收敛缝形孔气膜冷却特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气膜冷却在现代航空涡轮发动机热端部件的冷却结构中具有十分重要的作用。尽管国内外针对气膜冷却已经开展了大量的研究,但进一步提高气膜冷却的性能仍然是一个富于挑战和创新的研究课题,其核心问题在于如何降低气膜出流向主流的穿透率以及增强气膜出流向下游的延伸能力。本文以此为研究背景,对一种新型收敛缝形气膜孔冷却结构的流动和换热特性开展了数值和实验研究。研究内容主要包含两个方面:其一,针对平板收敛缝形气膜孔的冷却结构,分析和探讨收敛缝形气膜孔的流动传热特性,揭示其强化冷却的物理特征,系统研究气膜孔结构参数对于冷却特性的影响规律,获取较为优化的结构参数;其二,在平板气膜冷却的基础上,开展涡轮叶片收敛缝形孔气膜冷却特性的研究,归纳主流雷诺数、吹风比及气膜孔弦向位置等因素对叶栅气动及叶片换热特性的影响规律。
     对平板收敛缝形气膜孔影响气膜出流流动和冷却效果的机制进行了研究。研究结果表明,由于收敛缝形气膜孔所固有的流道型面,即在圆转矩形的过渡过程中,气膜孔沿出流方向呈逐渐收敛状,在展向则呈两侧对称扩张状,使得气膜出流的状况以及气膜出流与主流的相互作用均具有其独特的物理特征。主要体现在:(1)二次流在两侧扩展流动并在两侧向上抬升形成与常规圆形气膜孔卵形涡对旋向相反的涡对,涡对旋向的改变,避免了常规圆形气膜孔卵形涡对诱导主流向气膜孔两侧区域的侵入现象,使得气膜出流在展向上的覆盖更为均匀;(2)二次流在收敛孔内的加速流动提升了气膜出流向下游的延伸能力,同时气膜出流在侧向的扩张又使得气膜出流向主流的穿透得到了有效抑制,气膜出流的速度剖面具有沿流向峰值速度增加且峰值速度对应的壁面法向距离减小的特征。因此,与常规圆形气膜孔相比,收敛缝形气膜孔能够有效改善气膜冷却效率。
     在较宽的吹风比范围内,对平板收敛缝形气膜孔的冷却特性进行了研究,较为系统地分析了收敛缝形气膜孔的结构参数对冷却特性的影响。研究结果表明,随着吹风比的增加,收敛缝形孔的流量系数和冷却效率均随着增大;无论在何种吹风比条件下,收敛缝形孔的冷却效率均高于圆形孔,且在大吹风比下更为显著;缝宽0.2d、高度为1.2d及倾角35°左右的气膜孔具有较高的冷却效率及流量系数,是收敛缝形孔的较优结构参数。
     针对某型导向叶片的曲面结构,研究了吸力面收敛缝形孔气膜冷却对涡轮叶栅气动损失的影响。研究结果表明,收敛缝形气膜孔的能量损失和总压损失系数均随着吹风比的增加而增加;随着主流雷诺数的增加,不同位置处气膜孔的能量损失系数随之降低,总压损失系数随之增加;叶栅通道喉部上游气膜孔的能量损失及总压损失系数最低,而喉部下游的气膜孔在大部分工况下的损失系数最高;与圆形孔相比,位于叶栅通道喉部上游收敛缝形气膜孔的损失系数较低,位于叶栅通道喉部及下游则存在气动损失较高的工况。
     叶片吸力面3个典型位置处收敛缝形孔的气膜冷却效率随着吹风比及主流雷诺数的增加而提高,显示出冷却效率随冷气流量增加而提高的特点;相对来说,叶栅喉部前气膜孔排的冷却效果较好;与圆形孔相比,收敛缝形孔的冷气能更好地覆盖下游叶片,在展向形成相对连续的气膜,冷却效率的均匀性较好,且沿程的冷却效率较高。收敛缝形气膜孔的对流换热增强比随着吹风比及主流雷诺数的增加而提高,在不同工况下,收敛缝形孔的换热增强能力高于圆形孔。
     相对于常规圆柱形气膜孔,位于叶栅通道喉部上游的收敛缝形气膜孔既具有较低的气动损失系数又具有较高的气膜冷却效率,说明在叶栅流动的加速区域开设收敛缝形气膜孔可得到理想的气动和冷却效果。
Film cooling plays a very important role in the cooling configuration of the modern gas turbine engines. A great deal of investigations focusing on the film cooling has been made, but the innovative technique enhancing the film cooling efficiency is also regarded as a challenging problem, of which the key is how to reduce the penetration of film outflow to primary flow and enhance the extensibility of film outflow along primary flow direction. Based on this research background, an innovation converging slot hole (console) film cooling configuration was studied in the present paper to further understand its flow and heat transfer characteristics. The content of the present investigation contains two main aspects. Firstly, for the plate console film cooling scheme, the flow and heat transfer performances of this innovative film cooling configuration is researched to reveal its physical mechanism for enhancing cooling characteristic, and the effects of film hole constructural parameters on the performance of film cooling are also studied to optimize the cooling film hole. Secondly, for the blade film cooling scheme, the study is made on the effects of primary flow Reynolds number, coolant blowing ratio and holes location on aerodynamic loss and heat transfer characteristics with converging slot film hole.
