基于临界圆的二维喷射器模型构建及流动机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喷射器由于结构简单、造价低廉、操作容易和维修方便,被广泛用于制冷、燃料电池、化工和航空航天等多个领域。作为一种增压、真空、混合装置,喷射器往往在系统中扮演关键部件的角色。提高喷射器的工作效率,对于相关工业领域的节能、增效有非常重要的应用意义。
     喷射器依靠流体的跨音速流动产生激波,通过流体相间的混合层来传递能量,其内部的流动与混合机理十分复杂,同时其运行状态和性能特性极易受到工质物性、结构尺寸和操作工况的影响,现有的喷射器理论和模型不能很好地解释这些问题。目前对喷射器的模型研究,绝大多数是基于一维简化分析,忽略粘性流体流动边界层的存在,因而所建立的模型或不够精确或结构复杂。另一方面,在基于计算流体力学(Computational Fluid Dynamics, CFD)的喷射器数值研究中,对其性能仿真和流场分析居多,缺乏对喷射器关键结构尺寸对其性能影响的系统性研究。
     针对喷射器的研究现状,本文从理论分析、数值计算和实验三个方面对喷射器的模型与工作机理进行了深入研究。首先提出了喷射器中“临界圆”的概念,在此基础上建立了三个适用于不同应用范围的喷射器模型。接着根据燃料电池系统中喷射器的结构特点和运行条件,提出了临界、亚临界、回流这三种模式下燃料喷射器的性能评估理论。接着将数值计算CFD技术用于喷射器的内部机理研究,共分析计算了一百多个喷射器结构和将近四百个工况点。最后建立了一个完整的喷射制冷系统实验平台,实验数据验证了本文提出的喷射器理论和CFD计算方法。
     作者首次提出了喷射器中“临界圆”的定义。指出当喷射器工作在临界模式时,引射流在混合室入口处达到音速,“临界圆”的位置为混合室入口处工作流与引射流的混合薄层。“临界圆”是喷射器内的关键位置,流体在该处的状态决定着喷射器的工作模式和性能。“临界圆”定义是喷射器二维模型的理论基础。
     提出了两种不同形式的速度方程:二维指数函数速度方程和二维线性化速度方程。前者适合管内湍流速度分布特征,相比与现有的一维理论,它更准确地反映了喷射器内部的实际流场情况。而后者更便于分析与计算,建立的喷射器理论模型不仅适合分析干气体工质也适合于水蒸汽等湿气体工质。作者总结出类似R11这种饱和蒸汽线斜率不大的湿气体工质,可以按照干气体工质来处理,既能简化计算,又能保证计算精度。
     基于“临界圆”的定义和集总参数法,推导了一个适用于喷射器实时控制与优化要求的“一方程”模型。该模型结构简单,只含有一个代数方程与三个常系数。本文给出了确定这三个系数的详细参数辨识方法。
     作者提出了一种新的确定燃料电池喷射器的两个关键工作流体压力PPE和PPC的算法。两个关键压力值将喷射器的性能划分为回流、亚临界和临界三个区间。喷射器工作在临界区是燃料电池稳定安全运行的前提。该算法不仅可以方便地判断喷射器所处的工作状态,更为喷射器及阳极再循环回路的性能和安全监控提供理论支持。
     采用CFD数值计算方法对喷射器的主要结构和内部机理进行了系统地研究。分析和总结了喷嘴的喉部直径、混合段直径、混合段入口夹角、喷嘴出口处位置、喷嘴扩压段长度、混合段长度和扩压室长度等7个主要结构参数对喷射器性能的影响规律,结果可以用于指导喷射器的结构优化设计。同时,作者从微观机理的角度分析了喷射器的增压引射原理,并且探讨了“临界圆”定义的物理意义及其合理性。
     建立了一个完整的喷射制冷系统实验平台,包括硬件和测量控制系统的设计。实验得到了不同工作流压力、背压和引射流压力下喷射器的性能特性。实验数据验证了本文提出的理论模型和CFD数值计算方法。结果显示数值计算和理论模型很好地与实验相吻合,其中速度线性化模型的计算精度最高。
     本文提出的基于“临界圆”的喷射器二维理论,不仅可以建立用于制冷系统和燃料电池系统中喷射器结构优化和性能仿真的高精度模型,作者提出的“临界圆”概念、建模理论及计算方法还可以方便地扩展到其他领域中喷射器的研究。
Ejectors are used in a wide variety of engineering applications, including refrigeration, fuel cell system, chemical engineering and aerospace because of their simple structure, cheep cost, easy operation and convenient maintain. As a boost, vacuum and mixing device, the ejector usually plays as a key role in system. Therefore, efficiency of all the ejector related industry areas can be increased by improving the ejector’s performance.
