极端洪水遭遇下鄱阳湖调蓄能力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鄱阳湖是我国长江流域重要的通江湖泊,研究鄱阳湖的调蓄规律对认识长江与鄱阳湖的互动过程、认识江湖关系有重要意义。近年来鄱阳湖地区极端干旱、极端洪涝等灾害频繁出现,制约了社会、经济发展和生态环境保护。本文基于洪水频率分析、产汇流机制、水量平衡和洪水演进等理论,分析了鄱阳湖流域、汉口站为代表的长江洪水频率,构建了鄱阳湖湖区半分布式水文模型模拟了湖区降雨径流过程,分别计算了鄱阳湖对鄱阳湖流域洪水、对长江洪水的调蓄作用,分析了鄱阳湖的调蓄特征,最后模拟了极端洪水遭遇下鄱阳湖调蓄的能力。通过以上研究本文得到以下结论:
     (1)鄱阳湖洪水的形成和水位涨落都受到鄱阳湖流域和长江来水双重影响,鄱阳湖流域洪水引起鄱阳湖水位的上涨,而鄱阳湖洪峰水位的高低则决定于长江洪水,鄱阳湖洪水消退快慢主要由长江洪水维持时间长短控制。
     (2)在分析鄱阳湖对鄱阳湖流域洪水调蓄过程的基础上,根据水量平衡原理建立了鄱阳湖对鄱阳湖流域洪水调蓄量和调蓄率的计算模型。构建半分布式水文模型对湖区产汇流过程进行模拟,模型效率系数R2在0.58-0.94之间,水量平衡系数RE在0.61-0.79之间,结果都达到使用要求。区间水文模型能较好的模拟降雨径流过程,为基于水量平衡原理的洪水调蓄模型提供了有力的技术支持。按鄱阳湖流域降水经验频率确定五个丰枯代表年份,计算鄱阳湖对鄱阳湖流域洪水调蓄,结果表明:在鄱阳湖流域来水很大而长江水位不高时,鄱阳湖的调蓄作用很大,但是当长江洪水达到高水位时,鄱阳湖已达到最大蓄水量而可能启动负调蓄功能;鄱阳湖调蓄作用规律与流域降水年内分布有密切关系,鄱阳湖流域汛期鄱阳湖表现出强调蓄作用,当鄱阳湖流域来水减少时,鄱阳湖对长江洪水的调蓄作用增强。
     (3)基于长江汉口-湖口洪水演进的鄱阳湖对长江洪水调蓄作用分析。洪水演进计算得到湖口站曰平均水位,模拟水位能较好拟合实测水位,但是在实测水位峰值处与突变处拟合不是很好,且日平均洪峰水位模拟值均小于实测值。分析鄱阳湖调蓄长江洪水作用时,采用变化鄱阳湖湖盆调蓄容积的方法分析鄱阳湖对长江洪水调蓄的贡献量。结果表明:鄱阳湖对日平均洪峰水位的降低作用在0.37m-0.39m之间(1998年降低了0.37m),减轻了长江下游的部分防洪压力。鄱阳湖调蓄具有“汛前讯后大调,汛中微调”和“大洪水小调,小洪水大调”的特点。从最高洪水位来看1998年>1995年>1996年,但是由鄱阳湖调蓄而降低的水位1996年>1995年>1998年,可以推断在较高水位时鄱阳湖调蓄发挥的作用小于在较低洪水位时的调蓄作用。
     (4)基于气候是影响鄱阳湖洪水的关键因子,在不考虑短期人类活动对鄱阳湖影响的前提下,假设了四种极端洪水遭遇情景,采用鄱阳湖对长江洪水的调蓄作用的研究方法,研究四种情景下鄱阳湖调蓄能力。输入模型的水文数据通过洪水频率曲线计算得到,湖口站初始水位采用1998年5月1日水位12.64m,模拟时间5月1日~9月30日。模拟结果表明:湖口站日平均洪峰水位均超过1998年洪峰水位;四种极端洪水遭遇情景下鄱阳湖对降低湖口站最高水位能力有限,对最高水位的降低在0.36m~0.37m之间,洪水越大,水位降低能力越小;长江湖口处高水位的形成受长江洪水影响较大。尤其是当鄱阳湖流域已发生较大洪水时,应密切注意长江洪水变化,及时做好防汛工作。
Poyang Lake is the largest freshwater lake in China. Located in south-central China, the lake is a tributary of the Yangtze River and directly exchanges and interacts with it. Study on the lake regulation law is crucial to recognize interactions of the Yangtze River flow and hydrologic processes of the Poyang Lake and the relationship of Yangtze River and Poyang Lake. In recent years extreme drought and extreme floods occurred frequently, which restrict the development of the regional society, ecology and environment. This paper used the theoretical foundation:Flood Frequency Analysis, Runoff Generation and Routing Theory, Water Balance Principle and Flood Routing Model. This paper calculated the frequency of flood season precipitation in Poyang Lake Bsain and frequency of maximum 30-day discharges in Hankou station. On the analysis of the Poyang Lake area, this paper built a semi-distributed hydrological model to simulate the runoff. After analysis on the characteristics of the pondage actions of the Poyang Lake to the flood of Poyang Lake Basin and Yangtze River, the pondages of Poyang Lake are calculated. At last this paper simulated the Poyang Lake's pondage action under extreme flood encountering. The main achievements are shown as follows:
     (1) The formation and water level of Poyang Lake basin's flood are controlled by both Poyang Lake and Yangtze River. The flood from Poyang Lake makes the water level rise, and the flood peak level is determined by the flood from Yangtze River. The velocity of Poyang Lake's flood subsidence is controlled by Yangtze River's flood.
