闸门调控下的灌溉渠道非恒定流数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国水资源供需矛盾日益尖锐,但农业用水浪费非常严重,一个不容忽视的原因是
    我国灌区水量与流量调控技术粗放落后。闸门在灌溉渠道中起着调节流量、控制水位的
    作用,其开度的变化直接影响到渠道中的水流状况,研究闸门开度变化所引起的渠道水
    流状况的过渡过程及其影响因素对优化闸门调节方式,从而改进灌区流量调控技术有重
    要意义。本文对闸门调控下灌溉渠道中的明渠非恒定流过渡过程进行了初步研究。研究
    内容主要包括两个方面:
    ⑴渠段运行及闸门的调控方式和闸下出流。对灌区常用的上游定水深、下游定水深
    和常蓄量三种渠段运行方式的优势和不足进行了比较。讨论了闸门的调控方式即顺序调
    控、同步调控和选择调控的使用情形。对闸孔自由出流和淹没出流时流量和流量系数
    式进行了分析和讨论,借鉴 Prabhata 拟合的闸孔出流流量系数函数式,并应用其于本
    文数值求解圣·维南方程的编程之中。
    ⑵灌溉渠道非恒定流的数值模拟及结果分析。数值模拟采用了矩形网格特征线法,
    研究对象为由节制闸控制的单个渠段,研究得出的主要结论有:
    ①上游定水深,下游变流量时渠段上游流量和下游水深(或下游定水深,上游变流
    量时下游流量和上游水深)经历一段时间后都趋于稳定,且流量趋近的稳定值为渠段另
    一端流量调节的目标值;初始流量和调节时间相同时,流量变幅越大引起的渠段水流波
    动越大,趋于稳定的时间越长。
    ②在其它条件均相同的情况下,渠段按下游定水深运行优于按上游定水深运行。
    ③在流量调节时段内,闸孔出流流量系数基本呈线性规律变化;在流量调节时段外,
    流量系数仍有变化,且流量变幅越大,流量系数的变化越强烈,随着闸门上游端水深趋
    于稳定,流量系数的变化逐渐减弱,最后该系数趋于一个稳定值。
    ④在流量调节时段内,闸孔出流不出现自由出流向淹没出流(或淹没出流向自由出
    流)过渡时,流量对时间的线性变化几乎对应于闸门开度对时间的直线变化;闸孔出流
    出现自由出流向淹没出流(或淹没出流向自由出流)过渡时,闸门开度成折线形式的变
    化,可以拟合成以时间为自变量的线性分段函数。在流量调节时段外,闸门开度呈波浪
    状,并趋于一个稳定的开度Go稳定,这个开度并不等于流量调节结束时的闸门开度Go调节,
    在流量变幅为正时,Go稳定较Go调节小;而在流量变幅为负时,Go稳定较Go调节大。
    ⑤本文依据下面三个条件确定了闸门开度的线性调节函数式:闸门调节前的开度
    值;流量按某一线性规律调节为某一流量时,闸门的稳定开度Go稳定;流量调节时段内
    闸门开度随时间变化的拟合曲线斜率k 和截距l 。闸门开度按给出的线性函数式调节时,
    闸孔出流流量随时间基本按线性规律变化;闸孔出流出现自由出流向淹没出流(或淹没
    出流向自由出流)转变时,流量过程线呈折线,而后流量基本维持稳定不变。
Contradiction between water resource's supply and demand in China is more and more
    severe, but the agricultural water waste is very serious, one of the reasons which can't be
    ignored is the flow regulation techniques in Chinese irrigation districts is backward. Sluice
    gate are widely used for flow control in irrigation canals, and its opening variation directly
    affects the flow state of the canal. Therefore, analyzing the transition of flow state and its
    influence factors due to the gate opening change is of great significance to optimize gate
    regulation mode, and improve flow regulation techniques of the irrigation districts.
     Unsteady flow transition process in irrigation canals due to sluice gate regulation was
    primarily analyzed in the thesis, which included the following contents:
     ⑴Canal operation, gate regulation mode and flow through the sluice gate. The
    advantages and disadvantages of three commonly used operation modes in irrigation canals,
    namely constant upstream water depth, constant downstream water depth and constant water
    volume were compared. The adoption condition of gate regulating modes, namely sequent
    regulation, simultaneous regulation and selection regulation was also discussed. The
    equations of discharge through the gate and discharge coefficient under free or submerged
    flow conditions were analyzed. The discharge coefficient function of the sluice gate, which
    was fitted by Prabhata, was adopted in the programming for the numerical solution of the
    Saint-Venant equations.
