水电站水力学问题仿真计算及其工程应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水电站建设中涉及到的水力学问题众多。本文着重研究了水电站长引水渠道水力瞬变过程中的波涌情况、水电站尾水河道疏挖以及水电站长引(尾)水压力隧洞(管道)的水力过渡过程的基本理论和计算方法,并在实际工程中推广应用。
     利用建立在经物理模型验证后的数值仿真计算技术,以白龙江横丹水电站和西藏雪卡水电站为实例,进行了水电站规划设计阶段遇到的明渠非恒定流运动的仿真计算研究。在水电站尾水河道疏挖研究中,给出了复杂地形条件下天然河道水面线的计算方法;对拟建中的黄河羊曲水电站尾水疏挖进行了优化研究,在考虑龙羊峡水库不同回水高程条件下,量化计算了黄河羊曲水电站尾水疏挖最优方案的运行效果。最后将水电站水力过渡过程仿真计算应用于大、中型水电站的水力过渡过程计算,并与模型试验结果对比分析。主要结论如下:
     (1)在长引水渠道水力瞬变过程计算研究中,通过对白龙江横丹水电站长引水渠道波涌计算表明:白龙江横丹水电站引水发电系统总体设计是合理的,建议将渠底高程降低0.5 m,既能满足正常运行时Q=161.8 m~3/s的设计流量,又可取消侧堰工程。在雪卡水电站水力瞬变过程计算研究中,对四台机工作状况下,进行了水力瞬变计算与部分规范公式的比对。按规范计算了四台机运行时前池正常蓄水位时的水面线和前池最高水位时的水面线,而水力瞬变计算给出非恒定流出现的最高水面线及最低水面线的上下包络线,更符合水流运动的特点。水力瞬变仿真计算同时可以提供渠道进口流量、侧堰溢流过程线;渠道瞬态水面线;波涌上下游传播与反射过程等,与设计规范相比可以提供更多的信息,且更合理地描述非恒定流运动。
     (2)完整的一维恒定非均匀流仿真计算模型,能较好地符合天然不规则地形条件下水流的运动规律,既考虑了上下游断面间的宽度、高程变化,又反映了沿程和局部的水头损失,其结果应更贴近于实际工程。采用预测—校正求解法,应用一维恒定非均匀流仿真计算模型,增加急流的均匀流水深与临界水深判断公式,可以较好地解决天然河道复式断面正坡、倒坡交替出现,突扩、突缩频繁发生的复杂地形条件下水面线计算的连续性问题。
     对于复杂地形糙率系数,先预设糙率系数,经采用预测—校正求解法多次反复试算,确定羊曲峡、野狐峡峡谷段的糙率系数n=0.04,中间吾托盆地段糙率系数n=0.03,此时水面线计算结果与实测水面线资料吻合良好,所确定的糙率系数也符合工程规范和技术人员的经验。由水面线计算结果看出,虽然个别断面计算与实测的最大误差达到0.54 m,但大多数断面两者的水位误差在0.4 m以内,可满足工程设计精度要求。
     应用一维恒定非均匀流计算模型,拟定2种不同疏挖长度的方案,重点研究河道疏挖3 472 m,疏挖比降为0.05%、0.1%、0.15%,疏挖宽度为50 m、80 m、140 m的疏挖效果。共组合了8套疏挖地形,在每套疏挖地形上,分别预报了各级流量下的水面线、特征断面的水位~流量关系。
     综合分析后,推荐开挖方案Ⅱ-0.05%-50,即开挖末端到达野狐峡进口,开挖比降为0.05%,开挖宽度为50 m,开挖工程量为123.19万m~3。此时推荐方案平均流量625.0 m~3/s下,厂房尾水位由开挖前的2 595.49 m降低到2 590.34 m,降低了5.15 m;随着流量的增大,电站尾水位降低的幅度越来越小,当流量超过2 500 m~3/s以后,开挖河道电站尾水位几乎不再降低。
     对于给定的龙羊峡坝前水位,野狐峡断面都有相应的水位~流量关系曲线。数学模型在推荐的开挖宽度为50 m、开挖比降为0.05%的河道地形上,针对每一级龙羊峡水位,以野狐峡水位~流量关系为下边界条件,计算开挖河段不同流量下的若干条水面线成果。结果表明,龙羊峡水位很低时,羊曲河道水面线较陡,几乎不受回水顶托;当龙羊峡水位较高时,河道水面线变缓,接近水平,说明此时已完全被淹没在龙羊峡库区。
     在龙羊峡水库不同坝前水位时,平均流量625 m~3/s羊曲水电站尾水水位降幅为0.48 m~4.47 m。河道流量愈大,水位降幅愈小,反之亦然。
     (3)水电站水力过渡过程用管道一维非恒定流方程及其初边条件控制,内加调压室、串联管、分岔管、机组特性等,采用特征线法求解,其计算结果与试验资料吻合良好。该模型也用于几个电站水力过渡过程仿真计算,解决了工程设计问题。水力学仿真计算的工程应用,进一步提高了数值仿真的可信度及对物理现象的认识。
There are numerous problems involved the hydraulics in the construction of a hydropower station, this paper focuses research on the basic theory and calculation method which involve the wave surge in hydraulic transient process of the long diversion channel, tail water dredging of the riverbed, hydraulic transition process of the long tail water or diversion pressure tunnel (pipe) in the hydropower station, meanwhile having been applied in practical engineerings.