     The physical mechanism on film cooling enhancement of converging slot hole film cooling is investigated. The results show that the film outflow from converging slot hole is of inherent feature owing to its special internal flow passage, converging in streamwise direction and expanding in lateral direction, which behaives mainly that: (1) the secondary flow expands in the lateral direction and forms a pair of vortices originating from the converging slot hole sides, which is opposite to that from the cylindrical hole center. The alteration of vortice rotation direction makes the film coverage more uniform in lateral direction and prevents the primary flow from invading to the local area between film holes. (2) the secondary flow accelation insides the converging slot hole is benefit to promoting the film outflow spread along streamwise direction, and the secondary flow expanding in the lateral direction is capable of suppressing the film outflow penetration to the primary flow simultaneously, which makes the film outflow velocity distribution more reasonable, that is the film outflow peak velocity is promoted and the wall normal distance corresponding to film outflow peak velocity is reduced. Thus the adiabatic wall film cooling effectiveness for the converging slot hole is higher than that of the cylindrical film hole.
     The film cooling characteristics for the converging slot hole in a range of blowing ratios are studied, and the effects of converging slot hole parameters on the film cooling characteristics are analysed. Results show that the discharge coefficient and cooling effectiveness for converging slot hole increase with the increment of the blowing ratio. Under the same blowing ratio, the discharge coefficient and cooling effectiveness of the converging slot hole is higher than cylindrical hole, the advantage in improving film cooling effectiveness is more significant in the bigger blowing ratio case. In general, the relatively optimized geometry parameters on converging slot hole is 0.2d for slot width, 1.2d for hole height and 35°for inclination (here d is the diameter of film hole at inlet).
     Investigation on aerodynamic loss of turbine cascade with converging slot film cooling holes at blade suction surface is conducted for a typical cascade. The results show that both of the kinetic loss and total pressure loss coefficient of converging slot hole at different location increase with the increment of the coolant blowing ratio. With increment of the mainstream Reynolds number, the kinetic loss coefficient is reduced, while total pressure loss is increase. The kinetic loss and total pressure loss induced by the injection from film holes located at upstream of cascade throat are lower than that of the other locations, while the aerodynamic loss coefficients corresponding to downstream of throat locations are the biggest in most cases. The aerodynamic loss coefficients of converging slot hole at upstream of throat are lower than those of conventional round hole. If located at downstream of throat locations, the aerodynamic loss coefficients of converging slot hole might be higher than cylindrical hole in some cases.
     The film cooling effectiveness of converging slot hole at different location on the blade suction surface increases with the increment of the primary flow Reynolds number and coolant blowing ratio. Under the same condition, the cooling effectiveness of converging slot hole at upstream of blade cascade throat is almost higher than that of the other location. Compared with the cylindrical hole, the converging slot hole cooling effectiveness is improved obviously and more uniform in lateral variation at all locations. Heat transfer coefficient ratio of converging slot hole also increases with the increment of the primary flow Reynolds number and coolant blowing ratio. The heat transfer coefficient ratio of converging slot hole is higher than that of cylindrical hole at every situation.
     Compared with the cylindrical holes, the converging slot holes at upstream of blade cascade throat has lower aerodynamic loss coefficient and higher cooling effectiveness. It is indicated that perfect aerodynamics and film cooling characteristics could be obtained when the converging slot holes are set at blade cascade accelerated region.
引文
[1]葛绍岩,刘登瀛,徐靖中,等.气膜冷却.北京:科学出版社, 1985.
    [2] Fric T F, Roshko A. Vortical structure in the wake of a transverse jet. Journal of Fluid Mechanics, 1994, 279: 1-47.
    [3] Jones T V. Theory for the use of foreign gas in simulating film cooling. International Journal of Heat and Fluid Flow, 1999, 20: 349-354.
