突片激励射流传热和混合特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
突片是一种结构简单的涡激励器,用于控制或改善射流的流动结构。国内外在利用突片改善射流冲击对流换热以及强化掺混方面已经展开了一系列的研究,但突片激励射流强化传热的机理、不同的突片结构对射流冲击换热和同轴射流强化混合的影响规律,以及突片射流与横流相互作用的流场特征,仍然是一个富于挑战和创新的研究课题。本文围绕这一研究方向,进行了两个方面的研究:
     (1)在射流冲击冷却方面,对单排、双排突片射流以及非均匀横流作用下冲击的换热特性进行数值计算和实验研究,分析不同结构突片对换热效果的影响,揭示突片激励射流的流场控制和冲击换热强化的物理机制;
     (2)在射流强化掺混方面,分析主流出口安装小突片后,流向涡的产生和发展规律,揭示突片射流改变射流流动结构的机制,研究不同结构和安装方式突片对同轴射流混合效果的影响规律,并提出最佳的突片结构参数。
     对突片激励射流强化换热机制的研究表明,射流孔边缘突片的插入起到两方面的功用。一方面能够在突片两侧形成一对反向旋转的流向涡对,流向涡随着射流的流动沿流向发展,与周围流体进行着热量和动量的交换。由于流向涡的卷吸和强化掺混作用,加强了掺混边界层内的湍动,湍流动能的增强有利于提高射流冲击的冷却效果;另一方面使得射流出口的流动面积呈现收敛的几何特征,在亚音速射流范围内,射流孔截面收敛有利于提高射流核心区速度,从而改善射流冲击驻点区附近的对流换热效果。
     对突片激励射流改善冲击冷却换热的数值计算和实验研究表明:突片数目对冲击冷却换热特性的影响和冲击孔的直径有关,突片相对于主流的倾角以及突片伸入主流中的长度对冲击冷却换热特性都有较大的影响。在双排突片射流冲击冷却中,两排孔之间流向孔间距的变化对冲击靶面的温度分布具有较大的影响。对于有非均匀初始横流存在的进气方式,当横流作用较弱的时候,横流的顺排和叉排进气方式对射流的流动和冲击换热影响都很小;当横流作用增强时,两种进气方式表现出了较大的差别。总的来说,突片激励射流对冲击靶板的冷却效果高于常规射流。
     在射流混合中,主流经过突片以后,周围流体沿径向向主流方向流动,在突片中心处分成两股反向旋转的流体,使突片两侧形成两个反向旋转的流向涡,随着主流与次流的掺混,流向涡的强度不断减弱,并逐渐扩大与周围流体混合,直至逐渐消失。流向涡的存在使主流和次流的掺混程度加快加强,导致主流核心区的缩短;掺混以后周围流体的湍流动能较大。突片射流的出口截面的温度场形状发生了明显变化,在突片插入的位置,低温区扩张,高温区收缩,温度场更加均匀。
     对突片射流强化主流和次流掺混的数值计算和实验研究表明:合适的突片数目和合适的堵塞比是获得最佳掺混效果的关键因素,突片顶角和突片长度对混合效果也具有重要的影响。在本文研究的参数范围内,最佳的突片数目为8片,突片相对于喷管轴线安装的最佳角度是30°,最佳的突片顶角是90°,突片伸入主流的最合适长度为0.1倍喷口直径。
The tabs are a kind of vortex generators with simple configurations and wide applications in control or improvement jet flow structures. Although a series of investigations have been made on jet impingement heat transfer and mixing in coaxial jets using tabbed vortex generator, there are some problems being of challenge and innovation, such as the physical mechanism of tabbed jet impinging heat transfer, the influence rules on tabbed jet impingement heat transfer and mixing enhancement in coaxial jets by different tabs configuration, and the interactional characteristics of flow fields between tabbed jet flow and cross flows. The present paper aims on two aspects:
     (1) For the jet impingement cooling, the numerical calculation and experiment were conducted to investigate the performance of flow and heat transfer of tabbed jet impingement heat transfer for three jet impinging modes, such as single row jet impingement, double rows jet impingement and single row jet impingement with initial cross flow. The influences of tab configurations on heat transfer enhancement were analyzed and the physical mechanism of flow field control and heat transfer enhancement by tabbed jet was made known.