     Based on the physical model test which is verified by the numerical simulation technology, the simulation researches on the unsteady flow in an open channel are carried out by using the examples of Hengdan Hydropower Station which is located in Bailong River and Xueka Hydropower Station in Tibet when they are in the planning design stage.
     The calculation method is focused on the natural river’s water surface under the condition of complex terrain. The studies on the tail water dredging in Yangqu Hydropower Station are optimized under considering the mainly optimum results in different influence of dredging under different backwater elevation of Longyangxia Reservoir which located in the Yellow River.
     Finally the simulation for transient flow of the long diversion channel in the hydropower station is made and the result is applied in the analysis and study for Hengdan Hydropower Station and Xueka Hydropower Station. At the same time, through the comparative analysis with the results of model experiments, the simulation calculation for hydraulic transition process is used in the large and middle hydropower stations. The main conclusions are as follows:
     (1) The simulation study on the wave surge of the long diversion channel in Hengdan Hydropower Station shows that the overall design is reasonable. The suggestion is proposed that the channel bottom elevation should be declined 0.5 m for meeting the design flow of 161.8m~3/s during normal operation and canceling the side weir project. The comparison between the hydraulic transient calculations and ministerial specification formulas under four machines working conditions are made in the simulation calculations for Xueka Hydropower Station.
     The water surface profiles under the normal condition and the highest level in impoundment pool are calculated under four machines working conditions by using the ministerial specification formulas, and the fluctuation envelopes including the highest water level and lowest water level from hydraulic transient calculation are more suitable to describe the movement of water flow, that is to say, they are more accordant with the characteristics of water flow movement. Many parameters such as the flow of channel inlet, overflow flow line of siedweir, channels’transient surface lines, and the spread and reflection processes of the upstream and downstream wave surge could be provided by hydraulic transient simulation, at the same time, compared with design code, more information could be provided, and more reasonable description could be made for unsteady flow movement.
     (2) The simulation calculation model for complete one-dimensional steady non-uniform flow could better accord with the flow movement rules under natural irregular topography, not only taking into account the width and elevation changes in both upstream and downstream section, but also reflecting the alongshore and local head loss, so the result should be more close to the actual project.
     Based on the prediction - correction solving method, the simulation calculation model for complete one-dimensional steady non-uniform flow, and the criterion formula for uniform flow depth and critical water depth, the continuity for water surface profile calculating could be resolved better under the complex terrain conditions with plus slope and adverse slope alternating and with sudden expansion and sudden contraction occurring frequently in compound section rivers. The results of the computation should be closer to reality.
     For the roughness coefficient of complicated terrain , the roughness coefficient should be preset firstly, Here, by using the prediction - correction method to calculate many times repeatedly, the roughness coefficient of Yangqu Gorge to Yehu Gorge is determined as 0.04 and that of Wutuo Basin is determined as 0.03. Now the water surface lines from calculation and observation are identical well, the roughness coefficients determined here are also accordant with engineering specifications and technical personnel’s experience. The water surface lines from calculation results show that although the maximum error between the calculation and observation individual sections would be 0.54 m, but in most sections, the error of the water level should be less than 0.4 m, the error could meet the accuracy for engineering design.
     Through the application of one-dimensional steady non-uniform flow calculation model, the plan of two different dredging lengths are proposed, and the research is focused on the dredging effects for dredging being 3472 m, slopes of river for 0.05%, 0.1%, 0.15%, dredging widths being 50 m, 80 m, 140 m. Eight sets of dredging plans are combined, and the water surface lines under various flows and the water level ~ flow relations in characteristic sections are forecasted respectively.
     The recommended excavation programⅡ( -0.05% -50 m) is got by comprehensive analyses, the width is 50 m and slope is 0.05%, and the amount of excavation works is 1,231,900 m~3 from the end of the excavation to the import of Yehu Gorge. Now under the average flow of 625.0 m~3/s in the recommended program, the tail-water level of the workshop is declined from 2 595.49 m to 2 590.34 m before and after the excavation, reducing 5.15 m. Along with the increase of the flow, the tail-water level of the workshop is reduced smaller and smaller, and when the flow is more than 2 500 m~3 / s, the tail-water level of the workshop is hardly decreased after the excavation.
     For the given water level before Longyangxia dam, there are the corresponding water level ~flow relation curves in Yehu Gorge. Aiming at each water level before the dam and with the water level ~flow relation of Yehu Gorge for the next boundary condition, the mathematical model is used to calculate the several water surface lines under different flows in the excavated river reach under the recommended excavation width of 50 m and the excavation gradient for 0.05%.