    [4] Burd S W, Simon T W. Measurements of discharge coefficients in film cooling. Journal of Turbomachinery, 1999, 121: 243-248.
    [5] Mayle R E, Anderson A. Velocity and temperature profiles for stagnation film cooling. Journal of Turbomachinery, 1991, 113: 457-463.
    [6] Lakehal D, Theodoridis G S, Rodi W. Three-dimensional flow and heat transfer calculations of film cooling at the leading edge of a symmetrical turbine blade model. International Journal of Heat and Fluid Flow, 2001, 22: 113-122.
    [7] Burd S W, Kaszeta R W, Simon T W. Measurements in film cooling flows: hole L/D and turbulence intensity effects. Journal of Turbomachinery, 1998, 120: 791-798.
    [8] Lutum E, Johnson B V. Influence of the hole length-to-diameter ratio on film cooling with cylindrical holes. Journal of Turbomachinery, 1999, 121: 209-216.
    [9] Goldstein R J, Jin P, Olson R L. Film cooling effectiveness and mass/heat transfer coefficient downstream of one row of discrete holes. Journal of Turbomachinery, 1999, 121: 225-232.
    [10] Mayhew J E, Baughn J W, Byerley A R. The effect of freestream turbulence on film cooling adiabatic effectiveness. International Journal of Heat and Fluid Flow, 2003, 24: 669-679.
    [11] Maiteh B Y, Jubran B A. Effects of pressure gradient on film cooling effectiveness from two rows of simple and compound angle holes in combination. Energy Conversion and Management, 2004, 45: 1457-1469.
    [12] Womack K M, Volino R J, Schultz M P. Measurements in film cooling flows with periodic wakes. Journal of Turbomachinery, 2008, 130: 041008-13.
    [13] Gritsch M, Schulz A, Wittig S. Effect of crossflows on the discharge coefficient of film cooling holes with varying angles of inclination and orientation. Journal of Turbomachinery, 2001, 123: 781-787.
    [14] Aga V, Rose M, Abhari R S. Experimental flow structure investigation of compound angledfilm cooling. Journal of Turbomachinery, 2008, 130: 031005-8.
    [15]刘捷,韩振兴,刘建军,等.射流注入角对平板气膜冷却特性影响的实验研究.工程热物理学报, 2007, 28: 409-411.
    [16] Gartshore I, Salcudean M. Film cooling injection hole geometry: hole shape comparison for compound cooling orientation. AIAA Journal, 2001, 39: 1493-1499.
    [17] Mahjoob S, Taeibi-Rahni M. Parameters affecting turbulent film cooling—Reynolds-averaged Navier-Stokes computational simulation. Journal of Thermophysics and Heat Transfer, 2006, 20: 92-100.
    [18]李少华,宋东辉,刘建红,等.不同孔型平板气膜冷却的数值模拟.中国电机工程学报, 2006, 26(17): 112-116.
    [19] Yuen C H N, Martinez-Botas R F. Film cooling characteristics of a single round hole at various streamwise angles in a crossflow: part 1 effectiveness. International Journal of Heat and Mass Transfer, 2003, 46: 221-235.
    [20]林宇震,宋波,李彬,等.不同倾斜角多斜孔壁冷却方式绝热温比研究.航空学报, 1999, 20: 201-204.
    [21]胡娅萍,吉洪湖.致密多孔壁冷流入射角对冷却效果影响的数值研究.航空动力学报, 2005, 20: 116-119.
    [22]郭婷婷,金建国,李少华,等.不同出射角度对气膜冷却流场的影响,中国电机工程学报, 2006, 26(16): 117-121.
    [23] Afejuku W O, Hay N, Lampard D. Film cooling effectiveness of double rows of holes. Journal of Engineering for Power, 1980, 102: 601-606.
    [24] Lee S W, Lee J S, Ro S T. Experimental study on the flow characteristics of streamwise inclined jets in crossflow on flat plate. Journal of Turbomachinery, 1994, 116: 97-105.
    [25] Kohli A, Bogard D G. Adiabatic effectiveness, thermal fields, and velocity fields for film cooling with large angle injection. Journal of Turbomachinery, 1997, 119: 352-358.
    [26] Lee S W, Kim Y B, Lee J S. Flow characteristics and aerodynamic losses of film-cooling jets with compound angle orientations. Journal of Turbomachinery, 1997, 119: 310-319.
    [27] Ligrani P M, Ciriello S, Bishop D T. Heat transfer, adiabatic effectiveness, and injectant distribution downstream of a single row and two staggered rows of compound angle film-cooling holes. Journal of Turbomachinary, 1992, 114: 687-700.