     (2) For the mixing in coaxial jets, the producing and developing rules of stream wise vortices and the flowing structure changing by the jet flows with tabs were made known, and the effects of tab configuration with the different structure and installation manner on mixing process were researched. At the same time, the optimum tab configuration parameters were put forward.
     The investigation on tabbed jet impinging heat transfer enhancement mechanism indicates as follows. In jet impingement cooling, because of the tabs inserting the jet at the orifice edge, two effects could be obtained. On the one hand, a pair of counter-rotating stream wise vortices appears on the both sides of the tab and developes along jet flow direction. It exchanges quantity of heat and momentum with the surrounding fluid. The stream wise vortices induced by tabs intensify turbulence motion in the boundary layer depending under their rolling and mixing process. The augment of turbulent kinetic engegy is benefit to the enhanced convective heat transfer. On the other hand, the jet flow passage takes on convergence, making for the increase of jet core velocity. It is propitious to improve the convective heat transfer near the stagnant region.
     The numerical calculation and experiment investigation on the impingement cooling in the jet excited by the tabs to improve heat transfer indicates as follows. The influence of the tabs number on the impingement heat transfer is related to the diameter of the impingement orifice. The tab declining angle and the tab length inserting the jet also have influences on the impingement heat transfer. For the impingement cooling with double-rows tabbed jet flows, the change of the stream wise space between the orifices has an important influence on the target temperature distribution. Under the presence of the initial cross flow, the inlet mode of initial cross flow (inline or staggered related to jet) has little influence on the jet flow and heat transfer when the initial cross flow is weak, but behaves great difference when the initial cross flow becomes dominant. In a word, the tabbed jet impingement heat transfer is more sufficient than the common jet.
     During the mixing of the coaxial jets, the surrounding fluid flows toward the mainstream along the radial after the mainstream passes through the tabs. Then the mainstream is disparted by two counter-rotating fluids so that a pair of counter-rotating stream wise vortices is shaped on the both sides of the tab. The stream wise vortices are weakening uninterruptedly and enlarging and mixing with the surrounding fluid and then disappearing finally along with the flow of the mainstream and the mixing between the mainstream and the secondary flow. The presence of the stream wise vortices enhances and reinforces the mixing between the mainstream and the secondary flow, shortening the mainstream core length. The turbulence kinetic energy in the surrounding fluid is increased after the mixing. The shape of the temperature field takes on obvious change at the exit section of the tabbed jet flow. The low temperature area expands and the high temperature area shrinks at the inserting position of the tabs. The temperature field is even much more equably.
     The numerical calculation and experiment investigation on the strengthening mixing tab in coaxial jets indicates as follows. The appropriate number of the tabs and the appropriate jam proportion are the key factors for make the optimal mixing effect. The angle and length of the tabs also have important influence on the mixing effect. In the conditions given in the present paper, the optimal tab parameters are obtained. The tab number is 8, the tab angle related to the jet axes is 30°, the tab tip angle is 90°and the ratio of tab length to nozzle diameter is 0.1.