     The results show that when the water level of Longyangxia dam is lower, the water level of Yangqu reach is similar with the natural curved line, and is hardly affected by the backwater of Longyangxia Reservoir; when the water level of Longyangxia dam is higher, the water level of Yangqu reach is similar with the horizontal line, Yangqu reach is completely submerged in Longyangxia Reservoir.
     The tailrace water level is dropped for 0.48 m ~ 4.47 m with the average flow of 625 m~3/s when the water level in Longyangxia Reservoir is different. The water level is dropped smaller when the river flow is becoming greater, and vice versa.
     (3) The one-dimensional unsteady flow equation is used to control the transient process of water pipeline and the initial boundary conditions in a hydropower station; the characteristics of the add surge chamber in tandem tube, bifurcation pipe and the units are solved by using the feature line method, the calculation results are in good agreement with the physical model test results. This model is also used in the simulation calculations for the transition process in several hydropower stations to solve problems of hydraulic engineering design. The application of the hydraulic simulation could further improve the credibility of the numerical simulation and the understanding for the physical phenomena.
引文
毕小剑,水电站有压引水系统水力过渡过程计算研究[D].西安:西安理工大学,2007.
    蔡甫款,胡云进,毛根海.梯形断面明渠三维湍流数值模拟[J].中国农村水利水电,2006,10:92- 94.
    曹长冲,刘韩生,彭超平.一种计算缓流到急流控制水深的新方法[J].灌溉排水学报,2008,27(4):113-115.
    曹继文,陈惠泉,贺益英.明渠岸边横向取水口的三维数值计算[J] .水利学报,2004,2:119–124.
    曹小红.泵站引水系统非恒定流计算研究[D].扬州:扬州大学硕士学位论文,2006.
    陈壁宏,周发毅.水电站和泵站水力过渡流[M].大连:大连理工大学出版社,2001.
    陈璧宏,郭勇,周发毅.水电站下游河道变形的模型试验方法探讨[J].水力发电学报,1995(2):37-44.
    陈斌,郭烈锦,杨晓刚.圆柱绕流的离散涡数值模拟[J].自然科学进展,2002,12(9):964–969.
    陈大宏,陈娓.溢流堰水流的三维模拟[J].武汉大学学报(工学版),2005,38(5):54–56.
    陈飞,李瓒.黄河龙羊峡水电站的初期运行[J].水力发电学报,1998(1):33-46.
    陈飞,李瓒.再谈龙羊峡水电站初期运行[J].西北水电,1997(4):1-7.
    陈乃祥.水利水电工程的水力瞬变仿真与控制[M].北京:中国水利水电出版社,2004.
    戴春胜.河道三维流场数值模拟计算[J].黑龙江水利科技, 2003,4:1–3.
    戴会超,槐文信,吴玉林,等.水利水电工程水流精细模拟理论与应用[M].北京:科学出版社,2006 .
    戴会超,魏文礼.曲线坐标系二维带自由表面强紊动水流数值模拟[J].水科学进展,2004,15 (6):728~734
    邓辉.水电站尾水明满流过渡过程数值模拟研究[D].天津:天津大学,2007.
    邓家泉.二维明渠非恒定水流BGK数值模型[J].水利学报,2002(4) : 1 - 7.
    刁明军,杨永全,王玉蓉等.挑流消能水气二相流数值模拟[J].水利学报,2003, (9):77–82.
    冯亚辉,郭维东.Y型明渠交汇水流数值计算[J].水利水运工程学报,2006,4:34–40.
    高学平,叶飞,宋慧芳.侧式进/出水口水流运动的三维数值模拟[J].天津大学学报,2006,39(5):518–522.
    耿艳芬,王志力,金生.一维浅水方程的高精度Godunov格式[J].水动力学研究与进展A辑,2005,20 (4) : 507 - 512.
    郭维东,梁岳,冯亚辉,等.Y形明渠交汇水流分离区的数值分析[J].水利水电科技进展,2007,27(6):49–52.
    韩国其,汪德爟,许协庆.三维明渠流动数值模型[J].水动力学研究与进展(A辑),1990,5 (3):41 - 48.
    韩国其,汪德爟,许协庆.天然水流三维数值模拟的进展[J].河海大学科技情报,1989,9 (1):13 - 22.
    韩国其,汪德爟.宽浅型明渠非定常流的数值模拟[J].河海大学学报,1990,18 (3):40– 46.
    韩龙喜,WAI Wing-hong.加长型环形水槽水流特性的数值模拟[J].河海大学学报(自然科学版),2003,31(6):639–643.
    华祖林.拟合曲线坐标下弯曲河段水流三维数学模型[J].水利学报,2000(1):1-8 .
    槐文信,陈文学,董汉毅,等.漫滩恒定明渠水流的三维数值模拟[J].水科学进展,2003,14(1):15 -19.
    黄强,张建生,曹辉,等.梯级水库调节库容合理规模研究[J] .水力发电学报2010,29(1):44-49.