    [28] Ligrani P M, Ramsey A E. Film cooling from spanwise-oriented holes in two staggered rows. Journal of Turbomachinary, 1997, 119: 562-567.
    [29] Ligrani P M, Ramsey A E. Film cooling from a single row of holes oriented in spanwise/normal planes. Journal of Turbomachinary, 1997, 119: 770-776.
    [30]刘江涛,吴海玲,陶涛,等.斜孔气膜冷却数值模拟分析.工程热物理学报, 2004, 25: 1034-1036.
    [31] Goldstein R J, Jin P. Film cooling downstream of a row of discrete holes with compound angle. Journal of Turbomachinary, 2001, 123: 222-230.
    [32] Nasir H, Ekkad S V, Acharya S. Effect of compound angle injection on flat surface film cooling with large streamwise injection angle. Experimental Thermal and Fluid Science, 2001, 25: 23-29.
    [33] Jubran B A, Al-Hamadi A K, Theodoridis G. Film cooling and heat transfer with air injection through two rows of compound angle holes. Heat and Mass Transfer, 1997, 33: 93-100.
    [34] Jubran B A, Maiteh B Y. Film cooling and heat transfer from a combination of two rows of simple and/or compound angle holes in inline and/or staggered configuration. Heat and Mass Transfer, 1999, 34: 495-502.
    [35] Dittmar J, Schulz A, Wittig S. Assessment of various film-cooling configurations including shaped and compound angle holes based on large-scale experiments. Journal of Turbomachinary, 2003, 125: 57-64.
    [36] Mayhew J E, Baughn J W, Byerley A R. The effect of freestream turbulence on film cooling heat transfer coefficient and adiabatic effectiveness using compound angle holes. Journal of Heat Transfer, 2004, 3: 201-212.
    [37]刘捷,韩振兴,蒋洪德,等.不同复合角对平板气膜冷却特性影响的实验研究.工程热物理学报, 2008, 29: 1311-1315.
    [38] Ahn J, Jung I S, Lee J S. Film cooling from two rows of holes with opposite orientation angles: injectant behaviour and adiabatic film cooling effectiveness. International Journal of Heat and Fluid Flow, 2003, 24: 91-99.
    [39] Kusterer K, Bohn D, Sugimoto T, et al. Double-jet ejection of cooling air for improved film cooling. Journal of Turbomachinary, 2007, 129: 809-815.
    [40] Sarkar S, Bose T K. Numerical analysis of slot-film cooling: effectiveness and flow-field. Journal of Fluids Engineering, 1996, 118: 864-867.
    [41] Cho H H, Ham J K. Influence of injection type and feed arrangement on flow and heat transfer in an injection slot. Journal of Turbomachinery, 2002, 124: 132-141.
    [42] Jia R G, Sunden B, Miron P, et al. A numerical and experimental investigation of the slotfilm-cooling jet with various angles. Journal of Turbomachinery, 2005, 127: 635-645.
    [43] Gritsch M, Schulz A, Wittig S. Adiabatic wall effectiveness measurements of film-cooling holes with expanded exits. Journal of Turbomachinery, 1998, 120: 549-556.
    [44] Gritsch M, Colban W, Schar H, et al. Effect of hole geometry on the thermal performance of fan-shaped film cooling holes. Journal of Turbomachinery, 2005, 127: 718-725.
    [45]朱惠人,许都纯,刘松龄,等.簸箕形排孔气膜冷却实验研究.航空学报, 1997, 18: 535-538.
    [46]朱惠人,许都纯,刘松龄,等.锥形排孔气膜冷却实验研究.推进技术, 1998, 19: 65-69.
    [47] Lu Y P, Faucheaux D, Ekkad S V. Film cooling measurements for novel hole configurations. ASME Paper, HT2005-72396, 2005.
    [48] Thole K, Gritsch M, Schulz A, et al. Flowfield measurements for film-cooling holes with expanded exits. Journal of Turbomachinery, 1998, 120: 327-336.
    [49] Bell C M, Hamakawa H, Ligrani P M. Film cooling from shaped holes. Journal of Heat Transfer, 2000, 122: 224-232.
    [50] Yu Y, Yen C H, Shih T I P, et al. Film cooling effectiveness and heat transfer coefficient distributions around diffusion shaped holes. Journal of Heat Transfer, 2002, 124: 820-827.
    [51] Saumweber C, Schulz A. Interaction of film cooling rows: effects of hole geometry and row spacing on the cooling performance downstream of the second row of holes. Journal of Turbomachinery, 2004, 126: 237-246.