引文
[1]顾维藻,神家锐,马重芳,等.强化传热.北京:科学出版社,1990: 318~322
    [2] Bergles A E. Heat transfer enhancement-the encouragement and accommodation of high heat fluxes. Journal of Heat Transfer, 1995, 119: 8~19
    [3]过增元,黄素逸.场协同原理与强化传热新技术.北京:中国电力出版社,2004:1~19
    [4]林宗虎,汪军,李瑞阳,等.强化传热技术.北京:化学工业出版社,2007:280~304
    [5]过增元.对流换热的物理机制及其控制:速度场与热流场的协同.科学通报,2000,45(19):2118~2122
    [6]林宏镇,汪火光,蒋章焰.高性能航空发动机传热技术.北京:国防工业出版社,2005:1~285
    [7]崔海亭,彭培英.强化传热新技术及其应用.北京:化学工业出版社,2006:1~39
    [8]刘晓燕,徐颖,武传燕.气体冲击射流干燥薄膜物料的温度及湿度计算模型.涂料工业,2008,38(5):15~18
    [9]周娜,于明,吴迪,等.圆形喷嘴射流对钢板冷却的数值模拟.轧钢,2008,25(2):7~10
    [10]李腾,刘静.芯片冷却技术的最新研究进展及其评价.制冷学报,2004,(3):22~32
    [11] Wang E N, Zhang Lian, Jiang Linan. Micromachined jets for liquid impingement cooling of VLSI chips. Journal of Microelectromechanical Systems, 2004, 13(5): 833~841
    [12] Gardon R, Akfirat J C. The role of turbulence in determining the heat-transfer characteristics of impinging jets. International Journal of Heat and Mass Transfer, 1965, 10(8): 1261~1272
    [13] Metzger D E, Florschuetz L W. Heat transfer characteristics for inline and staggered array of circular jets with cross flow of spent air. Journal of Heat Transfer, Transaction of ASME, 1979,101: 526~531
    [14] Goldstein R J, Behbahani A I. Impingement of a circular jet with and without crossflow. Int. J. Heat Transfer, 1982, 25(9): 1377~1382
    [15] Bebahani A I, Glodstein R J. Local heat transfer to staggered arrays of impinging circular air jets. Transaction of the ASME, Journal of Engineering for Power, 1983, 105: 354~360
    [16] Florschuetz L W, Isoda Y. Flow distributions and discharge coefficient effects for jet array impingement with initial crossflow. Journal of Engineering for Power, 1983, 105(3): 296~303
    [17] Florschuetz L W, Metzger D E, Su C C. Heat transfer characteristics for jet array impingement with initial crossflow. ASME Paper 83-GT-28, 1983
    [18] Jambunathan K, Lai E, Moss M A, etal. Review of heat transfer data for single circular jet impingement. International Journal of Heat and Fluid Flow, 1992, 13(2): 106~115
    [19] Zumbruner D A, Aziz M. Convective heat transfer enhancement due to intermittency in an impinging jet. ASME Journal of Heat Tranfer, 1993, 115: 91~98
    [20] Colucci D, Viskanta R. Effect of nozzle geometry on local convective heat transfer to a confined impinging air jet. Exp. Therm. Fluid Sci, 1996, 13: 71~80
    [21] Ashforth-Frost S, Jambunathan K. Numerical prediction of semi-confined jet impingement and comparison with experimental data. International Journal of Meth. Fluids, 1996, 23(3): 295~396
    [22] Jung-Yang San, Chih-Hao Huang, Ming-Hong Shu. Impingement cooling of a confined circular air jet. International Journal of Heat and Mass Transfer, 1996, 40(6): 1355~1364
    [23] Leland J E, Ponnappan R, Klasing K S. Experimental investigation of an air micro-jet array impingement cooling device. AIAA Paper 99-0476, 1999