     The flow and mixing process inside ejectors are complicated: shocks are generated by subsonic and supersonic flow, and the momentum and energy are exchanged through the mixing layer between the two flows. And the working characteristics of ejector and its operation mode are easily affected by the working fluid’s properties, geometries and operating conditions. Most of the existing ejector models are based on 1D simplification. Since the velocity boundary layer is ignored, 1D models are inaccurate or complex. On the other hand, in the Computational Fluid Dynamics (CFD) researches, many of them are focused on the performance simulation and flow field analysis, but few are reported on the systemic research on the influence of key geometry parameters.
     Aiming at the research status of ejector, the modeling and working mechanism were investigated based on theoretical analysis, numerical simulation and experiment. Firstly, the“Shock circle”in ejector was defined. Three ejector models satifying differenet application areas were constructed based on the“Shock circle”definition. Then the ejector theory for the performance characteristics of fuel ejector in critical, sub-critical and backflow modes was propsed according to the geomtric and operation conditions of ejector in fuel cell system. Thirdly, CFD technique was applied in mechanism study of the ejector. There were more than 100 different ejectors and near 400 cases were analyzed and computed. Finally, an ejector based refrigeration experimental system was set up. A large number of cases were conducted and the results were used to validate the proposed ejector theoretical models and CFD models.
     Definition of“Shock circle”in the ejector is proposed for the first time. The secondary flow reaches sonic condition at the mixing chamber inlet when the ejector is working at the critical mode.“Shock circle”, which is a think mixing layer of the primary and secondary flows, located at the inlet of the mixing chamber. Position of the“Shock circle”is the key location inside the ejector for the ejector performance and operation mode depend on the fluid states there directly.“Shock circle”definition provides the theoretical fundament for the 2D modeling theory of ejector.
     Two velocity equations are proposed: one is the 2D exponential velocity equation and the other is 2D linear equation. The fisrt one meets the velocity distribtion of the turbulent flow in the pipe. Compared to the existing 1D models, the proposed 2D model can reveal the actual velocity. The second velocity equation is more suitible of analysis and calculaion. The constructed model suits for both dry vapor and wet vapor fluids. It is concluded that fluid like the R11 which has a small slope of its isentropic curve can be treated as the dry vapor. This treatment can simplify the calculation procedure and keep the model accuracy.
     A one-equation model for the on-line control and optimization of ejector is derived based on“Shock circle”definition and the lumped parameter method. The model is very simple that has only one algebraic equation and three constant parameters. The parameter identification method is given in detail. A new determination method of two key primary flow pressures in the fuel ejector is presented. The two pressures PPE and PPC separate the ejector performance into backflow, sub-critical and critical modes. The ejector works in the critical mode that is the precondition for the safe running of the fuel cell system. The two pressures can be used to estimate the operation modes and monitor the performance of ejector and anode gas recirculation cycle.
     CFD technique is applied to investigate the ejectors in the refrigeration and fuel cell systems. Seven main geometry parameters: nozzle diameter, mixing chamber diameter, included angle of mixing chamber inlet, nozzle exit position, nozzle divergent part length, mixing chamber length and diffuser length are systemically analyzed. The influence rule of ejector geometries and operating conditions on performance is revealed, which can provide as the guideline for the optimal design of ejector geometry. In addition, The pressurized and entrainment principle of ejector is analyzed in the microscopic mechanism aspect. The physical meaning and reasonability of“Shock circle”is studied.
     An ejector based refrigeration experiment rig is set up, including hardware arrangement and measurement and control system design. Many experimental data are obtained by varying the primary flow pressure, back pressure and secondary flow pressure. Comparisons show that the proposed ejector theoretical models and CFD models agree with the experimental data fairly well, and the linear-velocity model has the best simulation accuracy.
     The“Shock circle”based 2D ejector theory, not only provides the theoretical fundament for establishing high accuracy ejector models that can be applied in the geometry optimization and performance evaluation of ejectors in the refrigerating and fuel cell systems, but also the proposed“Shock circle”definition, modeling theory and simulation method can conveniently extend to the ejectors in other applications.
引文
[1]索科洛夫,津格尔.喷射器[M].黄秋云译.北京:科学出版社,1977.
    [2]辛承梁.实用喷射技术[M].北京:北京科学技术出版社,1993.