    [52] Lee H W, Park J J, Lee J S. Flow visualization and film cooling effectiveness measurements around shaped holes with compound angle orientations. International Journal of Heat and Mass Transfer, 2002, 45: 145-156.
    [53] Zuniga H A, Krishana V, Kapat J S. Effect of non-symmetrical lateral diffusion on film cooling effectiveness from a row of shaped holes. AIAA Paper 2008-5165, 2008.
    [54]杨成凤,张靖周,陈利强,等.扩展型面排孔气膜冷却的实验.航空动力学报, 2008, 23: 1765-1771.
    [55] Sargison J E, Guo S M, Oldfield M L G, et al. A converging slot-hole film-cooling geometry—part 1:low-speed flat-plate heat transfer and loss. Journal of Turbomachinary, 2002, 124: 453-460.
    [56] Sargison J E, Oldfield M L G, Guo S M, et al. Flow visualization of the external flow from a converging slot-hole film-cooling geometry. Experiments in Fluids, 2005, 38: 304-318.
    [57] Azzi A, Jubran B A. Numerical modelling of film cooling from converging slot-hole. HeatMass Transfer, 2007, 43: 381-388.
    [58]姚玉,张靖周,周楠. Console形气膜孔改善冷却效率的数值研究.航空动力学报, 2008, 23: 1772-1777.
    [59]刘存良,朱惠人,白江涛.收缩-扩张形气膜孔提高气膜冷却效率的机理研究.航空动力学报, 2008, 23: 598-604.
    [60]刘存良,朱惠人,白江涛,等.基于瞬态液晶测量技术的收缩-扩张形孔气膜冷却特性.航空学报, 2009, 30: 812-818.
    [61] Lee J S, Jung H G, Kang S B. Effect of embedded vortices on film cooling performance on a flat plate. Experimental Thermal and Fluid Science, 2002, 26: 197-204.
    [62] Na S, Shih T I P. Increasing adiabatic film-cooling effectiveness by using an upstream ramp. Journal of Heat Transfer, 2007, 129: 464-451.
    [63] Barigozzi G, Franchini G, Perdichizzi A. The effect of an upstream ramp on cylindrical and fan-shaped hole film cooling: part 2—adiabatic effectiveness results. ASME Paper, GT2007-27079.
    [64]何立明,蒋永健,康强,等.利用上游斜坡改善气膜冷却效率的数值研究.推进技术, 2009, 30: 9-13.
    [65] Shih T I P, Na S, Chyu M. Preventing hot gas ingestion by film-cooling jets via flow-aligned blockers. ASME Paper, GT2006-91161, 2006.
    [66] Bell C M, Ligrani P M, Hull W A, et al. Film cooling subject to bulk flow pulsations: effects of blowing ratio, freestream velocity, and pulsation frequency. International Journal of Heat and Mass Transfer, 1999, 42: 4333-4344.
    [67] Lee J S, Jung I S. Effect of bulk flow pulsations on film cooling with compound angle holes. International Journal of Heat and Mass Transfer, 2002, 45: 113-123.
    [68] Coulthard S M, Volino R J, Flack K A. Effect of jet pulsing on film cooling—part 1: effectiveness and flow-field temperature results. Journal of Turbomachinary, 2007, 129: 232-246.
    [69] Bunker R S. Film cooling effectiveness due to discrete holes within a transverse surface slot. ASME paper, GT2002-30178, 2002.
    [70] Lu Y P, Nasir H, Ekkad S V. Film cooling from a row of holes embedded in transverse slots. ASME paper, GT2005-68598, 2005.
    [71] Lu Y P, Dhungel A, Ekkad S V, et al. Effect of trench width and depth on film cooling from cylindrical holes embedded in trenches. Journal of Turbomachinery, 2009, 131: 011003-13.
    [72] Altorairi M S, Candidate M S. Film cooling from a row of inclined holes in a tangential slot. 2003 ME Graduate Student Conference, 2003.
    [73] Baheri S, Alavi Tabrizi S P, Jubran B A. Film cooling effectiveness from trenched shaped and compound holes. Heat Mass Transfer, 2008, 44: 989-998.
    [74] Lu Y P, Dhungel A, Ekkad S V, et al. Film cooling measurements for cratered cylindrical inclined holes. Journal of Turbomachinery, 2009, 131: 011005-12.
    [75] Zaman K B M Q, Foss J K. The effect of vortex generators on a jet in a cross-flow. Physics of Fluids, 1997, 9: 106-114.
    [76] Nasir H, Ekkad S V, Acharya S. Flat surface film cooling from cylindrical holes with discrete tabs. Journal of Thermophysics and Heat Transfer, 2003, 17: 304-312.
