喷射泵性能计算及防汽蚀装置性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喷射泵是一种用来传递能量、质量的流体机械设备。在喷射泵中两股不同压力的流体相互混合,发生能量交换后形成一种居中压力的混合流体。喷射泵提高引射流体的压力而不直接消耗机械能,并且由于它自身具有的独特优点如工作可靠、没有转动部件、安装维护方便等受到人们的青睐而被广泛的应用到了工程实际的各个领域中。
     本文通过商用软件FLUENT对喷射泵的内部流场进行分析,并在此基础上分析了喷射泵结构参数和工作参数及其变化对喷射泵性能的影响。应用喷射泵的引射增压功能,设计了输送高温饱和水的离心式水泵的防汽蚀装置,同时对防汽蚀装置的工作性能进行了深入的研究。本文的主要工作如下:
     1.根据能量守恒原理和动量守恒原理推导出喷射泵的性能曲线及最佳截面比的公式,为防汽蚀装置中喷射泵的设计计算和性能分析奠定基础。
     2.针对喷射泵进行物理和几何建模,应用商用软件FLUENT分析喷射泵内部流动压力和速度的变化。并且分析了喉管入口收缩角对喷射泵性能的影响,经过计算本文发现喉部入口收缩角在20°至45°之间白选取对喷射泵的效率影响不大,并且发现喉部入口收缩角较小时喷射泵更容易发生汽蚀。
     3.在喷射泵数值计算的基础上分析截面比为6-11的喷射泵的工作压力、引射压力、出口混合压力对其性能的影响以及当喷射泵总扬程不变时吸上高度和排出压力与流量比之间的关系。
     4.在喷射泵内部流场、性能分析的基础上,建立基于喷射泵的防汽蚀装置性能计算模型。并对防汽蚀装置的变工况运行规律进行研究。
Jet pump is a sort of fluid machinery using for mass and energy transfer, which has been widely used in many industrial fields due to its unique advantage, e.g. high reliability, no rotatable parts involved, easy installation and maintenance.
     In this study, the commercial available CFD software FLUENT is employed to analyze the flow field inside the jet pump and then clarify the pump structure and working parameters on the working performance. Moreover, the performance of the cavitation-prevent device is also investigated based on the obtained results. The detailed contents of this study are listed as following:
     1. The jet pump performance curve and optimum area ratio equation derived from the momentum and energy equation provide reference to the design and performance analysis of the jet pump of a cavitation-prevent device.
     2. The flow field inside the jet pump is modeled by the aid of FLUENT to study the pressure and velocity variation of the flow inside the jet pump. The effect of choke inlet falloff angle on the pump performance is also examined and it is found that the falloff angle ranging between 20°and 45°has no significant on the jet pump efficiency and small falloff angle contributes to the occurrence of cavitation.
     3. Based on the simulation results, the investigation on the effect of working pressure, ejector pressure and outlet pressure on the performance of an injector pump with the cross-section ratio of 6/11 is conducted. Moreover, the relationship between the outlet pressure, suction height and the flow rate is also studied at the condition of unchanged pump lift.
     4. A model for predicting the performance of the cavitation-prevent device is developed based on the internal flow field and performance analysis of the jet pump. Additionally, the working law of the cavitation-prevent device under variable working condition is also studied.
引文
[I]Rankine. J. M. On the mathematical theory of combined streams [M]. London:Tuwert, 1870:24-26.
    [2]Bonnington. S. T. Water driven air ejectors [M]. Munich:Uezreos,1960:43-44.
    [3]Maconaghy J. W. Centrifugal jet pump combinations[M].Berlin:Oncral,1952:12-14.
    [4]Hansen A. G, R. Kinnavy The design of water jet pumps [M]. London:Freehous,1965:21-23.
    [5]陆宏圻,尚红旗.射流泵汽蚀机理及计算理论[J].中国科学(A辑),1987,(11):1174-1187.
    [6]Keenan J. H, Neumann E. P. A simple air ejector [J]. ASME Trans. Journal of Applied Mechanics,1942,64:75-81.
    [7]Keenan J. H, Neumann E. P, Lustwerk F. An investigation of ejector design by analysis and experiment [J]. ASME Trans. Journal of Applied Mechanics,1950,72:299-309.
    [8]Huang B. J, Chang J. M, Wang C. Petal. A 1-D analysis of ejector performance
    [J]. International Journal Refrigeration,1999,22:354-356.
    [9]Huang B. J, Chang J. M. Empirical correlation for ejector design [J]. International Journal Refrigeration,1999,22:379-388.
    [10]Zhu Y. H, Cai W. J, Wen C. Y, Li Y. Z. Shock circle model for ejector performance evaluation [J]. Energy Conversion and Management,2007,48:2533-2541.
    [11]Addy A. L. The analysis of supersonic ejector system(one-dimensional) [D]. Paris:Von Karmen Institute for Fluid Dynamics,1975.
    [12]王玲花,高传昌.脉冲射流泵研究进展[J].水利电力机械,2004,32(9):21-25.
    [13]Ning T, Satofuka N. Nippon kikai gakkai ronbunshu. [J] B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B,1997,63(608):1243-1250.
    [14]Winoto S. H, Li H, Shah D. A. Efficiency of jet pumps. [J]. Journal of Hydraulic Engineering,2000,126(2):150-156.