    [3] Ishimoto J. Numerical study of cryogenic micro-slush particle production using a two-fluid nozzle[J]. Cryogenics, 2009, 49:39-50.
    [4] Keenan JH, Newman EP, Lustwerk F. An investigation of ejector design by analysis and experiment[J]. J Appl Mech, Trans ASME, 1950, 72:299-309.
    [5] Munday JT, Bagster DF. A new ejector theory applied to steam jet refrigeration[J]. Ind Engng Chem, Process Des Dev, 1977, 16:442-449.
    [6] Eames IW, Aphornratana S, Haider H. A theoretical and experimental study of a small-scale steam jet refrigerator[J]. Int J Refrig, 1995, 18:378-86.
    [7] Huang BJ, Chang JM, Wang CP, et al. A 1-D analysis of ejector performance[J]. Int J Refrig, 1999, 22:354-364.
    [8] Riffat SB, Everitt P. Experimental and CFD modelling of an ejector system for vehicle air conditioning[J]. J Inst Energy, 1999, 72:41-47.
    [9] MPatosiewicz Y, Aidoun Z, Desevaux P, et al. Numerical and experimental investigations on supersonic ejectors[J]. Int J Heat Fluid Fl, 2005, 26:56-70.
    [10] Rusly E, Aye L, Charters WWS, et al. CFD analysis of ejector in a combined ejector cooling system[J]. Int J Refrig, 2005, 28:1092-1101.
    [11] Huang BJ, Chang JM. Empirical correlation for ejector design[J]. Int J Refrig, 1999, 22:379-88.
    [12] Chou CK, Yang PR, Yap C. Maximum mass flow ratio due to second flow choking in an ejector refrigerant system[J]. Int J Refrig, 2001, 24:486-499.
    [13] Bartosiewicz Y, Aidoun Z, Mercadier Y. Numerical assessment of ejector operation for refrigeration applications based on CFD[J]. Appl Thermal Eng, 2006, 26:604–612.
    [14] Sriveerakul T, Aphornratana S, Chunnanond K. Performance prediction of steam ejector using computational fluid dynamics: Part 1. Validation of the CFD results[J]. Int J Thermal Sciences, 2007, 46:812–822.
    [15] Sun DW. Recent developments in the design theories and applications of ejectors - a review[J]. J Inst Energy, 1995, 68:65-79.
    [16] Bartosiewicz Y, Mercadier Y, Proulx P. Numerical investigations on dynamics and heat transfer in a turbulent underexpanded jet[J]. AIAA J, 2002, 40:2257-2265.
    [17] Desevaux P, Aeschbacher O. Numerical and experimental flow visualization of the mixing process inside an induced air ejector[J]. Int J Turbo Jet Engines, 2002, 19:71-78.
    [18]衣宝廉.燃料电池原理·技术·应用[M].北京:化学工业出版社, 2003.
    [19]隋智通,隋升,罗冬梅.燃料电池及其应用[M].北京:冶金工业出版社,2004.
    [20] Singhal SC, Kendall K. High Temperature Solid Oxide Fuel Cells[M], Elsevier, 2003.
    [21] Larminie J, Dicks A. Fuel Cell System Explained[M], John Wiley and Sons Ltd., 2004.
    [22] Marsano F, Magistri L, Massardo AF. Ejector performance influence on a solid oxide fuel cell anodic recirculation system[J]. J Power Sources, 2004, 129:216–228.
    [23] Gosney WB. Principle of refrigeration[M]. Cambridge: Cambridge University Press; 1982.
    [24] Stoecker WF. Steam-jet refrigeration[M]. Boston, MA: McGraw-Hill; 1958.
    [25] Keenan JH, Newman EP. A simple air ejector[J]. J Appl Mech, Trans ASME, 1942, 64:A75-A81.
    [26] Harris LS, Fieher AS. Charaeteristies of the steam-jet vacuum pump[J]. Trans. ASME, 1964:358-364.
    [27] Huang BJ, Jiang CB, Fu FL. Ejector performance characteristics and design analysis of jet refrigeration system[J]. ASME J Engng Gas Turbines Power, 1985, 107:792-802.
    [28] Eames IW, Aphnonratana S. Research on heat operated heat pumps and refrigerators[J]. J Inst Energy, 1993, 66:29-39.
    [29] Chou CK, Yang PR, Yap C. Maximum mass flow ratio due to second flow choking in an ejector refrigerant system[J]. Int J Refrig, 2001, 24:486-499.
