基于ANSYS的钢衬钢筋混凝土压力管道优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水电站钢衬钢筋混凝土压力管道的独特优势是钢衬与外围钢筋混凝土联合受力,同时允许在内水压作用下混凝土出现若干径向裂缝以发挥钢材强度。与压力钢管相比,在相同荷载条件下,它除了可以减薄钢衬,降低对板材加工、安装的难度并经济实用,还可降低发生事故的风险。这种管道布置在混凝土坝的下游坝面,对大坝整体结构削弱较少,又能避免坝体混凝土浇筑与钢管安装之间的施工干扰,已被国内外水电站工程设计所广泛采用。随着我国水电事业的不断发展,水电工程的规模日益庞大,水电站的压力管道的PD值也不断增大,作为水电站建筑关键性结构物,其运行安全稳定及结构形式直接关系到整个电站的安全稳定运行,关系到电站建设的投资,因此,准确地分析计算压力管道的应力状态,合理地选择钢衬厚度及外包混凝土的配筋率,具有十分重要的意义。
     本文在前人研究的基础上根据钢衬钢筋混凝土压力管道设计规范、结合结构模型实验成果和非线性分析理论,建立钢衬钢筋混凝土压力管道计算模型,使用先进有限元软件ANSYS对钢衬钢筋混凝土压力管道进行非线性分析,从而得到钢衬钢筋混凝土压力管道的应力分布特点和破坏机理;对钢衬钢筋混凝土压力管道的应力发展历程作了具体的分析;在保证结构安全性和混凝土开裂不超过允许值的前提下,对管道进行了优化设计。研究结果表明:
     1.运用ANSYS软件对水电站压力管道进行三维非线性有限元计算可以考虑混凝土与钢筋的交互作用,多轴应力状态下的材料特性,混凝土的开裂特性等因素,计算结果较经典理论分析更能反映实际。
     2.钢衬钢筋混凝土管道断面型式对管道的应力分布有很大影响,采用不同的计算有限元模型所得的结果可能相差很大。
     3.在钢衬钢筋混凝土压力管道结构优化设计中,约束条件众多,要全面考虑各种约束条件,遗漏或不恰当地规定约束条件,也会导致得不到最优解。钢材用量优化时,不能一味地追求尽量发挥钢材的作用,理论上必须同时保证由安全系数计算所得钢材折算厚度和以满足钢筋应力表达的混凝土开裂条件的钢材配置才是对结构有利的。
     4.结构优化时,用轴对称圆环模型进行有限元分析,可以方便地提取状态变量参数,所得结果比较可靠。经过优化,截面设计变量已最大程度的满足混凝土表面裂缝的限制要求,但考虑到方圆形模型腰部控制截面外环钢筋有可能出现较大拉应力而较早屈服,为防止最外层钢筋较早屈服,方圆形模型腰部控制截面(约-30°~35°)处还需多布置一些钢材。
Unique advantage of steel liner-reinforced concrete penstocks of hydropower stations is a kind of combination structure, it permit occuring radial crack in the concrete tube to maximizing Stress intensity of steel. Compared with penstock, it can reduce the thickness of steel liner, the sheet processing, installation difficulty, risk of accidents. Also it has economical use. This penstock is located on the downstream surface of concrete dam. The layout can less weaken the whole structure of the dam and avoid interruption between concrete pouring and penstock installation. The layout has been widely used at home and aboard. With the unceasing development of water and electricity enterprise of our country, daily increasing at scale of hydropower station in China, PD value of penstock is also growing. As a key structure building of hydropower station, operation security and structure stability of penstock are directly related to operation security and structure stability of the whole station. So it is of vital importance to analyze the stress state of penstocks accurately, select the thickness of steel liner and the ratio of concrete encasement einforcement reasonably.
     In this paper, the structure model of double steel liner-reinforced concrete penstocks is built and nonlinear analyzed by software named ANSYS and gained the structure style’s echanical character and destroy mechanism of steel liner-reinforced concrete penstocks and analyzed its stress development process and carried on the optimization design using the optimized module provided by ANSYS in the favor of APDL,which is based on design principle, research fruits, model test and nonlinear analysis fruits of steel liner-reinforced concrete penstocks. Under the premise of ensuring structural safety and cracking value of concrete not more than allowable value, this paper does the optimization design to penstock. The results show that:
     1. Analyzing finite element analysis model of steel 1iner-reinforced concrete penstocks by ANSYS can consider the factors: concretes and steel bar correlation, materials behavior under multiple spindle stress condition, concretes dehiscence characteristic and so on. The results are better than the theory analytic method in engneer practice.
     2. Section forms of steel liner-reinforced concrete penstocks of hydropower stations have great influence on its stress distribution. And the results of the different element calculation models might differ greatly.