     (2) On the basis of the characteristics of the pondage actions of the Poyang Lake to the flood of Poyang Lake Basin, the flood storage capacity and rate of storage capacity are calculated. The semi-distributed hydrological model calculated the runoff of the Poyang Lake area. The modelwas calibrated against daily observed runoff at Zifang station for the period 1982, and the data in 1985 and 1986 were used for model validation. The goodness of fit using the Nash-Sutcliffe(1970) efficiency factor(R2) was from 0.58 to 0.94, and the water balance coefficient(RE) was from 0.61 to 0.79, which illustrates the ablityof the model to simulate the hydrological behavior of the Poyang Lake area. Chosen five typical years by empirical frequency calculation, the pondage of Poyang Lake to the flood of Poyang Lake Basin is calculated:The pondage of Poyang Lake is large as the Yangtze River's flood is small, but it is limited as the Yangtze River reached peak level. The rule of Poyang Lake's pondage to Poyang Lake basin is closely related to the distribution of precipitation in the year. The strong pondage effect to Poyang Lake basin acts as Poyang Lake basin's flood season.
     (3) Hydrological flood rooting model for Yangtze River (Hankou station to Hukou station) was used to calculate the pondage actions of the Poyang Lake to the flood of Yangtze River. The daily water levels of Hukou station were simulated by flood rooting model. The model was calibrated against daily observed water level at Hukou station from May to September, which showed the overall simulation was attached to observed water levels, but the peak levels were less than observed peak levels. When analyzing the pondage action to the flood of Yangtze River, the lake basin of Poyang Lake was made a differential treatment. The results showed that Poyang Lake's pandage action subducted peak levels from 0.37m to 0.39m (0.37m for 1998), which relieved flood pressure for the middle and lower reach. The characteristics of pondage action are that pondage is smaller as the Yangtze River's flood is larger. The peak levels followed the order of 1998>1995>1996, and the Poyang Lake's pondage action followed the order of 1998<1995<1996.
     (4) Based on the hypothesis that the key factor effecting Poyang Lake's flood was the climate and human activity's effect was ignored, four extreme flood scenes were assumed. The pondage actions to Yangtze River were simulated in four scenes. The initial water level was 12.64m(1st, May,1998). Simulation time was from 1st May to 30th Sep.. The results showed that simulated peak levels in four scenes were higher than peak level in 1998. The pondage actions were less than that in 1998, which were from 0.36m to 0.37m. The Yangtze River's flood had a larger impact on the peak level in Hukou station. When large floods have occurred in Poyang Lake Basin, close attention should be payed to changes in the Yangtze River flood and flood control work should be ready in time.
引文
3江西省水文总站.江西省暴雨洪水查算手册[M].江西,1986:5-7.
    [1]Carmack E C, Gray C J, Pharo C H et al. Importance of lake-river interaction on seasonal patterns in the general circulation of Kamloops Lake, British Columbia[J]. Limnology and Oceanography,1979,24(4): 634-644.
    [2]Groisman P, Karl T, Easterungd et al. Changes in the probability of extreme precipitation:important indicators of Climate Change[J]. Climatic Change,1999,43:243-283.
    [3]Killworth P D, Carmack E C. A filling-box model of river-dominated lakes. Limnology and Oceanography, 1979,24(2):201-217.
    [4]Nash, J. E., Sutcliffe, J. V. River flow forecasting through conceptual models[J]. J. Hydrol,1970, (10):282-290.
    [5]蔡玉林.多远遥感数据应用于鄱阳湖水环境研究[D].北京:中科院遥感应用研究所,2006.
    [6]蔡玉林,孙国清,过志峰等.气候变化对鄱阳湖流域径流的影响模拟[J].资源科学,2009,31(5):743-749.
    [7]长江流域规划办公室.水文预报方法[M].北京:水利出版社,1982:95-103.