     ⑵Numerical simulation of unsteady flow in irrigation canals and its result analyses.
    Rectangular grid Characteristic method was used in the numerical simulation, and the
    research object is a single canal, the main results are:
     ①When upstream water depth keeps constant and downstream discharge changes,
    upstream discharge and downstream water depth reached to a stable state after a certain time,
    and vice versa. The stable discharge at one end of the canal is the regulation object at the
    other end of the canal. Under the condition of the same discharge and regulating time, the
    larger the discharge variation, the longer the time interval needed for the flow to reach stable
    state.
     ②Under the condition of all other state being the same, canals operating in constant
    downstream depth is better than in constant upstream depth.
     ③During the discharge regulating time interval, gate discharge coefficient basically
    varies in linear mode with time, after the regulating time interval, the coefficient still varies,
    and the larger the discharge variation, the more severe of the coefficient variation. With the
    water depth of the gate tends to stable state, the variation of the coefficient gradually become
    weak and finally it also tends to a stable state.
    
    
    ④Within the regulating time interval, and under the condition of discharge through gate
    having no transition from free flow to submerged flow(or submerged flow to free flow), the
    linear variation of discharge with time almost corresponds to variation of gate opening with
    time; and under the condition of free flow transiting to submerged flow(of submerged flow to
    free flow), gate opening variation with time appears in a zigzag line, which can be fitted as
    different linear functions in different time period. After the discharge regulation, gate opening
    appears in a waveform, finally it reaches to a stable opening Go稳定 , which is not same to the
    gate opening Go调节 when discharge regulating finished, Go稳定 is lower than Go调节 when
    discharge regulation is positive, while Go稳定 is larger than Go调节 when discharge
    regulation is negative.
     ⑤Linear regulating function for gate opening was derived from the following three
    conditions: The gate opening before regulating, stable gate opening after discharge through
    the gate regulated in a certain linear mode, and gradient k and intercept l of the fitted gate
    opening regulating curve, the discharge through gate varies basically in linear mode when
    gate regulated
引文
[1] . [J]. , 2000(12):43-47.
    [2] , . [J]. , Vol.18, 1998(4):467-471.
    [3] , , , . PID [J]. , 2003,
     Vol. 22( ), 2003(2):18-20.
    [4] . BGK [J]. , 2002(4):1-7.
    [5] . [J]. , 2000(6):4-9,30.
    [6] , . [M]. , 2001:17-46, 153-217, 256-289.
    [7] . [J]. , 1985(7):1-5.
    [8] , . [J] , 2001(10):13-14.
    [9] . [J]. , 1994(2):52-56.
    [10] , , . [J]. CAD ,
     1999(10):16-19.
    [11] , . [M]. , 1999:174-181.
    [12] , , . [J]. , Ser.
     A, Vol.13, 1998(3):280-285.
    [13] , . [J]. ,
     2001(10):25-29.
    [14] . [J]. , 2002(2):48-51.
    [15] . . 1992 .
    [16] . [J]. , 1997(3):49-57.
    [17] . [J]. ,
     1977(3):28-37.
    [18] . [J]. , 1998(8):14-18.
    [19] , , . [M]. , 1987:179-253.
    [20] , , . [J].
     , 1999(1):1-8.
    [21] , , . [M]. ,
     1999:18-24.
    [22] , , . [M]. , 2002:338-361.
    [23] , . [J]. ,
     2002(6):18-22.
    [24] . . 1999
     .
    [25] . . , ,
     1996:1-102.
    [26] , . (2)
     [J]. , Vol. 20, 1999(4):1-9.
    [27] . [M]. , 2000:379-386.
    [28] , . [J]. , 1996:44-46.
    [29] , . ? [M], ,
     1994:192-245.
    [30] , . [J]. , 1990(2):26-32.
    
    
    ?78?
     [31] . [J]. , 1982(1):1-11.
     [32] . [J]. , Vol.30,
     2002(5):103-106.
     [33] , . . , 1993 2 :64-69.
     [34] , , . P+PR [J]. (
     ), 2000, Vol.33(2):11-15.
     [35] . [J]. ,
     1982(4):25-347.
     [36] , , [J]. ,
     1995(2):46-51,57.
     [37] , . [J]. , 1996(3):44-50.
     [38] . [J]. , Vol.21, 1993(2):25-32.
     [39] , , . [J]. , 1989(12):12-20.
     [40] , . BP PID [J]. ,
     Vol. 22( ), 2003(2):8-10.
