气动发动机工作过程理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
日益严重的环境问题和紧张的石油资源使汽车工业的发展面临着严重的挑战。为此世界各国相继出台了有关政策法规,一方面用以严格限制发动机的有害排放,另一方面积极鼓励清洁汽车的研究开发。
     气动汽车是清洁汽车的一种,采用气动发动机作为动力装置。气动发动机是采用高压空气储存能量,通过高压气体在发动机气缸内膨胀实现机械能输出的动力装置。它不仅能使交通能源多元化,而且可以实现尾气污染零排放。
     本文以气动发动机为研究对象,主要完成以下工作:
     1.从理论上建立了气动发动机理想的工作过程,从可用能量分析的角度探讨合理的膨胀初始压力和膨胀方式。对于30MPa压缩气体,提出分级膨胀更有利于提高发动机的经济性能,并通过计算得到最优的膨胀级数。
     2.设计了新型的旋转阀配气机构,基于采用此配气机构的发动机,建立理论的缸内压力曲线数学模型,较好地预测了缸内的压力变化趋势,但与实验结果相比,在量值上存在较大的差异。
     3.选择RNGκ—ε湍流模型,基于CFD软件Fluent平台,对进气道流场进行数值模拟。
     4.模拟结果进行分析,得出气体在气缸内的能量以流动动能和静压力能的形式存在,由于流入气缸的气体动能不能完全转化为静压力,致使实验所得的压力曲线没有理论计算结果饱满。同时发现,旋转阀的流量系数主要随着其开度增加而增大,受进出口压力比的影响较小。
     5.搭建气动发动机的实验台架,分析缸内压力的变化规律,探讨进气时刻对发动机性能的影响,发现最佳的进气时刻为上止点。
     6.在上止点进气的情况下,对气动发动机进行动力性能和经济性能实验。研究发现,实验用发动机在转速为1000r/min时,输出功率最大,在低速(<1200r/min)的工况下运行具有较好的经济性能。当发动机工作在高负荷区时,发动机也具有较好的经济性能。
     7.根据理论和实验分析结果,提出一种有利于提高发动机经济性能的配气机构设计方案。
The development of auto is challenged by the more serious pollution and the shortage of petroleum. Many countries make many rules and policies for its further development, which are strict with the deleterious exhaust and encourage the research of clean auto.
    The air-powered car is one of the clean autos, which is driven by the air-powered engine, which is the power mechanism through changing the energy stored in compressed air into mechanical energy. It not only makes autos have more resources, but also makes autos no pollution.
    The air-powered engine was studied in this paper and all of the following were completed during this course.
    1. The ideal work process was established on theory. The reasonable initial pressure and the mode of expand were discussed by the analysis of available energy. Multi stages of expand was put forward for the compressed air with the pressure 30MPa and the optimal stages of expand was reached.
    2. The circumrotating valve was designed and the theoretical model was established for the pressure in the cylinder. The model can forecast the trend of the pressure, but there is some difference in the quantity.
    3. Based on the characters of intake flow, the flow field was simulated with the
    RNGk- turbulence model.
    4. As the results, the energy of the air in the cylinder includes the energy of flow and the static pressure energy. This is the one of the most important reason for the difference between the theoretical and experimental indicated diagram. The jaw opening influenced the coefficient of flow mostly.
    5. The experimental bench was established. The optimal time of inlet was obtained by analyzing the influence of inlet open time on the performance of engine.
    6. When the intake process begins at TDP, many experiments were done. As the results, the output power is most at the speed of 1 OOOr/min. When the speed is lower than 1200r/min, the engine has better economical performance. When the engine operates with high load, it also has better economical performance.
    7. Based on these results, a design scheme of valve with high efficiency was put forward.
引文
[1] 任红英,汽车能源分析,《湘潭师范学院学报》2002年2月。
    [2] 徐毓龙,空气污染、电动汽车和燃料电池,《电子世界》2002年3期
    [3] 程继夏,边耀璋,汽车发展对城市环境的影响及环境保护对策,《长安大学学报》。
    [4] 阿布里提·阿布都拉,清水健一,电动汽车的发展现状和开发动向,《电工电能新技术》2000年第1期
    [5] 赵清,徐衍亮,安忠良等,电动汽车的发展与环境保护,《沈阳工业大学学报》Vol.22 No.5
    [6] 黄旭,影响汽车技术发展的两大因素,《内燃机》2001年第2期
    [7] 李小颖,侯志祥·我国21世纪电动汽车发展的对策,《交通科学》2002年第1期
    [8] 李小颖,侯志祥,我过21世纪电动汽车发展的对策,《交通科技》2002年第1期
    [9] 陈妙农·国内外电动汽车的发展概况,《电器工业》2003年4月
    [10] 孙承顺,张建武,电动汽车的发展与展望,《上海汽车》2003年5月
    [11] 万钢,中国电动汽车的现状和发展,《中国环保产业》2003年2月
    [12] 白木,周洁,环保汽车技术创新的三条思路,《交通标准化》2003(2)
    [13] 许宏,压缩空气动力汽车,《汽车技术》2002年第7期
    [14] 许宏,压缩空气动力汽车的探索性研究,浙江大大学博士后出站报告,2003年4月
    [15] 陵贺飞,舒水明,液氮驱动系统的新循环及热力特性研究,《低温技术》2002年第2期
    [16] 任松茂,王新茹,现代汽车的环保技术,《汽车研究与开发》2003(2)
    [17] Plummer M. C., Koehler C. P., etc. Cryogenic Heat Engine Experiment.In: Kittel P. ed.Advances in Cryogenic Engineering Vol. 43, New York, Plenum Press, 1998: 1245~1252
    [18] 元广杰,蒋彦龙,苏石川等,液氮汽车的可行性分析,《低温工程》
    [19] http://www.aa.Washington.edu/AERP/CRYOCAR/TechnicalDescription/Index.htm
    [20] http://auto.howstuffworks.com/air-car.htm
    [21] 杨东华,(火用)分析和能级分析,科学出版社,1986:61-75页。
    [22] 岑丹苓等,工程热力学,第二版,北京:高等教育出版社,1987。
    [23] 俞小莉,元广杰,沈瑜铭等,气动汽车发动机工作循环的理论分析,《机械工程学报》2002年第9期。
    [24] Mitty C. Plummer, Carlos A. Ordonez and Richard F.Reidy, Liquid Nitrogen as a Non-Polluting Vehicle Fuel, SAE, 1999-01-2517.
    [25] Williams, J., Knowlen, C., Mattick, A.T., Hertzberg, A., Frost-Free Cryogenic Heat Exchangers for Automotive Propulsion, AIAA 97-3168.
    [26] Knowlen, C., Williams, J., Mattick, A.T., Deparis, H., Hertzberg, A.. Quasi-Isothermal Expansion Engines for Liquid Nitrogen Automotive Propulsion. SAE 972649.
    [27] Yu Xiaoli Yuan Guangjie Su Shichuan Jiang Yanlong Chen Ouobang "The Theoretical Study on Ideal Open Cycle of The Liquid Nitrogen Engine",《浙江大学学报英文版》,2002年第3期。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700