    [77] Nasir H, Acharya S, Ekkad S. Improved film cooling from cylindrical angled holes with triangular tabs: effect of tab orientations. International Journal of Heat and Fluid Flow, 2003, 24: 657-668.
    [78]李永康,张靖周,姚玉.利用三角形突片改善气膜冷却效率的数值研究.航空动力学报, 2006, 21: 83-87.
    [79]陈利强,杨卫华,杨成凤,等.梯形突片气膜冷却特性的实验.航空动力学报, 2008, 23: 1660-1665.
    [80]杨成凤,张靖周,陈利强,等.前缘突脊倾斜气膜冷却效果的实验.工程热物理学报, 2008, 29: 1174-1176.
    [81] Heidmann J D, Ekkad S. A novel antivortex turbine film-cooling hole concept. Journal of Turbomachinery, 2008, 130: 031020-9.
    [82] Dhungel A, Lu Y P, Phillips W, et al. Film cooling from a row of holes supplemented with anti vortex holes. Journal of Turbomachinery, 2009, 131: 021007-10.
    [83]蒋永健,何立明,苏建勇,等.利用小孔射流改善气膜冷却效率的数值研究.航空动力学报, 2008, 23: 1375-1380.
    [84] Takeishi K, Matsuura M, Aoki S, et al. An experimental study of heat transfer and film cooling on low aspect ratio turbine nozzles. Journal of Turbomachinery, 1990, 112: 488-496.
    [85] Ammari H D, Hay N, Lampard D. Effect of acceleration on the heat transfer coefficient on a film-cooled surface. Journal of Turbomachinery, 1991, 113: 464-471.
    [86] Garg V K, Gaugler R E. Effect of velocity and temperature distribution at the hole exit on film cooling of turbine blades. Journal of Turbomachinery, 1997, 119: 343-351.
    [87] Drost U, Bolcs A. Investigation of detailed film cooling effectiveness and heat transferdistributions on a gas turbine airfoil. Journal of Turbomachinery, 1999, 121: 233-242.
    [88] Cutbirth J M, Bogard D G. Thermal field and flow visualization within the stagnation region of a film-cooled turbine vane. Journal of Turbomachinery, 2002, 124: 200-206.
    [89] Polanka M D, Cutbirth J M, Bogard D G. Three component velocity field measurements in the stagnation region of a film cooled turbine vane. Journal of Turbomachinery, 2002, 124: 445-452.
    [90] Bogard D G, Thole K A. Gas turbine film cooling. Journal of Propulsion and Power, 2006, 22: 249-270.
    [91] Lu Y, Allison D, Ekkad S V. Turbine blade showerhead film cooling: influence of hole angle and shaping. International Journal of Heat and Fluid Flow, 2007, 28: 922-931.
    [92] Rozati A, Tafti D K. Effect of coolant-mainstream blowing ratio on leading edge film cooling flow and heat transfer—LES investigation. International Journal of Heat and Fluid Flow, 2008, 29: 857-873.
    [93] Goldstein R J, Eckert E R G, Eriksen V L, et al. Film cooling following injection through inclined circular tubes. NASA CR-72612, 1969.
    [94] Ito S, Goldstein R J, Eckert E R G. Film cooling of a gas turbine blade. Journal of Engineering for Power, 1978, 100: 476-481.
    [95] Schwarz S G, Goldstein R J, Eckert E R G. The influence of curvature on film cooling performance. Journal of Turbomachinery, 1991, 113: 472-478.
    [96] Berhe M K, Patankar S V. Curvature effects on discrete-hole film cooling. Journal of Turbomachinery, 1999, 121: 781-791.
    [97] Berhe M K, Patankar S V. Investigation of discrete-hole film cooling parameters using curved-plate models. Journal of Turbomachinery, 1999, 121: 792-803.
    [98] Gao Z H, Narzary D P, Han J C. Film cooling on a gas turbine blade pressure side or suction side with axial shaped holes. International Journal of Heat and Mass Transfer, 2008, 51: 2139-2152.
    [99] Gao Z H, Narzary D P, Han J C. Film-cooling on a gas turbine blade pressure side or suction side with compound angle shaped holes. Journal of turbomachinery, 2009, 131: 011019-11.
    [100]韩振兴,末永洁,刘石.吹风比对气膜冷却效率影响的实验研究.航空学报, 2004, 25: 551-555.
    [101] Foster N W, Lampard D. Effects of density and velocity ratio on discrete hole film cooling. AIAA Journal, 1975, 13: 1112-1114.