     [41] , , . [J]. , Vol.12,
     2001(4):491-498.
     [42] . [J]. , 1985(8):42-50.
     [43] . [J]. , 2001(1):50-54.
     [44] , . .
     ( ), 2001 11 16 20 .
     [45] . [J]. , Vol.27,
     1999(4):116-118.
     [46] . [J]. , Ser. A, Vol.16,
     2001(1):18-24.
     [47] . , [M]. 1984, P179-199, 255-341.
     [48] . , [M]. 1990 .
     [49] , , . . ,
     Vol.36, 2003(1):45-49.
     [50] , , . [J]. ( ),
     Vol.19, 1991(4):9-17.
     [51] / , , . [M]. , 1987:77-97.
     [52] , , . [J]. , 1986(4):41-47.
     [53] , [J]. , 1982(1):1-13.
     [54] , . MATLAB 6.X [M]. ,
     2001:40-68, 157-171, 197-207.
     [55] . MATLAB [M]. 2002:11-29, 33-47, 147-178,
     213-246.
     [56] , , . [J]. ,
     2001(2):9-12.
     [57] , , [J]. , 2001(10):21-24, 29.
     [58] . [J]. , 1997(2):29-35.
     [59] A. J. Clemmens, and B. T. Wahlin. Simple optimal downstream feedback canal controllers:
     ASCE test case results[J]. Journal of Irrigation and Drainage Engineering, ASCE, Vol.130,
    
    
    ?79?
     2004(1):35-46.
    [60] A. J. Clemmens, and J. Schuurmans. Simple optimal downstream feedback canal controllers:
     theory[J]. Journal of Irrigation and Drainage Engineering, ASCE, Vol.130, 2004(1):26-34.
    [61] A. J. Clemmens, F. M. Holly Jr. and W. Schuurmans. Description and evaluation of program
     Duflow[J]. Journal of Irrigation and Drainage Engineering, ASCE, Vol.119, 1993(4):724-734.
    [62] A. J. Clemmens, J. A. Replogle. Control of irrigation canal networks[J]. Journal of Irrigation and
     Drainage Engineering, ASCE, Vol.115, 1989(1):96-110.
    [63] A. J. Clemmens, T. F. Kacerek, B. Grawitz, and W. Schuurmans. Test cases for canal control
     algorithms[J]. Journal of Irrigation and Drainage Engineering, ASCE, Vol.124, 1998(1):23-30.
    [64] A. M. Wasantha Lal. Calibration of riverbed roughness[J]. Journal of Hydraulic Engineering,
     ASCE, Vol.121, 1995(9):664-671.
    [65] A. M. Wasantha Lal. Weighted implicit finite-volume model for overland flow[J]. Journal of
     Hydraulic Engineering, ASCE, Vol.124, 1998(9):941-950.
    [66] Albert J. Clemmens, Eduardo Bautista. Idealized automated control of sloping
     canals(Discussion)[J]. Journal of Irrigation and Drainage Engineering, ASCE, Vol.124,
     1998(5):280-281.
    [67] B. J. Naidu S. Murty Bhallamudi. GVF computation in tree-type channel networks[J]. Journal
     of Hydraulic Engineering, ASCE, Vol.123, 1997(8):700-708.
    [68] Brian J. Boman, Robert W. Hill. LP operation model for on-demand canal systems[J]. Journal of
     Irrigation and Drainage Engineering, ASCE, Vol.115, 1989(4):687-700.
    [69] C.H. Lin, et al. Influence of sluice gate contraction coefficient on distinguishing condition[J].
     Journal of Irrigation and Drainage Engineering, ASCE, Vol.128, 2002(4):249-252.
    [70] C.M. Burt, G. Gartrell. Irrigation-canal-simulation model usage[J]. Journal of Irrigation and
     Drainage Engineering, ASCE, Vol.119, 1993(4):631-655.
    [71] Chandra Shekhar P. Ojha and Damireddy Subbaiah. Analysis of flow through lateral slot[J].
     Journal of Irrigation and Drainage Engineering, ASCE, Vol.123, 1997(5):402-405.
    [72] Choi, G. W., and Molinas, A. Simultaneous solution algorithm for channel network modeling.
     Water Resour. Res., Vol.29, 1993(2):321-328.
    [73] Chuen-yen Chow , . [M]. ,
     1987:305-323.
    [74] D. J. Sen and N. K. Garg. Efficient algorithm for gradually varied flows in channel networks[J].
     Journal of Irrigation and Drainage Engineering, ASCE, Vol.128, 202(6):351-357.
