车伟,王蔚等.微泵膜片在静电驱动下的计算机模拟[J].哈尔滨工业大学学报,6(30)1998:16-18
    
    
    [44]Mark J.Noworolski. Fabrication of SOI wafers with buried cavities using SI fusion bonding and electrochemical etchback[J]. Digest of Technical Papers from Transducers'95, 1995,1:71-74
    [45]Stark K C. Mechanical coupling and direct torque measurement of outer-rotor polisilicon micromotors[J]. The Proceedings of the 10th annual Workshop on MEMS, 1997, Nagoya,Japan: 143-147
    [46]徐庆仁,刘淑敏.微机械技术及其应用前景[J].国际航空,1995,11:51-54
    [47]张扬军,唐学林,吴玉林.微型泵研究进展[J].水泵技术,1999.6:26-29
    [48]李勇,周兆英,叶雄英.微型泵和微型阀的进展[J].仪器仪表学报.17(1)1996.
    [49]丁辛芳,何云爽,刘海岩.微型泵的物理模型与动态模拟[J].固体电子学研究与进展,20(1)2000,4:22-33
    [50]叶敬棠.流体力学[M].1.上海:复旦大学出版社.1989
    [51]徐芝纶.弹性力学[M].2.北京:高等教育出版社.1982
    [52]曲庆璋,章权,季求知等.弹性板理论[M].1.北京:人民交通出版社.1999
    [53]S.Timoshenko, S.Woinowsky-Kfieger. Theory of Plates and Shells[M].Second Edition, Mc Graw Hill,1959
    [54]温诗铸,丁建宁.微型机械设计基础研究[J].机械工程学报,36(7)2000.7:39-42
    [55]Garvesen P, Branebjerg J, Jensen O S. Microfluidics--a review[J]. J Micromech Microeng,1993,3:169--182
    [56]Shojis S, Esashi M. Microflow devices and systems [J]. J Micromech Microeng, 1994,4:157-171
    [57]庞江涛,刘理天,李志坚.硅集成微泵系统的优化设计和兼容工艺研究[J].清华大学学报(自然科学版),39(S1)1999:62-65
    [58]林祖森.有限元基本理论方法及程序[M].太原机械学院讲义.1988
    [59]郭海鹰.大型通用有限元软件ANSYS简介及应用体会[J].无线电通信技术,22(5)1996:51-55
    [60]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].1.西北工业大学出版社.1999
    
    
    [61]谭建国.使用ANSYS6.O进行有限元分析[M].1.北京大学出版社.2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700