    黄树友,电站尾水河道模型试验及数值模拟[D].大连:大连理工大学, 2005.
    黄树友,藤显华,王显彦.新安江水电站尾水河道清淤试验与研究[J].长春工程学院学报(自然科学版),2004,5(4):16-18.
    黄炜斌,马光文,王和康,等.混沌粒子群算法在水库中长期优化调度中的应用[J] .水力发电学报2010, 29(1):102-105.
    黄贤荣.水电站过渡过程计算中若干问题的研究[D].南京:河海大学,2006.
    黄佑生,顾令宇,一种新的水面线计算方法[J].水利水电科技进展,2003,23(3):31-33.
    贾东旭.水电站水库提高水能利用率的方法研究[D].大连:大连理工大学,2001
    蒋莉,王少平,沈孟育,等.应用RNG k-ε湍流模式数值模拟90弯曲槽道内的湍流流动[J].水动力学研究与进展,A辑,1998,13(1):8–13.
    金菊良,杨晓华,金保明,丁晶.计算天然河道水面曲线的新方法[J].水利学报, 2000, (9): 25-28.
    巨江.工程水力学数值仿真与可视化[M].北京:中国水利水电出版社,2010
    巨江,刘菁,诸亮.水电站压力引水系统瞬变流数学模型,西北水力发电[J]. 2002,(2):13~16.
    巨江,刘菁,诸亮,刘少斌.水电站引水-尾水管道系统水力过渡过程模型试验与计算[J].水利学报,2005,(10). 1165-1170.
    巨江,林劲松.非恒定悬移质不平衡输沙的研究[J].水利学报,1995,(3):77-83.
    巨江,刘菁,诸亮,徐春燕.水电站水力过渡过程的理论与实践[J] .西北水力发电, 2009,(2):1~5.
    雷恒.水电站水力过渡过程数字仿真及分析[D].成都:西华大学,2006
    李国栋,陈刚,李建中.明流泄洪洞流场数值模拟[J].水动力学研究与进展, 1996, (12): 633-639
    李继功,吴凤吉.红石水电站发电尾水河床清挖工程效益分析[J].大坝与安全2009(4):26-30.
    李玲,陈永灿,李永红.三维VOF模型及其在溢洪道水流计算中的应用[J].水力发电学报(工学版),2007,26(2):83–87.
    李然,李洪,李嘉,等.气液两相流理论在明渠水气界面计算中的应用[J].水动力学研究进展:A辑,2002,17 (1):77 - 83.
    李志勤,李红,李嘉,等.溢流丁坝附近自由水面的实验研究与数值模拟[J].水利学报,2003,8:53–58.
    梁福林,袁兵.水布垭水电站尾水清渣效益分析[J].湖北水力发电,2009(6):82-83
    林斌良,KShiono.复式断面明渠三维湍流的数值模拟[J].水利学报,1995,(3):52 -41.
    林斌良,Shiono K.矩形明渠三维湍流的数值模拟[J].水利学报, 1994,3:47 - 56.
    林劲松.冯家山水库调水调沙研究[D].杨凌:西北农林科技大学,2004.
    林劲松,巨江,马耀光,刘俊民.千河冯家山水库淤积数学模型的研究[J].西北农林科技大学学报(自然科学版),2002,30(6):202-206.
    林劲松,巨江,马耀光,张耀哲.冯家山水库供水调度及调洪计算分析[J].西北农林科技大学学报(自然科学版),2002,(5):96-99.
    林劲松,巨江,张根广,吕宏兴.水电站长引水渠道水力瞬变过程计算研究[J].长江科学院院报,2009 26(12):36-40.
    林劲松,巨江,张根广.U型渡槽粉煤灰浆输送能力的研究[J].泥沙研究,2003(3):66-72。
    林劲松,巨江,诸亮,吕宏兴.水电站水力过渡过程仿真计算的工程应用[J].水力发电学报,2010a,29(1):31-37
    林劲松,巨江,张宽地,吕宏兴.雪卡水电站长引水渠道的水力瞬变计算[J].武汉大学学报(工学版),2010b,43(3):340-343;
    林劲松,巨江,张宽地,吕宏兴.复杂地形条件下天然河道水面线计算研究[J].西北农林科技大学学报(自然科学版),2010c,38(9):187-191.
    林劲松,巨江,张宽地,吕宏兴.考虑下游水库回水影响的羊曲水电站尾水疏挖研究[J].西北农林科技大学学报(自然科学版),2010d,38(10):221-228;
    刘涵.水库优化调度新方法研究[D].西安:西安理工大学,2006.
    刘沛清.计算水力学基础[M].河南:黄河水利出版社,2001.
    刘士和,黄伟,罗秋实.复式明渠水流运动的数值模拟[J].武汉大学学报(工学版),2006,39(6):1 -5.
    吕宏兴,裴国霞,杨玲霞.水力学[M].北京:中国农业出版社,2002.
    马超.梯级水利枢纽多尺度多目标联合优化调度研究[D].天津:天津大学2008.