     3. In the process of optimizational design of steel- lined reinforced concrete penstocks of hydropower stations, Constraints are many and must be fully considered. It could not get optimal solution if constraints be omitted and incorrectly limited. While optimizing the amount of steel, maximizing Stress intensity of steel is unsuitable. Theoretically, it must be suitable for both the thickness of steel products determined by single security factor and concrete cracking conditions determined by stress intensity of steel products, which are favorable to structure security.
     4. Using the axisymmetric ring model during finite element analysis can easily draw the parameters of state variables when optimizing structure. The results obtained are more reliable. After structure optimization, the design variables of the section meet the restriction requirements of concrete surface crack to the maximum extent. However, the outer steel bar of the control section on waist of the square-round model probably appears the higher tensile stress and earlier yields. To prevent earlier yielding of the outer steel bar, there needs more steel products on the control section (about -30°~35°)on waist of square-round model.
引文
[1]董哲仁,水电站钢衬钢筋混凝土大型压力管道设计国外概况,钢衬钢筋混凝土压力管道文集,长江水利委员会信息研究中心,1996
    [2]刘宪亮,水电站压力管道的应用、发展与研究,压力管道(第四届全国水电站压力管道学术会议文集),郑州:黄河水利出版社,1998
    [3] A.P.费列依谢斯特,水电站钢管道,诸葛睿鉴,黄伟译,北京:水利电力出版社,1990
    [4]李炜,水力计算手册(第二版),中国水利水电出版社,2006.6
    [5]王从保,钢衬预应力混凝土压力管道结构研究,武汉:武汉大学,2005
    [6]伍鹤皋等,水电站钢衬钢筋混凝土压力管道,北京:中国水利水电出版社,2000
    [7]中华人民共和国水利行业标准,水电站压力钢管设计规范SL281-2003,北京:中国电力出版社,2003
    [8]龚爱民,应用ANSYS软件分析地下埋管工程,淮海工程学报,2004(6)
    [9]马善定,伍鹤皋,龚国芝,金安桥水电站坝后厂房方案压力背管结构布置及应力与变形专题研究(国内外工程实践部分),武汉:武汉大学水利水电学院,2005
    [10]张超然,前苏联钢衬钢筋混凝土压力管道经验及应用,三峡建设,2001(5)
    [11]陈际唐,三峡电站引水压力管道设计研究,压力管道(第四届全国水电站压力管道学术会论文集),郑州:黄河水利出版社,1998
    [12]张仲卿、梁政、魏有健,三峡水电站钢衬钢筋混凝土压力管道承载能力研究,广西大学学报,1998
    [13]程纲为,三峡水电站钢衬钢筋混凝土压力管道结构分析方法研究,[硕士学位论文],广西大学,1998
    [14]李仲奎,马吉明主编,中国现代科学全书,水利工程水利水电工程,北京:科学出版社,2004
    [15]周鑫,张仲卿,埋藏式压力管道结构分析,水电站压力管道,武汉:湖北科学技术出版社,2002
    [16]易路,三峡水电站钢衬钢筋混凝土压力管道整体结构分析研究,[硕士学位论文],广西大学,2000
    [17]董哲仁,钢衬钢筋混凝土压力管道设计与非线性分析,北京:中国水利水电出版社,1998
    [18]刘幸,钢衬钢筋混凝土压力背管应力简化计算,水利水电工程设计,2001,第20卷,第二期
    [19]董哲仁,下游坝面压力管道正交异性状态应力分析,水利学报,1986(l)
    [20]董哲仁,钢衬钢筋混凝土压力管道混凝土裂缝温度张合量数学模型,水利学报,1996
    [21]李光顺,李小庆,龙滩水电站地下埋藏式压力钢管设计,水力发电,2006(5)
    [22]孙训方,材料力学,北京:人民教育出版社,2002
    [23]符志远,压力钢管联合受力多层环模型及算法,人民长江,1995(5)
    [24]阎力,水电站压力钢管与混凝土联合受力的试验和探讨,水利学报,1983 (6)
    [25]王勖成,邵敏,有限单元法基本原理和数值方法,北京:清华大学出版社,1997
    [26]董哲仁,钢筋混凝土非线性有限元法原理与应用,北京:中国铁道出版社,1993
    [27]马善定,伍鹤皋,秦继章,水电站压力管道,武汉:湖北科学技术出版社,2002
    [28]马善定,混凝土坝下游面压力管道在内水压作用下的应力分析,水利学报,1986(l.)
    [29] K.J .Bathe,Finite Element Procedure in Engineering Analysis Prentice-Hall,Inc.,Englewood Cliff, New Jerscy, 1982.