    [8]长江水利委员会水文局,长江水利委员会江务局.长江流域洪水预报方案汇编(第二版)[M].武汉:长江出版社,2005.
    [9]陈国金.长江中游洪灾形成与防治的环境地质研究[J].资源环境与工程,2009(4):401-405.
    [10]陈立,邓晓丽,张俊勇等。江湖洪水不同遭遇对城陵矶水位影响的实验研究[J].长江流域资源与环境,2005,14(4):496-500.
    [11]陈望春,赵立锋.权函数法在P-Ⅲ型分布中的应用[J].浙江水利科技,2002, (4):46-47.
    [12]陈宜瑜.全球变化与社会可持续发展[J].地球科学进展,2003,(1):1-3.
    [1 3]樊述全.鄱阳湖流域降雨时空分布规律及其水文响应[D].南京:河海大学,2007.
    [14]傅湘,王丽萍,纪昌明.洪灾风险评价通用模型系统的研究[J].长江流域资源与环境,2000,9(4):518-524.
    [15]付典龙,傅春.一维圣维南方程组的特征线法[J].南昌大学学报(工科版),2006,28(4):386-389.
    [16]顾中宇.鄱阳湖水文特征分析及水体形态特征的遥感提取fD].南昌:江西师范大学,2007.
    [17]郭华,HU Qi,张奇.近50年来长江与鄱阳湖水文相互作用的变化[J].地理学报,2011.66(5):609-618.
    [18]郭华,苏布达,王艳军等.鄱阳湖流域1955-2002年径流系数变化趋势及其气候因子的关系[J].湖泊科学,2007,19(2):163-169.
    [19]郭鹏,陈晓玲,刘影.鄱阳湖湖口、外洲、梅港三站水沙变化及趋势分析(1955-2001年)[J].湖泊科学,2006,18(5):458-463.
    [20]胡春宏,阮本清.鄱阳湖水利枢纽工程的作用及其影响研究[J].2011,42(1):1-6.
    [21]胡四一,王银堂,谭维炎等.长江中游洞庭湖防洪系统水流模拟——Ⅱ模型实现和率定检验[J].水科学进展,1996,7(4):346-353.
    [22]槐文信,赵明登,童汉毅.河道及近海水流的数值模拟[M].北京:科学出版社,2005.
    [23]黄燕,郭海晋,张明波.1998年长江洪水地区组成分析[J].人民长江,1999,30(2):11-13.
    [24]黄燕,徐高洪,沈燕舟等.平原水网区水资源量平衡分析方法研究[J].人民长江,2008,39(17):24-26.
    [25]侯芸芸.基于Copula函数的多变量洪水频率计算研究[J].西安:西北农林科技大学,2010.
    [26]姜家虎,黄群.三峡工程对鄱阳湖水位影响研究[J].自然资源学报,1997,12(3):219-224.
    [27]姜鲁光,封志明,于秀波.退田还湖后鄱阳湖区洪水调蓄功能的多情景模拟[J].资源科学,2010,32(5):817-823.
    [28]姜彤,施雅风.全球变暖、长江水灾与可能损失[J].地球科学进展,2003,(2):277-284.
    [29]江西省水文总站.鄱阳湖江河江湖水文关系水文分析[R].1986.
    [30]江西省水利规划设计院.鄱阳湖区综合利用规划江湖关系与河湖关系分析[R].1995.
    [31]江西省水利规划设计院.江(河)湖关系分析补充工作报告[R].]997.
    [32]江西省水利科学研究院.鄱阳湖江湖关系及退田还湖单退圩垸控制运行分析研究[R].2005.
    [33]金光炎.水文水资源分析研究[M].南京:东南大学出版社,2003.
    [34]金忠青.N-S方程的数值解与紊流模拟[M].南京:河海大学出版社,1989.
    [35]孔维南.圣维南原理研究工作综述[J].上海力学,1990.11(3):35-40.
    [36]李家星,赵振兴.水力学[M].南京:河海大学出版社,2001.
    [37]李荣昉,吴敦银,李明辉等.1954年型洪水长江湖口附近地区分洪量的探讨[J].江西师范大学学报(自然科学版),2002,26(2):178-182.
    [38]李荣昉,吴敦银,刘影等.鄱阳湖对长江洪水调蓄功能的分析[J].水文,2003,23(6):12-17.
    [39]梁忠民,钟平安,华家鹏.水文水利计算[M].北京:中国水利水电出版社,2006.
    [40]刘健,张奇,左海军等.鄱阳湖流域径流模型[J].湖泊科学,2009.21(4):570-578.
    [41]刘宁.对长江流域防洪规划的认识[J].人民长江,2006,37(9):1-5.
    [42]刘文标.三峡水库运行初期对鄱阳湖汛期高水位变化趋势的影响研究[D].南昌:南昌大学,2007.