    茅泽青,赵雪峰,许昕,等.交汇水流三维数值模型[J].科学技术与工程,2007,38(5):800 - 805.
    潘存鸿,林炳尧,毛献忠.求解二维浅水方程的Godunov格式[J].水动力学研究与进展A辑,2003,18(1) :16 - 23.
    潘志宝.机翼形量水槽水力特性试验与数值模拟研究[D].杨凌:西北农林科技大学,2009.
    清华大学流体传动与控制教研组译.瞬变流[M].北京:水利电力出版社,1983.
    清华大学主编.水力学(修订本)上册[M].北京:高等教育出版社,1980.
    盛代林,孙月峰,安娟,等.复杂无压隧洞输水过程三维数值模拟与方案优选[J].天津大学学报,2009, 42(12):1048-1054 .
    苏铭德,康钦军.亚临界雷诺数下圆柱绕流的大涡模拟[J].力学学报,1999,31(1):100–105.
    谭立新,许唯临,杨永全.明渠水气两相流数值模拟[J].四川联合大学学报(工程科学版),1999,3(1):93 -97.
    谭维炎.计算浅水动力学[M].北京:清华大学出版社,1998:5-15.
    唐寅.水锤的研究与保护[D].武汉:武汉科技大学,2008.
    万德成.用水深平均雷诺方程模拟有限长直立圆柱绕流[J].上海大学学报,1995,1(3):259–268.
    万芳,原文林,黄强,等.基于免疫进化算法的粒子群算法在梯级水库优化调度中的应用[J] .水力发电学报,2010,29(1):202-206.
    万五一,江春波,李玉柱.变步长法在天然河道水面线计算中的应用[J].哈尔滨工业大学学报,2007(4)32-35.
    万五一,练继建,王俊.明渠一结合池一暗管输水系统水力瞬变过程计算[J].水利学报,2003 (8): 16一21.
    万玉倩.三峡地下电站变顶高尾水洞水力过渡过程数值模拟[D].武汉:武汉大学,2004.
    王翰,田发美,吕宏兴.山区渐扩性河流水面线计算改进[J] .人民黄河,2007,29(5):66-67.
    王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004
    王静,李娜,程晓陶.城市洪涝仿真模型的改进与应用[J].水利学报,2010 41(12): 1393~1400
    王俊.长距离输水工程水力过渡过程的研究[D].天津:天津大学,2003.
    王晓玲,曹月波,张明星,等.辐流式沉淀池固液两相流三维数值模拟[J].工程力学,2009,26(6)243-249
    王晓玲,段琦琦,佟大威,等.长距离无压引水隧洞水气两相流数值模拟[J].水利学报,2009,40(5):596-602 .
    王亚玲,刘应中,缪国平.圆柱绕流的三维数值模拟[J].上海交通大学学报,2001,35 (10):1464–1469.
    王志力,耿艳芬,金生.山区性河流水面线计算改进[J].大连理工大学学报,2005,43(5):433-437.
    魏文礼,沈永明,孙广才,等.二维溃坝洪水波演进的数值模拟[J].水利学报,2003,(9):43-47.
    吴爱华,周建中,陶东兵,等.水库优化调度中随机动态规划方法的研究与应用[J].计算机仿真.2003, 20 (10):39~42.
    吴修广,沈永明,潘存鸿.天然蜿蜒河流的三维数值模拟[J].力学学报,2005,37(6):689-696 .
    谢小平.水库防洪关键问题的理论与方法研究[D].西安:西安理工大学,2007.
    徐军,梯级电站引水系统水力过渡过程研究[D].成都:四川大学,2000.
    许栋,刘召平,乾爱国,白玉川.弯曲河道中水流运动的三维数值模拟[J] .水利学报,2010 41(12): 1423~1431
    许唯临,廖华胜,杨永全等.水垫塘三维紊流数值模拟及消能分析[J].水动力学研究与进展,1996 11(5) 561-569.
    许唯临.紊流代数应力模型在水力学中的应用研究[D].成都:成都科技大学,1991
    闫明,大流量较平坦长距离有压输水管路水锤防护研究[D].西安:长安大学,2007.
    杨道辉,马光文,杨梅.育种粒子群算法在梯级水电站优化调度中的应用[J] .水力发电学报,2010 ,29(1):207-212.
    杨建明,吴建华.动网格技术数值模拟挑流冲刷过程[J].水动力学研究与进A辑,2001, l6(2): 156-161.
    杨开林,时启燧,董兴林.引黄入晋输水工程充水过程的数值模拟及泵站充水泵的选择[J].水利学报, 2000(5):76-80 .
    杨永全,许唯临.水垫塘淹没射流的数值模拟[J].水动力学研究与进展.1991,(6):36-54.
    杨忠超,邓军,杨永全等.多股多层水平淹没射流数值模拟研究[J].水利学报,2004,(5): 31–38.
    叶春明,吴文权.数值模拟圆柱绕流旋涡生成、分离及演化[J].华东工业大学学报,1995,17(4):25–30.