    [30]龙驭球,结构力学(上,下册),北京:高等教育出版社,1991
    [31]朱伯芳,有限单元法原理与应用,北京:中国水利水电出版社,1998
    [32]张汝清,詹先义,非线性有限元分析,重庆:重庆大学,1990
    [33]王焕定,王伟,有限单元法教程,哈尔滨:哈尔滨工业大学出版社,2003
    [34]任青文,非线性有限单元法,南京:河海大学出版社,2003
    [35]董毓新,李彦硕,水电站建筑物结构分析,大连:大连理工大学出版社,1995
    [36]马少坤,超高水头双钢衬钢筋混凝土引水压力管道的研究,[硕士学位论文],广西大学,2005
    [37] Sarkaria , G.S , Economic penstock diameters : a 20-Year review , Water Power and Dam Construction,1970.11
    [38] BarrDIH,Optimisation of Pressure Couduit Sizes,Water Power and Dam Construction,1986.5
    [39]熊德炎,马善定,三峡电站钢衬钢筋混凝土压力管道结构模型试验研究,武汉水利水电大学学报,1996
    [40]过镇海,时旭东,钢筋混凝土原理和分析,北京:清华大学出版社,2003.12
    [41] W.F .C hen,Plasticity in Reinforced Concrete ,McGraw-Hill,In c ., 1982.
    [42]魏永晖,三峡水电站引水压力管道技术设计审查综述,压力管道,郑州:黄河水利出版社,1998
    [43]徐芝纶,弹性力学,北京:人民教育出版社,1982
    [44]郭潇,张军劳等,万家寨水电站浅埋式引水压力钢管设计,水利水电工程设计,1998(2)
    [45]伍鹤皋,三峡水电站压力管道非线性有限元分析,武汉水利电力大学学报,1994(6)
    [46]李传才等,坝后钢衬钢筋混凝土压力管道的非线性有限元分析,武汉水利电力大学学报,1990(12)
    [47]张武,董哲仁,下游坝面管非线性有限元分析,水力发电,1993(9)
    [48]周润坚,马善定,三峡重力坝下游面压力管道三维非线性有限元分析,三峡工程科研文集(2),三峡工程开发总公司,1992
    [49]何君毅,林样都,工程结构非线性问题的数值解法,北京:国防工业出版社,1994
    [50]张丽,组合套管式引水管道联合承载的研究分析,华北水利水电学院学报,1997(6)
    [51]吕西林,金国芳,吴晓涵,钢筋混凝土结构非线性有限元理论与应用,上海:同济大学出版社,1997
    [52]龙志飞,岑松,有限元法新论(原理程序进展),北京:中国水利水电出版社,2001
    [53]王焕定,吴德伦,林家骥,有限单元法原理及计算程序,北京:中国建筑工业出版社,2002
    [54]刘箔,席江,李凤兰,坝后预应力混凝土压力背管的受力性能,华北水利水电学院学报,1999(12)
    [55]生晓高,朱忠华,坝下游面浅槽式钢衬钢筋混凝土管道结构分析,水利技术监督,2001(5)
    [56] K.J .Bathe,Finite Element Procedure in Engineering Analysis Prentice-Hall,Inc.,Englewood Cliff, New Jerscy, 1982.
    [57]匡会健,伍鹤皋,马善定,混凝土坝内钢管有限元分析,湖北水力发电,1992(3)
    [58]博弈创作室,APDL参数化有限元分析技术及其应用实例,北京:中国水利水电出版社,2004
    [59]龚曙光,谢桂兰,ANSYS操作命令与参数化编程,北京:机械工业出版社,2004
    [60] Darwin,D . and Pecknold,D .A. Nonlinear Biaxial Stress-Strain Law for Concrete.AS CE ,1977, 103( EM2): 229-241
    [61] ANSYS非线性分析指南,美国ANSYS公司北京办事处
    [62] ANSYS Inc , ANSYS Basic Analysis Procedures Guide , ANSYS 7.0 HTML Online Documentation,2002
    [63]白俊光魏坚政石广斌,水工钢筋混凝土结构设计技术研究,北京,中国水利水电出版社,2009
    [64]田继平,坝后钢衬钢筋混凝土压力管道设计方法研究,[硕士学位论文],武汉大学,2005
    [65] Hawkins N M,liu I J,Jeallg F L.local bond strenghth of concrete for cyclic reversed loadings, Proceeding of the International Conference on Bond in Concrete,1982.151~161
    [66]中华人民共和国水利行业标准,水工混凝土结构设计规范SL281-2003,北京:中国电力出版社,2003
    [67] King JWH, Some investigation of the effect of core size and steel and concrete quality in short reinforced concrete columns, Magazine of Concrete Research,1949(2)
    [68] A.W.Beeby.The Prediction and Conrtol Flexural Cacrknig in Reinforced Conceret Membesr, Cacrknig,Deflection,and Ultimate Load of Concrete Slab Systems,ACI Pubcliation.SP一30.1971
    [69] Don.ZR.Nonlinear Analysis of Steel Liner-Reinforced Conceret Pensoteks.Transactions of the ASME,Feburyar,1990
    [70] ChangT Y ,Taniguchi H ,Chen W F,Nonlinear finite element analysis of reinforced concrete panels. Joural ,of structural gineedng,ASCE,1987,113(1 ):122-140
    [71] Tassios T P, Properties of bond between concrete and steel under load cycles idealizing seismic action, National Technical University Athens,Greece,1982

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700