    [30] Alexis GK, Katsanis JS. Performance characteristics of a methanol ejector refrigeration unit[J]. Energy Convers Manage, 2004, 45:2729-2744.
    [31] Yap?c? R, Ersoy HK. Performance characteristics of the ejector refrigeration system based on the constant area ejector flow model[J]. Energy Convers Manage, 2005, 46:3117-3135.
    [32]刘志强,沈胜强.喷射器一维设计理论的研究进展[J].热能动力工程,2001,16:229-232.
    [33]周新建,陈听宽.引射喷嘴流量系数的计算方法[J].化工学报,2002,52:1902-1904.
    [34]徐海涛,桑芝富.蒸汽喷射器喷射系数计算的热力学模型[J].化工学报,2004,55:704-710.
    [35]陈华,鱼剑琳,任云锋等.一种新型喷射制冷循环的理论分析[J].西安交通大学学报, 2005,39:1215-1240.
    [36] Huang BJ, Hu SS, Lee SH. Development of an ejector cooling system with thermal pumping effect[J]. Int J Refrig, 2006, 29:476–484.
    [37] Selvaraju A, Mani A. Experimental investigation on R134a vapour ejector refrigeration system[J]. Int J Refrig, 2006, 29:1160-1166.
    [38] Yu JL, Li YZ. A theoretical study of a novel regenerative ejector refrigeration cycle[J]. Int J Refrig, 2007, 30:464-470.
    [39] Srisastra P, Aphornratana S, Sriveerakul T,et al. Development of a circulating system for a jet refrigeration cycle[J]. Int J Refrig, 2008, 31:921-929.
    [40] Chunnanond K, Aphornratana S. An experimental investigation of a steam ejector refrigerator: the analysis of the pressure profile along the ejector[J]. Appl Thermal Eng, 2004, 24:311-322.
    [41]张少维,徐海涛,桑芝富.新型喷嘴结构下蒸汽喷射式热泵性能的数值研究[J].热能动力工程,2004,19:517-520.
    [42] Ouzzane M, Aidoun Z. Model development and numerical procedure for detailed ejector analysis and design[J]. Appl Thermal Eng, 2003, 23:2337-2351.
    [43] Sun DW, Eames IW. Performance characteristics of HCFC-123 ejector refrigeration cycles[J]. Int J Energy Res, 1996, 20:871-85.
    [44] Sun DW. Solar powered combined ejector-vapour compression cycle for air conditioning and refrigeration[J]. Energy Convers Manage, 1997, 38:479-91.
    [45] Aphornratana S, Eames IW. A small capacity steam-ejector refrigerator: experimental investigation of a system using ejector with movable primary nozzle[J]. Int J Refrig, 1997, 20:352-358.
    [46] Aphornratana S, Chungpaibulpatana S, Srikhirin P. Experimental investigation of an ejector refrigerator: Effect of mixing chamber geometry on system performance[J]. Int J Energy Res, 2001, 25:397-411.
    [47] Chen SL, Yen JY, Huang MC. An experimental investigation of ejector performance based upon different refrigerants[J]. ASHRAE Trans, 1998, 104:153–160.
    [48] Chen YM, Sun CY. Experimental Study of the Performance Characteristics of a Steam-Ejector Refrigeration System[J]. Exp. Therm. Fluid Sci, 1997, 15:384-394.
    [49] Yap?c? R. Experimental investigation of performance of vapor ejector refrigeration system using refrigerant R123[J]. Energy Convers Manage, 2008, 49:953-961.
    [50] Neve RS. Computational fluid dynamics analysis of diffuser performance in gas-powered jet pumps[J]. Int J Heat Fluid Fl, 1993, 14(4):401-407.
    [51] Riffat SB, Gan G, Smith S. Computational fluid dynamics applied to ejector heat pumps[J]. Appl Therm Eng, 1996, 16:291–297.
    [52] Alexis GK. Estimation of ejector’s main cross sections in steam-ejector refrigeration system[J]. Appl Thermal Eng, 2004, 24:2657–2663.
    [53] Sun DW. Variable geometry ejectors and their applications in ejector refrigeration systems[J]. Energy, 1996, 21:919–29.
    [54] Sun DW. Comparative study of the performance of an ejector refrigeration cycle operating with various refrigerants[J]. Energy Convers Manage, 1999, 40:873–884.
    [55] Chaiwongsa P, Wongwises S. Experimental study on R-134a refrigeration system using a two-phase ejector as an expansion device[J]. Appl Therm Eng, 2008, 28:467–477.