    叶春明,吴文权.数值模拟圆柱绕流旋涡运动及尾流不稳定性分析[J].工程热物理学报,1997,18 (2):169–72.
    尹则高,孙东坡,张土乔,李国庆.复杂流场的二维数值模拟方法[J].浙江大学学报(工学版), 2004, 38(2): 180-184.
    余国安.闸门调控下的灌溉渠道非恒定流数值模拟研究[D]杨凌:西北农林科技大学, 2004.
    原文林,黄强,王义民,等.最小弃水模型在梯级水库优化调度中的应用[J].水力发电学报, 2008 ,27(3):16-21.
    袁恩熙.工程流体力学[M].北京:石油工业出版社,2001.
    张光碧,邓军,刘超,等.河道水流三维流速场的数值模拟研究[J].四川大学学报(工程科学版),2007,39(1): 58–62.
    张光碧,邓军,张法星,等.VOF模型在有支流汇入的河道复杂流场中的应用[J].河海大学学报(自然科学版),2007,35(5):592–595.
    张建民,王玉蓉,许唯临,等.恒定渐变流水面线计算的一种迭代方法[J].水利学报,2005,36(4):501-504.
    张明亮,沈永明,吴修广,等.复式断面三维漫滩水流的数值模拟[J].水力发电学报,2006,25(5):31 -36.
    张挺,伍超,卢红等.X型宽尾墩+阶梯溢流坝流场三维数值模拟[J].水利学报,2004,(8):15–20.
    张挺,许唯临,伍平,等.90明渠交汇口三维水力特性数值模拟[J].水利学报,2009,40(1): 52–59.
    赵桂连.水电站水机电联合过渡过程研究[D].武汉:武汉大学,2004 .
    赵升伟,茅泽育,罗昇,等.等宽明渠交汇水流数值计算[J].河海大学学报(自然科学版),2005,33(5):494–499.
    郑双凌.水电站尾水系统数值模拟及试验研究[D].北京:清华大学,2004.
    郑源,张健.水力机组过渡过程[M].北京:北京大学出版社,2008.
    郑源,刘德有,索丽生.水电站引水系统取消尾水调压室过渡过程计算研究[J].河海大学学报(自然科学版),2000 (2) 96一100.
    中华人民共和国电力行业标准.水电站调压室设计规范DL/5058一1996[M].北京:中国电力出版社,1997.
    中华人民共和国水利部.SL.278-2002《水利水电工程水文计算规范》.北京:中国水利水电出版社2002.
    中华人民共和国水利部.《水电站引水渠道及前池设计规范》(DL/T 5079—1997).北京:中国水利水电出版社1997.
    钟炜,韩松,冯平,等.龙羊峡水电站运行调度问题的分析研究[J].水电能源科学,2 0 0 4(6),22(2):36-39..
    周光炯.流体力学[M].北京:高等教育出版社,2002..
    周勤,伍超,赵元弘等.“S”型溢洪道水流特性试验与数值模拟研究[J].水利发电学报,2005, 24(3):88–92.
    周宜林.淹没丁坝附近三维水流运动大涡数值模拟[J].长江科学院院报,2001,18(5):28–36.
    Abbot, M. B.An Introduction to the Method of Characteristics[M].American Elsevier, New York.1966.
    Akihiro Tominaga, Iehisa Nezu.Turbulent structure in compound open-channle flows [J]. Journal of Hydraulic Engineering, ASCE, 1991, 117(1):21-41.
    Bermudez A,Vazquez M E.Upwind methods for hyperbolic conservation laws with source terms[J]. Computer Fluid,1994,23(8) : 1049-107.
    Betts P.L. A variation principle in terms of stream function for free-surface flow and its application to the finite element method [J]. Computers&Fluid, 1979, (7): 145-153.
    Bhajantri M R,Eldho T I,Deolalikar P B . Modeling hydrodynamic flow over spillway using weakly compressible flow equations [J]. Journal of Hydraulic Research,2007,45(6):844-852 .
    Blanckaert K,de Vriend H J.Secondary flow in sharp open-channel bends [J]. Journal of Fluid Mechanics,2004,498(1):353-380 .
    Brereton G J, Mankbadi R R.Revies of recent advances in study of unsteady turbulent internal flows [J]. Applied Mechanics Review-ASME, 1995, 48 (4) :189-212.
    Brun G,Herard J M,Jeandel D,Uhlmann M.An approximate riemann solver for second moment closures[J].Journal of Computational Physics,1999,151(2) : 990 - 996.
    Capart H, Eldho T I,Huang S Y,et al.Treatment of natural geometry in finite volumeriver flow computations[J].J.of Hydr.Engin.-ASCE,2003,129(6):385-393.
    Chen Q, Dai G Q, Liu H W.Volume of fluid model for turbulence numerical simulation of stepped spillway overflow [J]. Journal of Hydraulic Engineering, 2002, 128(7):683–688.