    [102] Sinha A K, Bogard D G, Crawford M E. Film-cooling effectiveness downstreams of a single row of holes with variable density ratio. Journal of Turbomachinery, 1991, 113: 442-449.
    [103] Haas W, Rodi W, Schonung B. The influence of density difference between hot and coolant gas on film cooling by a row of holes: predictions and experiments. Journal of Turbomachinery, 1992, 114: 747-755.
    [104] Ou S, Mehendale A B, Han J C. Influence of high mainstream turbulence on leading edge film cooling heat transfer: effect of film hole row location. Journal of Turbomachinery, 1992, 114: 716-723.
    [105] Ou S, Han J C. Influence of mainstream turbulence on leading edge film cooling heat transfer through two rows of inclined film slots. Journal of Turbomachinery, 1992, 114: 724-733.
    [106] Ou S, Han J C. Leading edge film cooling heat transfer through one row of inclined film slots and holes including mainstream turbulence effects. Journal of Heat Transfer, 1994, 116: 561-569.
    [107] Ou S, Rivir R B. Leading edge film cooling heat transfer with high free stream turbulence using a transient liquid crystal image method. International Journal of Heat and Fluid Flow, 2001, 22: 614-623.
    [108] Ames F E. Aspects of vane film cooling with high turbulence: part2—adiabatic effectiveness. Journal of Turbomachinery, 1998, 120: 777-784.
    [109] Ekkad S V, Han J C, Du H. Detailed film cooling measurements on a cylindrical leading edge model: effect of free-stream turbulence and coolant density. Journal of Turbomachinery, 1998, 120: 799-807.
    [110] Heidmann J D, Lucci B L. An experimental study of the effect of wake passing on turbine blade film cooling. Journal of Turbomachinery, 2001, 123: 214-221.
    [111]蒋雪辉,赵晓路.非定常尾迹对叶栅气膜冷却效率的影响.推进技术, 2004, 25: 311-315.
    [112]袁锋,竺晓程,杜朝辉.尾迹对气膜冷却影响的三维非定常数值模拟.动力工程, 2006, 26: 818-821.
    [113] Lutum E, von Wolfersdorf J, Weigand B, et al. Film cooling on a convex surface with zero pressure gradient flow. International Journal of Heat and Mass Transfer, 2000, 43: 2973-2987.
    [114] Lutum E, von Wolfersdorf J, Semmler K, et al. An experimental investigation of film cooling on a convex surface subjected to favourable pressure gradient flow. International Journal of Heat and Mass Transfer, 2001, 44: 939-951.
    [115] Lutum E, von Wolfersdorf J, Semmler K, et al. Film cooling on a convex surface: influence ofexternal pressure gradient and Mach number on film cooling performance. Heat and Mass Transfer, 2001, 38: 7-16.
    [116] Teng S, Han J C, Poinsatte P E. Effect of film-hole shape on turbine-blade film-cooling performance. Journal of Thermophysice and Heat Transfer, 2001, 15: 257-265.
    [117] Furukawa T, Ligrani P M. Transonic film cooling effectiveness from shaped holes on a simulated turbine airfoil. Journal of Thermophysics and Heat Transfer, 2002, 16: 228-237.
    [118] Dittmar J, Schulz A, Wittig S. Adiabatic effectiveness and heat transfer coefficient of shaped film cooling holes on a scaled guide vane pressure side model. International Journal of Rotating Machinery, 2004, 10: 345-354.
    [119] York W D, Leylek J H. Leading-edge film-cooling physics—part 3: diffused hole effectiveness. Journal of Turbomachinery, 2003, 125: 252-259.
    [120] Sargison J E, Guo S M, Oldfield M L G, et al. A converging slot-hole film-cooling geometry—part 2: transonic nozzle guide vane heat transfer and loss. Journal of Turbomachinery, 2002, 124: 461-471.
    [121] Kim Y J, Kim S M. Influence of shaped injection holes on turbine blade leading edge film cooling. International Journal of Heat and Mass Transfer, 2004, 47: 245-256.
    [122] Okita Y, Nishiura M. Film effectiveness performance of an arrowhead-shaped film-cooling hole geometry. Journal of Turbomachinery, 2007, 129: 331-339.
    [123]姚玉,张靖周,郭文.气膜孔形状对导叶冷却效果影响的数值研究.航空动力学报, 2008, 23: 1666-1671.
    [124]姚玉,张靖周,郭文.气膜孔角度对导叶冷却效果影响的数值研究.航空动力学报, 2009, 24: 507-512.