    [24] Nuntadusit C, Ishida H, Kimoto H. Characteristics of some rectangular impinging jets. Journal of Flow Measurements, 1999, 15(21): 85~92
    [25] Arjocu S C, Liburdy J A. Identification of dominant heat transfer modes associated with the impingement of an elliptical jet array. Journal of Heat Transfer, 2000, 122: 240~247
    [26] Lee J, Lee S J. The effect of nozzle configuration on stagnation region heat transfer enhancement of axisymmetric jet impingement. Int. J. Heat Mass Trans., 2000, 43: 3497~3509
    [27] Kaiser E. Measurement and visualization of impingement cooling in narrow channels. Experiments in Fluids, 2001, 30: 603~612
    [28] Patel P, Roy S. Heat transfer for a pair of rectangular jets impinging upon an inclined surface. AIAA Paper 2002-0210, 2002
    [29] Sahoo D, Sharif M A R. Numerical modeling of slot-jet impingment cooling of a constant heat flux surface confined by a parallel wall. International Journal of Thermal Sciences, 2004, 43: 877~887
    [30] Fleischer A S, Nejad S R. Jet impingement cooling of a discretely heated portion of a protruding pedestal with a single round air jet. Expermental Thermal and Fluid Science, 2004, 28: 893~901
    [31] Fenot M, Vullierme J J, Dorignac E. Local heat transfer due to several configurations of circular air jets impinging on a flat plate with and without semi-confinement. International Journal of Thermal Sciences, 2004, 9: 1~11
    [32] Nawaf H S, Abdulmajeed A M. Jet impingement cooling of a horizontal surface in a confined porous medium: mixed convection regime. International Journal of Heat and Mass Transfer, 2006, 49: 3906~3913
    [33]高潮,诸孝荣,王宝官.燃烧室壁冲击冷却换热的实验研究.推进技术,1998,19(1): 35~37
    [34]谭蕾,张靖周,谭晓茗.非均匀横流作用下冲击射流冷却的数值研究.航空动力学报,2006,21(3):528~532
    [35]许全宏,林宇震,刘高恩.封闭空间内单孔冲击局部换热特性研究.航空动力学报,2002,17(3):197~199
    [36]张靖周,李永康,谭晓茗,等.阵列射流冲击冷却局部对流换热特性的数值计算与实验研究.航空学报,2004,25(4):339~342
    [37]张永恒,周勇,王良壁.圆形冲击射流传热性能的实验研究.热科学与技术,2006,5(1):38~43
    [38]张泽远,张靖周,杨卫华.半封闭通道射流冲击换热特性的实验.航空动力学报,2006,21(4):626~630
    [39]杨敏,常海萍,吴培光.旋转条件下半封闭空间内多孔冲击平均换热特性实验.航空动力学报,2006,21(6):984~988
    [40]钱吉裕,平丽浩,徐德好,等.冲击角对射流强化换热影响的数值研究.工程热物理学报,2007,28(2):65~68
    [41]毛军逵,白云峰,常海萍,等.旋转半受限单孔冲击局部换热特性实验.航空动力学报,2007,22(10):1593~1597
    [42]陈万兵.有初始横流的冲击冷却数值分析.南京航空航天大学硕士学位论文,1997
    [43]白云峰.旋转条件下冲击冷却数值模拟及实验研究.南京航空航天大学硕士学位论文,2004
    [44]张泽远.半封闭通道内冲击射流换热特性和流量系数的实验研究.南京航空航天大学硕士学位论文,2006
    [45] Azevedo F A, Webb B W, Queiro Z M. Pulsed air jet impingement heat transfer. Experiment Thermal and Fluid Science, 1994, 8: 206~213
    [46] Liu T, Sullivan J P.Heat transfer and flow structure in a excited circular impinging jet. Int. J. Heat Mass Trans., 1996, 39(17): 3695~3706
    [47] Khalatov A A, Syred N, Bowen P J, et al. Two-dimensional cyclone-jet cooling configuration: evalution of heat transfer and pressure losses. ASME Paper 2001-GT-0182, 2001
    [48] Mao-Yu Wen, Kuen-Jang Jang. An impingement cooling on a flat surface by using circular jet with longitudinal swirling strips. International Journal of Heat and Mass Transfer, 2003, 46: 4657~4667