    [43]刘晓东,吴银敦.三峡工程对鄱阳湖汛期水位影响的初步分析[J].江西水利科技,1999.25(2):71-74.
    [44]刘振京,吕堂生.频率分析参数确定方法的探讨[J].河北工程技术高等专科学校学报,2006,(1):11-13.
    [45]马秀峰,阮本清.对权函数法求概率分布参数的讨论[J].水利学报,2001,(11):34-40.
    [46]闵骞.20世纪90年代鄱阳湖洪水特征的分析[J].湖泊科学,2002,14(4):323-330.
    [47]闵骞.近50年来鄱阳湖形态和水情的变化及其与围垦的关系[J].水科学进展,2000,11(1):104-108.
    [48]闵骞,刘影,马定国.退田还湖对鄱阳湖洪水调控能力的影响[J].长江流域资源与环境,2006,15(5):574-578.
    [49]闵骞.鄱阳湖洪水位频率变化的计算与分析[J].水文,2004,24(4):17-20.
    [50]闵骞.鄱阳湖洪水演变趋势与防洪减灾对策[J].中国减灾,1997,7(2):33-37.
    [51]闵骞.鄱阳湖围垦对洪水影响的评价[J].人民长江,1999,30(7):30-32.
    [52]闵屾,钱永甫.中国极端降水事件的区域性和持续性研究[J].水科学进展,2008,19(6):763-771.
    [53]仇蕾,王慧敏,马建树.极端洪水灾害损失评估方法及应用[J].水科学进展,2009,20(6):869-875.
    [54]沈浒英,匡奕煜,訾丽.2010年长江暴雨洪水成因及与1998年洪水比较[J].人民长江,2011,42(6):11-14.
    [55]舒长根,刘影,吕建星.鄱阳湖高洪水位及其预报[J].广东气象,(3):50-53.
    [56]孙鹏,张强,陈晓宏.基于Copula函数的鄱阳湖流域极值流量遭遇频率及灾害风险[J].湖泊科学,2011,23(2):183-190.
    [57]水利部长江水利委员会水文局.1998年长江洪水及水文监测预报[J].北京:中国水利水电出版社,2000.
    [58]水利部长江水利委员会.水利水电工程设计洪水计算规范[M].北京:水利电力出版社,2006.
    [59]谭维炎,胡四一,王银堂等.长江中游洞庭湖防洪系统水流模拟——Ⅰ建模思路和基本算法[J].水科学进展,1996,7(4):336-345.
    [60]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.
    [61]王毛兰.鄱阳湖流域氮磷时空分布及其地球化学模拟[D].南昌:南昌大学,2007.
    [62]王俊德.水文统计[M].北京:水利电力出版社,1993.
    [63]魏廷琤.关于长江中下游防洪问题[J].人民长江,1998,29(11):1-3.
    [64]吴道喜,谭启富.洞庭、鄱阳两湖实时调蓄量计算的探讨[J].人民长江,1996,27(4):29-32.
    [65]吴龙华.长江三峡工程对鄱阳湖生态环境的影响研究[J].水利学报,2007,(10):586-591.
    [66]吴银敦,李荣昉,王文永.鄱阳湖区平垸行洪、退田还湖后的防洪减灾形势分析[J].水文,2004,24(6):26-31.
    [67]徐德龙,熊明,张晶.鄱阳湖水文特性分析[J].人民长江,2001(2):21-48.
    [68]闫宝伟,郭生练,陈璐.长江和清江洪水遭遇风险分析[J].水利学报,2010,41(5):553-559.
    [69]颜婷莉,钟平安,刘伟莉.水库调洪演算方法比较与改进[J].水力发电,2007,33(3):26-28.
    [70]严中伟,杨赤.近几十年我国极端气候变化格局[J].气候与环境研究,2000,5(3):267-272.
    [71]叶守泽.气象与洪水[M].武汉:武汉水利水电大学出版社,1999.
    [72]叶许春,张奇,刘健等.气候变化和人类活动对鄱阳湖流域径流变化的影响研究[J].冰川冻土,2009,31(5):835-842.
    [73]张本.鄱阳湖研究[M].上海:上海科学技术出版社,1988.
    [74]张艳霞,张小峰,杨芳丽.长江与汉江两江洪水演进数学模型研究[J].中国农村水利水电,2008,(06):32-34.
    [75]仲志余,徐承隆,胡维忠.长江中下游水文学洪水演进模型研究[J].水科学进展,1996,7(4):354-360.
    [76]周新春,杨文发.2010年长江流域暴雨洪水初步分析[J].人民长江,2011,42(6):6-10.
    [77]周雪漪.计算水力学[M].北京:清华大学出版社,1995.
    [78]朱宏富,金锋,李荣昉.鄱阳湖调蓄功能与防灾综合治理研究[M].北京:气象出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700