    [56] Riffat SB, Omer SA. CFD modelling and experimental investigation of an ejector refrigeration system using methanol as the working fluid[J]. Int J Energy Res, 2001, 25:115–128.
    [57] EG&G Services-Parson, Inc. Science Application International Corporation, Fuel Cell Handbook, 5th ed., US DOE, 2000.
    [58] Ferrari ML, Traverso A, Magistri L, et al. Influence of the anodic recirculation transient behaviour on the SOFC hybrid system performance[J]. J Power Sources, 2005, 149:22–32.
    [59] Ferrari ML, Traverso A, Pascenti M, et al. Early start-up of solid oxide fuel cell hybrid systems with ejector cathodic recirculation: experimental results and model verification[J]. Proceedings of the Institution of Mechanical Engineers. J Power Energy, 2007, 221:627–635.
    [60] Ferrari ML, Bernardi D, Massardo AF. Design and testing of ejectors for high temperature fuel cell hybrid systems[J]. J Fuel Cell Sci Tech, 2006, 3:284–291.
    [61] Narabayashi T, Ohmori S, Mori M, et al. Development of multi-stage steam injector for feedwater heaters in simplified nuclear power plant[J]. JSME International Journal, Series B, 2006, 49(2):368-376.
    [62] Butterworth MD, Sheer TJ. High-pressure water as the driving fluid in an ejector refrigeration system[J]. Appl Thermal Eng, 2007, 27:2145-2152.
    [63] Balamurugan S, Lad MD, Gaikar VG, et al. Hydrodynamics and mass transfer characteristics of gas–liquid ejectors[J]. Chem Eng J, 2007, 131:83–103.
    [64] Cramers PHMR, Beenackers AACM. Influence of the ejector configuration, scale and the gas density on the mass transfer characteristics of gas–liquid ejectors[J]. Chem Eng J, 2001, 82:131–141
    [65] Cheddie D, Munroe N. Review and comparison of approaches to proton exchange membrane fuel cell modeling[J]. J Power Sources, 2005, 147:72–84.
    [66] Uzunoglu M, Alam MS. Dynamic modeling, design and simulation of a PEM fuel cell/ultra-capacitor hybrid system for vehicular applications[J]. Energ Conserv Manage, 2007, 48:1544–1553.
    [67] Rodatz P, Tsukada A, Mladek M, et al. Efficiency Improvement by Pulsed Hydrogen Supply in PEM Fuel Cell Systems[C]. Proceeding of the 15th IFAC Triennial World Congress, Barcelona, Spain, July 2002.
    [68] Karnik AY, Sun JS. Modeling and control of an ejector based anode recirculation system for fuel cells[C]. Proceedings of fuel cell 2005. Third International Conference on Fuel Cell Science Engineering and Technology, Ypsilanti, MI, May 2005.
    [69] Karnik AY, Sun J, Buckland JH. Electronic Throttle and Wastegate Control for Tur-bocharged Gasoline Engines[C]. Proceedings of the American Control Conference, Minneapolis, Minnesota, June 2006.
    [70] Bao C, Ouyang M, Yi B. Modeling and control of air stream and hydrogen flow with recirculationin a PEM fuel cell system—I.Control-oriented modeling[J]. Int J Hydrogen Energy, 2006, 31:1879–1896.
    [71] He J, Choe SY, Hong CO. Analysis and control of a hybrid fuel delivery system for a polymer electrolyte membrane fuel cell[J]. J Power Sources, 2008, 185:973–984.
    [72] Zhu YH, Li YZ. New theoretical model for convergent nozzle ejector in the proton exchange membrane fuel cell system[J]. J Power Sources, 2009, 191(2):510-519.
    [73] Hiraiwa T, Ito K, Sato S, et al. Recent progress in scramjet/combined cycle engines at JAXA, Kakuda space center[J]. Acta Astronautica, 2008, 63(5-6):565-574.
    [74] Liu K, Sun D, Yin X. Instability of Gas/Liquid Coaxial Jet[J]. J Hydrodynamics, Ser. B, 2007, 19(5):542-550.
    [75] Dorantes R, Lallemand A. Prediction of performance of a jet cooling system operating with pure refrigerants or non-azeotropic mixtures[J]. International Journal of Refrigeration, 1994, 18(1):21-30.
    [76] Zhu YH, Cai WJ, Wen CY, et al. Shock circle model for ejector performance evaluation[J]. Energy Convers Manage, 2007, 48(9):2533-2541.