    [49] Nakod P M, Prabhu S V, Vedula R P. Heat transfer augmentation between impinging circular air jet and flat plate using finned surfaces and vortex generators. Experimental Thermal and Fluid Science, 2008, 32: 1168~1187
    [50] Whelan B P, Robinson A J. Nozzle geometry effects in liquid jet array impingement. Applied Thermal Engineering, 2009, 29: 2211~2221
    [51]李发军,苑中显,马重芳,等.脉冲射流冲击冷却换热的液晶显示实验研究.工程热物理学报,2002,23(2):193~196
    [52]陈玉阳,苑中显,马重芳,等.旋转射流冲击换热液晶显示实验研究.工程热物理学报,2003,24(4):646~648
    [53]周冬,任建勋.射流纵向涡强化换热的数值模拟.清华大学学报(自然科学版),2004,44(11):1520~1523
    [54]耿丽萍,陶容,周静伟.自激励旋进射流的流场及换热模拟.工程热物理学报,2008,29(5):834~836
    [55]阎畅,刘海涌,朱惠人,等.带横流及旋流射流冲击换热的数值与实验研究.计算机仿真,2008,25(3):44~47
    [56] Chakroun W M, Abdel-Rahman A A, Al-Fahed S F. Heat transfer augmentation for air jet impinged on a rough surface. Applied Thermal Engineering, 1998, 18: 1225~1241
    [57] Geunyoung Yang, Mansoo Choi, Joon Sik Lee. An experimental study of slot jet impingement cooling on concave surface: effects of nozzle configuration and curvature. International Journal of Heat and Mass Transfer, 1999, 42: 2199~2209
    [58] Cornaro C, Fleischer A S, Rounds M, et al. Jet impingement cooling of a convex semi-cylindrical surface. International Journal of Thermal Sciences, 2001, 40: 890~898
    [59] Shevchuk I V, Saniei N. Impinging jet heat transfer over a rotating disk: exact solution and experiments. AIAA Paper 2002-3015, 2002
    [60] Dong Ho Rhee, Jong Hyun Choi, Hyung Hee Cho. Flow and heat (mass) transfer characteristics in an impingement/effusion cooling system with cross flow. ASME Journal of Turbomachinery, 2003, 125: 74~82
    [61] Dong Ho Rhee, Yong Woo Nam, Hyung Hee Cho. Local heat/mass transfer with various rib arrangements in impingement/effusion cooling system. ASME Journal of Turbo- machinery, 2004: 615-626
    [62]张净玉,常海萍.冲击粗糙壁面复合冷却实验研究.航空动力学报,2001,16(4):386~393
    [63]许全宏,林宇震,刘高恩.冲击加多斜孔双层壁冷却方式冲击换热系数.大连理工大学学报,2001,41(1):63~65
    [64]谭蕾.半封闭肋化通道射流冲击换热特性的数值和实验研究.南京航空航天大学硕士学位论文,2007
    [65]涂福炳,周孑民,曾文辉.空气射流冲击下柱鳍热沉散热特性实验研究.湖南科技大学学报(自然科学版),2008,23(2):41~46
    [66]祝银海,厉彦忠,鱼剑琳,等.基于制冷剂R141B的喷射器混合模型及其实验验证.化工学报,2008,59(9):2188~2193
    [67]岑可法,姚强,骆仲泱,等.高等燃烧学.杭州:浙江大学出版社,2002:277~349
    [68]石翠霞.燃气轮机排气引射器性能仿真优化研究.哈尔滨工程大学硕士论文,2009
    [69] Waitz I A, Qiu Y J. Enhanced mixing with streamwise vorticity. Prog. Aerospace Sci., 1997, 33: 323~351
    [70] Eckerie W A, Sheibani H, Awad J. Expermental measurement of the vortex development downstream of a lobed forced mixer. Journal of Engineering for Gas Thrbines and power, 1992, 114: 63~71
    [71] McCormick D C, Bennett J C. Vortical and turbulent structure of a lobed mixer free shear layer. AIAA Journal, 1994, 32(9): 1852~1859
    [72] Tsui Y Y, Wu P W. Investigation of the mixing flow structure in multilobe mixers. AIAA Journal, 1996, 34(7): 1386~1391