    [75] Dammuller, D. C., Bhallamudi, S. Murty., and Chaudhry, M. Hanif. Modeling of unsteady flow
     in curved channel[J]. Journal of Hydraulic Engineering, ASCE, Vol.115, 1989(11):1479-1495.
    [76] Darell D. Zimbelman, David D. Bedworth. Computer control for irrigation-canal system[J].
     Journal of Irrigation and Drainage Engineering, ASCE, Vol.109, 1983(1):43-59.
    [77] David C. Rogers and Gary P. Merkley. Description and evaluation of program USM[J]. Journal
     of Irrigation and Drainage Engineering, ASCE, Vol.119, 1993(4):693-702.
    [78] David C. Rogers, Jean Goussard. Canal Control Algorithms Currently in Use[J]. Journal of
     Irrigation and Drainage Engineering, 1998(1):11-15.
    [79] Delbert D. Franz, Linsley, Kraeger Associates and Chariles S. Melching. Full Equations(FEQ)
     Model for the Solution of the Full, Dynamic Equation of Motion for One-Dimensional Unsteady
     Flow in Open Channels and Through Control Structures, U. S. Geological Survey, 1997:1-235.
    [80] Dennis A.Lyn, Peter Goodwin. Stability of a general preissmann scheme [J]. Journal of
    
    
    ?80?
     Hydraulic Engineering, ASCE, Vol.113, 1987(1):16-28.
     [81] Dinshaw N. Contractor and Wytze Schuurmans, Informed use and potential pitfalls of canal
     models[J]. Journal of Irrigation and Drainage Engineering, ASCE, Vol.119, 1993(4):663-672.
     [82] E. Bautista and A. J. Clemmens. Response of ASCE task committee test cases to open-loop
     control measures[J]. Journal of Irrigation and Drainage Engineering, ASCE, Vol.125,
     1999(4):179-188.
     [83] E. Bautista, A. J. Clemmens, T. Strelkoff. Comparison of numerical procedures for gate
     stroking[J]. Journal of Irrigation and Drainage Engineering, ASCE, Vol.123, 1997(2):129-136.
     [84] Ehab A. Meselhe, Forrest M. Holly Jr.. Simulation of unsteady flow in irrigation canals with dry
     bed[J]. Journal of Hydraulic Engineering, ASCE, Vol.119, 1993(9):1021-1039.
     [85] Eric D. Swain, David A. Chin. Model of flow in regulated open-channel networks[J]. Journal of
     Irrigation and Drainage Engineering, ASCE, Vol.116, 1990(4):537-556.
     [86] Forrest M. Holly Jr. and Garry P. Merkley. Unique problems in modeling irrigation canals[J].
     Journal of Irrigation and Drainage Engineering, ASCE, Vol.119, 1993(4):656-662.
     [87] Forrest M. Holly Jr. and John B. Parrish III. Description and evaluation of program CARIMA[J].
     Journal of Irrigation and Drainage Engineering, ASCE, Vol.119, 1993(4):703-713.
     [88] Fubo Liu, Jan Feyen. Computation method for regulating unsteady flow in open channels [J].
     Journal of Irrigation and Drainage Engineering, ASCE, Vol.118, 1992(10):674-689.
     [89] G. H. Schmitz, R. Liedl, and R. E. Volker. Analytical Solution to the Zero-inertia problem for
     surge flow phenomena in nonprismatic channels[J]. Journal of Hydraulic Engineering, ASCE,
     Vol.128,2002(6):604-615.
     [90] Gary P. Merkley and D. C. Rogers. Description and evaluation program Canal[J]. Journal of
     Irrigation and Drainage Engineering, ASCE, Vol.119, 1993(4):714-723.
     [91] Gary P. Merkley and W. R. Walker. Centralized scheduling logic for canal operation[J]. Journal
     of Irrigation and Drainage Engineering, ASCE, Vol.117, 1991(3):377-393.
     [92] Gary P. Merkley, W. R. Walker and F. U. Giehuki. Transient hydraulic modeling for improved
     canal system operation[J]. Agricultural Water Management, Vol.18, 1990:181-194.
     [93] Gary P. Merkley. Users’ Guide for CanalMan Hydraulic Model, 2000(download from
     www.engineering.usu.edu/bie/software.html).
     [94] Henry, H. R. "Discussion of 'Diffusion of submerged jets' by M. L. Albertson, Y. B. Dai, R. A.
     Jensen, and H. Rouse." Transaction of ASCE, Vol.115, 1950:687-694.