    [15]李兆敏,王汝元.提高喷射泵引射率的实验研究[J].石油大学学报:自然版,1993,17(6):41-44.
    [16]李才,苏仲勋.喷射泵液气增压实验研究[J].石油规划设计,1996,7(2):20-22.
    [17]王常斌.射流泵最佳参数的确定方法[J].流体机械,2004,32(9):21-25.
    [18]王常斌,林建忠,石兴.射流泵湍流场的数值模拟与实验研究[J].高校化学工程学报,2006,20(4):175-179.
    [19]Kudirka AA, Decoster M A. Jet pump cavitation with ambient and high temperature water [J]. Fluids Engineering,1979,101:93-99.
    [20]MariniM, M assardoA. Satta Aetal. Low area ratio aircraft fuel jet pump performance with and without cavitation [J]. Fluids Engineering,1992,114:626-631.
    [21]Meyer R, Zajackowski F J, StrakaW Aetal. Experinental andcomputational study of cavitation inception on Co-Flow nozzles [C]. In St John's 25"'Symposium on Naval Hydrodynamics New foundland and Labrador, Canda2004.
    [22]Stefan ausder, Wiesche. Numerical simulation of cavitation effects behind obstacles and in an automotive fuel jetpump[J]. Heat Mass Transfer,2005,41:615-624.
    [23]李福天.喷射泵汽蚀流量比的质疑与验证[J].舰船科学技术,1992, (5):53-59.
    [24]王会波,时彦林等.喷射泵压力及喉嘴距对气蚀性能影响试验[J].机床与液压,2002,114(5):119-120.
    [25]龙新平,何培杰.射流泵汽蚀问题综述[J].水泵技术,2003, (3):33-38.
    [26]蔡标华.射流泵初生空化及其试验研究[D].武汉:武汉大学硕士学位论文,2005.
    [27]顾磊,张景松,杨春敏.汽蚀工况液体射流泵的实验研究[J].流体机械,2006,34(2):7-9.
    [28]姚吴.液体射流泵极限工况的机理研究[D].武汉:武汉大学硕十学位论文,2006.
    [29]龙新平,程茜,韩宁.射流泵空化影响因素的数值分析[J].应用基础与工程科学学报,2009,17(3):461-469.
    [30]朱劲木.喷射泵流场的数值模拟及高压水磨料射流的实验研究[D].武汉:武汉大学硕士学位论文,2001.
    [31]梁爱国.喷射泵内部流动的数值模拟[D].武汉:武汉大学硕士学位论文,2003.
    [32]梁爱国,龙新平,何培杰.应用PIV技术测量射流泵内部流场[J].水泵技术,2004, (1):10-14.
    [33]常洪军,朱熠.液体射流泵内部三维流场的数值模拟[J].排灌机械,2005,23(6):13-15.
    [34]李同卓,郑邦民,陆宏圻.蒙特卡罗法对射流泵模型内部流场的数值模拟[J].华北水利水电学院学报,2005,26(3):42-44.
    [35]段新胜,孙孝庆.环形多喷嘴射流泵结构参数的实验研究[J].探矿工程,1999,21(6):17-19.
    [36]单惠江.环形喷嘴射流泵的理论设计研究[D].北京:中国地质大学硕士学位论文,2008.
    [37]程志毅.新型可调式射流泵装置及智能控制的研究[D].武汉:武汉大学硕士学位论文,2001.
    [38]浦晖.可调式引射器的流动特性研究[D].福州:福州大学硕士学位论文,2005.
    [39]龙新平,关运生,韩宁,程志毅,吕俊贤.可调式射流泵的数值模拟[J].排灌机械,2008.
    [40]Yapici R, Yetisen C. C. Experimental study on ejector refrigeration system powered by low grade heat [J]. Energy Conversion and Management,2007,48:1560-1568.
    [41]Yapici R. Experimental investigation of performance of vapor ejector refrigeration system using refrigerant R123 [J]. Energy Conversion and Management, 2008,49:953-961.
    [42]Yapici R, Ersoy H. K, Aktoprakoglu A, Halkaci H. S, Yigit 0. Experimental determination of the optimum performance of ejector refrigeration system depending on ejector area ratio [J]. International Journal of Refrigeration,2008,31:1183-1189.
    [43]张博,沈胜强.太阳能喷射式制冷系统性能分析[J].太阳能学报,2001,22(4):451-455.
    [44]Zhang B, Shen S Q. A. Theoretical study on a navel bi-ejector refrigeration cycle [J]. Applied Thermal Engineering,2006,26:622-626.
    [45]卢刚等.喷射泵参数优化设计与实现[J].江汉石油学院学报,2001,23(3):52-53.
    [46]廖国进,董俊利.蒸汽喷射泵系统的优化设计软件开发[J].辽宁工学院学报,2003,23(3):10-12.
    [47]龙新平,姚吴.喷射泵装置辅助设计软件的开发[J].水泵技术,2003.
    [48]乌骏.射流泵内部流场数值模拟与优化设计[D].江苏:江苏大学硕士学位论文,2007.
    [49]索科洛夫,津格尔等.黄秋云等泽.喷射器[M].北京:科学出版社,1977.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700