    [73] Smith L L, Majamaki A J, Lam I T, etal. Mixing enhancement in a lobed injector. Physics of Fluids, 1997, 9(3): 667~678
    [74] Strickland J H, Selerland T, Karagozian A R. Numerical simulations of a lobed fuel injector. Physics of Fluids, 1998, 10(11): 2950~296
    [75]邵万仁,吴寿生.波瓣形排气引射混合器的实验研究.航空动力学报,2000,15(2):155~158
    [76]张靖周,谢志荣,李立国.三维强迫混合波瓣结构流场的数值研究.推进技术,2001,22(3): 205~208
    [77]路玉霞,吴寿生,魏福清.速度比对波瓣混合器气动特性的影响.航空动力学报,2002,17(1):53~57
    [78]单勇,张靖周.波瓣喷管引射-混合器涡结构的数值研究.空气动力学学报,2005, 23(3):355~359
    [79] Zhang Jing-zhou, Shan Yong, Li Li-guo. Computation and validation of parameter effects on lobed mixer-ejector performances. Journal of Aeronautis, 2005, 18(3): 193~198
    [80] Liu You-Hong. Experimental and numerical investigation of circularly lobed nozzle with/without central plug. International Journal of Heat and Mass Transfer, 2002, 45(12): 2577~2585
    [81] Mengle M G. Optimization of lobe mixer geometry and nozzle length for minimum jet noise. AIAA Paper 2000-1963, 2000
    [82]徐亮.波瓣混合器的气动和红外特性数值计算.南京航空航天大学硕士论文,2007
    [83]赵伶伶.花瓣燃烧器的稳燃性能与性能研究.东南大学博士学位论文,2005
    [84] Bradbury L J, Khadem A H. The distortion of a jet by tabs. Journal of Fluid Mechnics, 1975,70(4): 801~813
    [85] Longmire E K, Eaton J K. Control of jet structure by crown-shaped nozzles. AIAA Journal, 1992, 30(2): 505~510
    [86] Ahuja K K. Mixing enhancement and jet noise reduction through tabs plus ejector. AIAA Paper 93-4347, 1993
    [87] Gretta W J, Smith C R.The Flow structure and statistics of a passive mixing tab. Journal of Fluids Engineering, 1993, 115: 255~263
    [88] Zaman K B M Q. Streamwise vorticity generation and mixing enhancement in free jets by delta-tabs. AIAA Paper 93-3253, 1993
    [89] Zaman K B M Q, Reeder M F, Samimy M. Control of an axisymmetric jet using vortex generators. Phys. Fluids, 1994, 6(2): 778~793
    [90] Zhang S C, Scheider S P. Molecular-mixing measurements and turbulent structure visualization in a round jet with tabs. AIAA Paper 94-3082, 1994
    [91] Zaman K B M Q, Foss J K. The effect of vortex generation on a jet in a cross-flow. Physics of Fluid, 1997, 9: 106~114
    [92] Steffen C J, Reddy D R, Zaman K B M Q. Numerical modeling of jet entrainment for nozzles fitted with delta tabs. AIAA Paper 97-0709, 1997
    [93] Zaman K B M Q. Reduction of jet penetration in a cross-flow by using tabs. AIAA Paper 98-3276, 1998
    [94] Seiner J M. Mixing enhancement by tabs in round supersonic jets. AIAA Paper 98-2326, 1998
    [95] Reddy D R, Zaman K B M Q. Computational study of effect of tabs on a jet in a cross flow. AIAA Paper 99-3215, 1999
    [96] Hui HU, Tetsuo SAGA, Toshio KOBAYASHI, et al. Passive control on jet mixing flows by using vortex generators. Proceedings of the Sixth Triennial International Symposium on Fluid Control, Measurement and Visualization, Sherbrooke, Canada, 2000: 1~6
    [97] Mi J, Nathan G J, Nobes D S. Mixing characteristics of axisymmetric free jets from a contoured nozzle, an orifice plate and a pipe. Journal of Fluids Engineering, 2001, 123: 878~883