    Cheng A.H.D, Liggett A. Liu P.L.F.Boundary Calculation of sluice and spillway flows [J]. ASCE, 1981, (107).
    Cooley,R. L, Moin,S.A.Finite Element Solution of Saint-Venant Equations [J]. Hyd.Div. ASCE. vol.102, HY6: 759~775.
    Corria C, Sanna S, Usai C. 1983. Sub-optimal constant-volume control of open channel. Appl Math Modeling, 7(6): 651~657
    Cunge J.A., Holly F.M., Verwey A., 1980. Practical aspects of computational river hydraulics. Pitman Advanced Publishing Program.
    Doerfler P K , Brenner E.Computing hydraulic transients in the Lounger Lake Plant , International Water Power and Dam Construction,1993,45 (11): 32~36.
    Fischer Antze T, Stoesser T, Bates P, et al. 3D numerical modelling of open-channel flow with submerged vegetation[J ]. Journal of Hydraulic Reserach, 2001, 39 (3):303 - 310.
    Gary P. Merkley, W. R. Walker and F. U.Giehuki. 1990. Transient hydraulic modeling for improved canal system operation. Agricultural Water Management, Vo1.18: 181~194.
    Giuseppe Pezzinga.Velocity distribution in compound channel flows by numerical modeling [J]. Journal of Hydraulic Engineering, ASCE, 1994, 120(10):1176-1198.
    H.K.Versteeg,W.Malalasekera.An Introduction to Computational Fluid Dynamics: The Finite Volume Method.Wiley,New York,1995.
    Hager W H.B-jumps at abrupt channel drops[J].J. Hydr. Engrg., ASCE,1985,111(5):861-866.
    Hirsch C . Numerical computation of internal and external flows[M]. New York:Wiley,1988 .
    Hirt C W and Nichols B D,Volume of fluid (VOF) for the Dynamics of Free Boundaries,Journal of Computational Physics,1981,39:201-225.
    Huang J, Weber L J, Lai Y G..Three-dimentional numerical study of flow in open-channel junction[J]. Journal of Hydraulic Engineering, ASCE, 2002, 128(3):268-280.
    Hubbard M,Garcia-Navarro P.Flux difference splitting and the balancing of source terms and flux gradients[J]. Journal of Computational Physics,2000,165: 89-125.
    Ikegawa M, Washizu K.Finite element method applied to analysis off flow over a spillway crest[J]. Inter J Num Meth in Engng, 1973,(6):179-189.
    Katakam V. Seetha Ram, Rama Prasad.Spatial B-Jump at channel enlargements with abrupt drop[J]. J. Hydr.Engrg., ASCE,1998,124(6):646-646.
    Kesserwani G, Ghosetine R., Vazquez J, et al.Simulation of subcritical flow at open-channel junction[J]. Advances in Water Resources, 2008, 31:287-297.
    Khosronejad A,Rennie C D,Neyshabouri S A A S,et al . 3D numerical Modeling of flow and sediment transport in laboratory channel bends[J]. Journal of Hydraulic Engineering,2007,133(10):1123-1134 .
    Lance M,Bateille J.Turbulence in liquid and phase of a uniform bubbly air-water flow[J]. Journal ofFluidMechanics,1991,222(1):95-118 .
    Lannder B E,Spalding D B.Mathematical Models of Turbulence[M].Academic Press,London and New Tork,1972:90-110.
    Larock B.E, Taylor C.Computing three-dimensional free surfer flow[J]. Inter J Num Meth in Engng, 1976, 10(5):1143-1152.
    Launder B E,Spalding D B.The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering,1974,3(2):269-289 .
    Mazen Tabbara, Jean Chatila, Rita Awwad.Computational simulation of flow over stepped spillways[J]. Computer and Structure, 2005, 83:2215-2214.
    Michael A Leschziner,Wolfgang Rodi.Calculation of Strongly Curved Open Channel Flow[J]. Journal of the Hydraulics Division,1979,105(10):1297-1314 .
    Morvan H,Pender G,Wright N G,et al.Three-dimensional hydrodynamics of meandering compound channels[J]. Journal of Hydraulic Engineering,2002,128(7):674-682 .
    Ni Fusheng,Hu Peicheng and Wang Qiaohong.Numerical simulation of hydraulic transients in hydropower plant using safety membranes.Journal of Hydrau1ic Engineering,Vol.122 ,6 Jun 1996 ,ASCE ,298~300.
    Nicholas A P, Smith G A S.Numerical simulation of three-dimensional flow hydraulics in a braided channle[J]. Hydrological Processes, 1999, 13:913 - 929.
    Nils Reidar B Olsen.Three-Dimensional CFD Modeling of Self-Forming Meandering Channe[lJ]. Journal of Hydraulic Engineering,2003,129(5):366-372 .
    Nujic M.Efficient implementation of non - oscillatory schemes for the computation of free - surface flows[J]. J.Hydraul. Res,1995,33(1) : 100-111.