     [95] J. Mohan Reddy. Local optimal control of irrigation canals[J]. Journal of Irrigation and Drainage
     Engineering, ASCE, Vol.116, 1990(5):616-631.
     [96] J.Mohan Reddy, Amadou Dia, Ahmed Oussou. Design of control algorithm for operation of
     irrigation canals[J]. Journal of Irrigation and Drainage Engineering, ASCE, Vol.118,
     1992(6):852-867.
     [97] John H. Mathews, Kurtis D. Fink. Numerical methods using MATLAB[M]. ,
     2002:514-554.
     [98] Jos Rodellar, Luis Bonet. Manuel G mez, Luis Bonet. Control method for on-demand
     operation of open-channel flow[J]. Journal of Irrigation and Drainage Engineering, ASCE,
     Vol.119, 1993(2):225-241.
     [99] K. , V. , . ( I )[M]. ,
     1987:1-26, 67-195, 405-430.
     [100] Maurizio Venutelli, Stability and accuracy of weighted four-point implicit finite difference
    
    
    ?81?
     scheme for open channel flow[J]. Journal of Hydraulic Engineering, ASCE, Vol.128,
     2002(3):281-288.
    [101] Mustafa M. Aral, Application of relaxation scheme to wave-propagation simulation in
     open-channel networks[J]. Journal of Hydraulic Engineering, ASCE, Vol.124,
     1998(11):1125~1132.
    [102] P. Garcia-Navarro et al. 1-D open channel flow simulation using TVD-Mccormack scheme[J].
     Journal of Hydraulic Engineering, ASCE, Vol.118, 1991(10):1359-1372.
    [103] Paul. G. Samuels, Caroline P. Skeels. Stability limits for Preissmann's scheme[J]. Journal of
     Hydraulic Engineering, Vol.116, 1990(8):997-1012.
    [104] Pierre-Olivier Malaterre, David C. Rogers, and Jan Schuurmans. Classification of Canal
     Control Algorithms[J]. Journal of Irrigation and Drainage Engineering, ASCE, Vol.124, No.1,
     1998(1):3-10.
    [105] Prabhata K. Swamee. Sluice-gate discharge equations[J]. Journal of Irrigation and Drainage
     Engineering, ASCE, 1992, Vol.118(1):56-60.
    [106] Quang Kim Nguyen and Hiroshi Kawano. Simultaneous solution for flood routing in channel
     networks[J]. Journal of Hydraulic Engineering, ASCE, Vol.121, 1995(10):744-750.
    [107] Rahman H. Khatibi. Sample size determination in open-channel inverse problems[J]. Journal of
     Hydraulic Engineering, ASCE, Vol.127, 2001(8):678-688.
    [108] Shazy Shabayek, Peter Steffler, Faye Hicks. Dynamic model for subcritical combining flows in
     channel junctions[J]. Journal of Hydraulic Engineering, ASCE, Vol.128, 2002(9):821-828.
    [109] T.S. Strelkoff and H. T. Falvey. Numerical methods used to model unsteady canal flow[J].
     Journal of Irrigation and Drainage Engineering, ASCE, Vol.119, 1993(4):637-662.
    [110] T.S. Strelkoff, J. L. Deltour, C. M. Burt, A. J. Clemmens, and J. P. Baume. Influence of Canal
     Geometry and Dynamics of Controllability[J]. Journal of Irrigation and Drainage Engineering,
     ASCE, Vol. 124, 1998(1):15-22.
    [111] The ASCE task committee on Irrigation Canal System Hydraulic Modeling, Unsteady-flow
     modeling of irrigation canals[J]. Journal of Irrigation and Drainage Engineering, ASCE, Vol.119,
     1993(4):615-630.
    [112] Thomas Molls and Frank Molls. Space-time conservation method applied to Saint Venant
     Equations[J]. Journal of Hydraulic Engineering, ASCE, Vol.124, 1998(5):501-508.
    [113] V.M. Ruiz-Carmona, A.J. Clemmens, and J. Schuurmans. Canal Control Algorithm
     Formulations[J]. Journal of Irrigation and Drainage Engineering, ASCE, Vol.124, 1998(1):31-39.
    [114] Wytze Schuurmans. Description and evaluation of program Modis[J]. Journal of Irrigation and
     Drainage Engineering, ASCE, Vol.119, 1993(4):735-742.
    [115] Xavier Litrico. Nolinear diffusive wave modeling and identification of open channels[J].
     Journal of Hydraulic Engineering, ASCE, Vol.127, 2001(4):313-320.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700