    [125] Denton J D. Loss mechanisms in turbomachinery. Journal of Turbomachinery, 1993, 115: 621-656.
    [126] Day C R B, Oldfield M L G, Lock G D, et al. Efficiency measurements of an annular nozzle guide vane cascade with different film cooling geometries. ASME Paper, 1998, 98-GT-538.
    [127] Day C R B, Oldfield M L G, Lock G D. The influence of film cooling on the efficiency of an annular nozzle guide vane cascade. Journal of Turbomachinery, 1999, 121: 145-151.
    [128] Walters D K, Leylek J H. Impact of film-cooling jets on turbine aerodynamic losses. Journal of Turbomachinery, 2000, 122: 537-545.
    [129] Mee D J. Techniques for aerodynamic loss measurement of transonic turbine cascades with trailing edge region coolant ejection. ASME Paper, 1992, 92-GT-157.
    [130] Mee D J, Baines N C, Oldfield M L G, et al. An examination of the contributions to loss on a transonic turbine blade in cascade. Journal of Turbomachinery, 1992, 114: 155-162.
    [131] Osnaghi C, Perdichizzi A, Savini M, et al. The influence of film-cooling on the aerodynamic performance of a turbine nozzle guide vane. ASME Paper, 1997, 97-GT-522.
    [132] Prust H W. Two-dimensional cold-air cascade study of a film-cooled turbine stator blade, 2: experimental results of full film cooling tests. NASA TM X-3153, 1974.
    [133] Tabakoff W, Hamed A. Two-dimensional flow losses of a turbine cascade with boundary layer injection. ASME Paper, 1972, 72-GT-42.
    [134] Tabakoff W, Earley R. Theoretical and experimental study of flow through cascade with coolant flow injection. AIAA Paper, 1975, 75-843.
    [135] Ito S, Eckert E R G, Goldstein R J. Aerodynamic loss in a gas turbine stage with film cooling. Journal of Engineering for Power, 1980, 102: 964-970.
    [136] Haller B R, Camus J J. Aerodynamic loss penalty produced by film cooling transonic turbine blades. Journal of Engineering for Gas Turbines and Power, 1984, 106: 198-205.
    [137] Kollen O, Koschel W. Effect of film-cooling on the aerodynamic performance of a turbine cascade. AGARD CP-390, 1985.
    [138] Yamamoto A, Kondo Y, Murao R. Cooling-air injection into secondary flow and loss fields within a linear turbine cascade. Journal of Turbomachinery, 1991, 113: 375-383.
    [139] Hong Y, Fu C, Cunzhong G, et al. Investigation of cooling-air injection on the flow field within a linear turbine cascade. ASME Paper, 1997, 97-GT-520.
    [140] Kubo R, Otomo F, Fukuyama Y, et al. Aerodynamic loss increase due to individual film cooling injections from gas turbine nozzle surface. ASME Paper, 1998, 98-GT-497.
    [141] Urban M F, Hermeler J, Hosenfeld H G. Experimental and numerical investigations of film-cooling effects on the aerodynamic performance of transonic turbine blades. ASME Paper, 1998, 98-GT-546.
    [142]陈浮,杨科,宋彦萍,等.大转角反弯叶栅气膜冷却实验研究.航空动力学报, 2004, 19: 219-223.
    [143]许开富,乔渭阳,伊进宝,等.航空燃气涡轮冷气掺混流动损失的数值研究.航空学报, 2006, 27: 182-186.
    [144]乔渭阳,曾军,曾文演,等.气膜孔喷气对涡轮气动性能影响的实验研究.推进技术, 2007, 28: 14-19.
    [145]卫刚,凌代军,周山.不同位置冷气喷射的试验研究和数值分析.燃气涡轮试验与研究,2008, 21: 4-9.
    [146] Jackson D J, Lee K L, Ligrani P M, et al. Transonic aerodynamic losses due to turbine airfoil, suction surface film cooling. Journal of Turbomachinery, 2000, 122: 317-326.
    [147] Kapteijn C, Amecke J, Michelassi V. Aerodynamic performance of a transonic turbine guide vane with trailing edge coolant ejection: part 1—experimental approach. Journal of Turbomachinery, 1996, 118: 519-528.
    [148]高丽敏,刘波,姜正礼,等.不同尾缘喷射对涡轮叶栅气动性能的影响.推进技术, 2000, 21: 33-36.
    [149]王掩刚,刘波,姜健,等.涡轮叶片尾缘开缝喷气的数值模拟和试验研究.航空动力学报, 2006, 21: 474-479.
    [150]陶文铨.数值传热学.西安:西安交通大学出版社, 1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700