    O' Neil ,Podber.D.R. Sediment transport dynamies in a dredged channel [A] .In: Proeeedings of the 1997sth International Conferenceon Estuarine and CoastalModeling[C].Reston:ASCE,1999:781一791.
    Patel T,Gill L.Volume of fluid model applied to curved open channel flow[sC]//Proceedings of Advances in Fluid Mechanics VI,Southampton,UK,2006,5 .
    Ramamurthy A S,Qu Junying, Zhai Chao.3D simulation of combining flows in 90。Rectangular closed conduits [J]. Journal of Hydraulic Engineering, ASCE, 2006, 132(2):214 -218.
    Robert H. J.Sellin and Thomas B.Bryant.An Improved Method for Roughening Floodplains on Physical River Models .Journal of Hydraulic Research,Vol.41, No.1, 2003, pp3-14
    Robin W, Mohd S.Evaluation of Genetic Algo-rithms for Optimal Reservoir System Operation [J]. Journal of Water Resources Planning and Management, 1999 (1-2): 25-33.
    Rodi W.Influence of buoyancy and rotation on equations for the turbulent length scale[C]//Proceedings of the 2nd Symposium on Turbulent Shear Flows,Imperial College of London,1979 .
    Rodi W.Turbulance models and their applications in hudraulics-A State of Art View. University of Karlsruhe, Germany, 1984.
    Rodriguez J F,Bombardelli F A,et al.High-resolution numerical simulations of flow through a highly sinuousriver reach[J]. Water Resources Management,2004,18(4):177-199 .
    Rouse H and Ince S.1980.History of Hydraulics.Iowa: Iowa Institute of Hydraulic Research.
    Saeedpanah I,Shayanfar M,Jabbari E,et al . Numerical modeling of flow over a dam spillway European Fluids Engineering Summer Meeeting,FEDSM 2006,Miami,FL,United States,2006 .
    Salaheldin T M, Imran Jasim, Chaudhry M H.Numerical modeling of three–dimensional flow field around circular peiers[J]. Journal of Hydraulic Engineering , 2004, 130 (2):91 - 99.
    Shao X J,Wang H,Chen Z.Numerical simulation of turbulent flow in helically coiled open-channels with compound cross-sections [J].. Science in China,Series E,2004,47(1):97-111 .
    Shen Y M,Guo Y K,Zheng Y H.Three-dimensional numerical simulation of nonisotropic thermal density flow ina strongly curved open channel [J]. Applied Mathematical Modelling,2008,32(10):1956-1964 .
    Strelkoff,t.. Numerical Solution of Saint-Venant Equations[J].Hyd .Div.,ASCE.,vol. 96, Jan.1970:223-252.
    Tseng MingHseng, Yen Chinlien, Song C C S.Compution of three–dimensional flow around square and circular peiers[J ]. International Journal for Numerical Methods in Fluids , 2000, 34:207- 227.
    Varoglu E, Fiun W.L.Variable domain finite element analysis of free surface gravity flow[J]. Computer&Fluid, 1978, 6(2): 103-114.
    Wang Xiaogang, Yan Zhongmin.Three-dimensional simulation for effects of bed discordance on flow dynamics at Y-shaped open channel confluences[J]. Journal of Hydrodynamics, 2007, 19(5): 587 -593.
    Wilson C A M E,Boxall J B,Guymer I,Olsen N R B.Validation of a Three-Dimensional Numerical Code in the Simulation of Pseudo-Natural Meandering Flows[J] . Journal of Hydraulic Engineering,2003,129(10):758-768 .
    WU R, MAO Z.Numerical simulation of open channel flow in 90-degree combining junction[J]. Tsinghua Science and Technology, 2003, 8(6):713-718.
    Wu W M,Rodi W,Wenka T.3D numerical modeling of flow and sediment transport in open channels[J]. Journal of Hydraulic Engineering,2000,126(1):4-15 .
    Xu K.A well-balanced gas-kinetic scheme for the shallow water equations with source terms[J]. Journal of Computational Physics,2002,178: 533-562.
    Yang,X.,A. A.Khan,S.S..Y Wang.Upwind conservative scheme for the Saint Venant equations[J].,Journal of Hydraulic Engineering,ASCE,2004,130 (10): 977-987.
    Yasuyuki Shimizu, Hajime Yamaguchi, Tadaoki Itakura..Three-dimensional computation of flow and bed deformation [J].. Journal of Hydraulic Engineering, 1990, 116 (9):1090 - 1108.
    Ye J,McCorquodale J A.Simulation of curved open channel flows by 3D hydrodynamic model[J]. Journal of Hydraulic Engineering,1998,124(7):687-698 .
    Ying X Y,Wang S S Y.Improved implementation of the HLL approximate Riemann solver for one - dimensionalopen channel flows[J]. Journal of Hydraulic Research,2008,46(1) : 21-34.
    Zeng J,Constantinescu G,Blanckaert K,et al.Flow and bathymetry in sharp open-channel bends:Experiments and predictions[J].. Water Resources Research,2008,44(9):W09401 .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700