    [77]祝银海,厉彦忠,鱼剑琳等.喷射器的一种新模型及其实验验证[J].西安交通大学学报,2008,42(09):1096-1101.
    [78] Zhu YH, Li YZ. Novel Ejector Model for Performance Evaluation on Both Dry and Wet Vapors Ejectors[J]. Int J Refrig, 2009, 32(1):21-31.
    [79] Zhu YH, Cai WJ, Wen CY. Development of control model for critical operation ejector[C]. 2007 Second IEEE Conference on Industrial Electronics and Applications. 2009, 905-909.
    [80]祝银海,厉彦忠,鱼剑琳等.基于制冷剂R141B的喷射器混合模型及其实验验证[J].化工学报,2008,59(09):2188-2193.
    [81] Zhu YH, Cai WJ, Wen CY, et al. Simplified ejector model for control and optimization[J]. Energy Convers Manage, 2008, 49(6):1424-1432.
    [82] Young PC. An instrumental variable method for real time identification of a noise process[J]. Automatica, 1970, 6:271-287.
    [83] Wolfe MA. Numerical methods for unconstrained optimization[M]. Van Nostrand Reinhold Company, New York 1978.
    [84] Wang YW, Cai WJ , Soh YC, Li SJ, Lu L, Xie L. A simplified modeling of cooling coils for control and optimization of HVAC systems[J]. Energy Convers Manage, 2004, 45:2915-2930.
    [85] NIST Chemistry WebBook, NIST Standard Reference Database Number 69[DB], June 2005 Release. http://webbook.nist.gov/chemistry/.
    [86] Dicks AL. Hydrogen generation from natural gas for the fuel cell systems of tomorrow[J]. Journal of Power Sources, 1996, 61:113–124.
    [87] Takeguchi T, Kani Y, Yano T, et al. Study on steam reforming of CH4 and C2 hydrocarbons and carbon deposition on Ni-YSZ cermets[J]. J Power Sources, 2002, 112:588–598.
    [88] Benjamin TG, Camera EH, Marianowski LG. Handbook of Fuel Cell Performance, Institute of Gas Technology, 1995.
    [89] Fuel Cell Handbook[M], 6th ed., U.S. Department of Energy, 2002.
    [90] Peters R, Riensche E, Cremer P. Pre-reforming of natural gas in solid oxide fuel-cell systems[J]. J Power Sources, 2000, 86:432–441.
    [91] Costamagna P, Magistri L, Massardo AF. Design and part-load performance of a hybrid system based on a solid oxide fuel cell reactor and a micro gas turbine[J]. J Power Sources, 2001, 96:352–368.
    [92] Massardo AF, Lubelli F. Internal reforming solid oxide fuel cell gas turbine combined cycles (IRSOFC-GT). Part A. Cell model and cycle thermodynamic analysis[J]. J Eng Gas Turbines Power, 2000, 122:27-35.
    [93] Bossel UG. Final report on SOFC data facts and figures[R]. Swiss Federal Office of Energy, Berne, CH; 1992.
    [94] Sun DW. Experimental investigation of the performance characteristics of a steam jet refrigeration system[J]. Energy Sources, 1997, 19:349–367.
    [95] Zhu YH, Cai WJ, Wen CY, et al. Fuel ejector design and simulation model for anodic recirculation SOFC system[J]. J Power Sources, 2007, 173(1):437-449.
    [96] ESDU. Ejectors and jet pumps[DB], data item 86030, ESDU International Ltd., London, 1985.
    [97] ASHRAE. Steam-jet refrigeration equipment[DB]. Equipment Handbook 13, 1979.
    [98] Zhu YH, Cai WJ, Li YZ, et al. Anode gas recirculation behavior of a fuel ejector in hybrid SOFC systems: Performance evaluation in three operational modes[J]. J Power Sources, 2008, 185(2):1122-1130.
    [99] Zhu YH, Cai WJ, Wen CY, et al. Numerical investigation of geometry parameters for design of high performance ejectors[J]. Appl Thermal Eng, 2009, 29(5-6):898-905.
    [100]陶文铨.数值传热学[M].西安:西安交通大学出版社,1991.
    [101] Shih TH, Liou WW, Shabbir A, et al. A newκ-εeddy viscosity model for high Reynolds number turbulent flows. Comput Fluids, 1995, 24(3):227-238.
    [102] Yakhot V, Orzag SA. Renormalization group analysis of turbulence: basic theory. J Scient Comput, 1983, 1:3-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700