    [98] Yang W, Meng H, Sheng J. Dynamics of hairpin vortices generated by a mixing tab in a channel flow. Experiments in Fluid, 2001, 30: 705~722
    [99] Yu S C M, Koh P K, Chua L P. An experimental investigation of two-stream mixing flow with a single delta tab. International Journal of Heat and Fluid Flow, 2001, 22: 62~71
    [100] Chua L P, Yu S C M, Wang X K. Flow visualization and measurement of a square jet withmixing tabs. Experimental Thermal and Fluid Science, 2003, 27: 731~744
    [101] Wang X K, Chua L P, Yu S C M. On the near-field of a square jet with vortex-generating tabs. Fluid Dynamics Research, 2003, 32: 99~117
    [102] Zaman K B M Q. Effect of oscillating tabs on a jet-in-cross-flow. AIAA Paper 2003-0632, 2003
    [103] Reddy D R, Zaman K B M Q. Computational study of effect of tabs on a jet in a cross flow. Computers and Fluids, 2006, 35: 712~723
    [104]黄勇,吴建航,吴寿生.小突片强化混合研究.推进技术,1999,20(5):86~90
    [105]黄勇,郭志辉,魏福清,等.收扩喷管加小突片对尾喷流红外辐射的影响.航空动力学报,2001,16(1):19~22
    [106]黄勇,郭志辉,魏福清,等.小突片对热射流红外辐射的影响研究.推进技术,2001,22(2):122~125
    [107]王强,额日其太,杨勇.小突片强化混合结构三维流场数值模拟.推进技术,2001,22(3):215~218
    [108]陈方,吴寿生,魏福清,等.常压双涵进气条件下小突片强化混合研究.航空动力学报,2002,17(1):35~39
    [109]左秀娟,黄勇,李永,等.喷管加装小突片强化射流混合的PIV测量.推进技术,2004,25(1):15~18
    [110]崔金雷,张会强,容易,等.两相圆湍射流喷口小突片对强化射流混合作用影响的流动显示.实验流体力学,2005,19(3):14~20
    [111]张召.波瓣与突片组合式强化掺混结构的气动特性研究.南京航空航天大学硕士学位论文,2005
    [112]吴弢.突片型圆喷管引射掺混特性的研究.南京航空航天大学硕士学位论文,2007
    [113]杨成凤.单排气膜和多孔全覆盖气膜冷却研究.南京航空航天大学博士学位论文,2009
    [114]燕小芬,王兵,王希麟.颗粒对小突片喷口湍射流调制的研究.推进技术,2007,28(3):253~257
    [115] Nasir H, Acharya S, Ekkad S V. Improve film cooling from cylindrical angled holes with triangular tabs: effect of tab orientations. International Journal of Heat and Fluid Flow, 2003, (24): 657~668
    [116] Gao N, Sun H, Ewing D. Heat transfer to impinging round jets with triangular tabs. International Journal of Heat and Mass Transfer, 2003, 46: 2557~2569
    [117]姚玉,张靖周,李永康.带三角形突片气膜冷却结构换热特性的数值研究.航空动力学报,2006,21(4):658~662
    [118]陈利强.突片作用下气膜冷却的实验与数值研究.南京航空航天大学硕士学位论文,2008
    [119]杨成凤,张靖周,陈利强,等.前缘突脊倾斜气膜冷却效果的实验.工程热物理学报,2008,29(7):1174~1176
    [120]王卫东.垂直射流混合的三维湍流数值模拟.推进技术,1998,19(2):58~62
    [121]蒋平,郭印诚,张会强,等.矩形射流中的流向涡分布特性及作用.清华大学学报(自然科学版),2005,45(8):1110~1113
    [122]陶文铨.数值传热学(第二版).西安:西安交通大学出版社,2001:333~478
    [123] Kolmogorov A N. Turbulent flow equations of incompressible fluid. Bulletin of Academic of Science of Soviet Union, Physics Secries, 1962, 1: 56~58
    [124] Yakhot V, Orzag S A. Renormalization group analysis of turbulence: Basic Theory. Science Compute, 1986, 1: 3~11
    [125] Shih T H, Lion W W, Shabbir A. A new k-εeddy viscosity model for high Reynolds number turbulent flows. Compute Fluids, 1995, 24(3): 227~238
    [126]徐有恒,穆晟.基础流体实验.上海:复旦大学出版社,1990:54~91
    [127]张华,赵文柱.热工测量仪表(第3版).北京:冶金工业出版社,2006:70~93

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700