用于三维复杂土坡稳定性分析的滑动面搜索新方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文提出利用随机角来生成随机滑动面的一种新方法,通过研究随机曲线的生成规律,将二维随机滑动面的搜索简化成不同角度和竖直土条划分相结合而生成的近似曲线的搜索。针对新方法在边坡坡面外形复杂、各种层状的非均质土层和水参与下遇到的一些不同情况采取了一些基本方案(包括整体稳定性和局部稳定性),并将滑动面搜索新方法应用于均质土坡、分层土坡和稳定渗流作用下的土坡稳定性分析。然后,在考虑边坡几何外形、土层参数和边坡水位变化三种情况时,对边坡可能存在的局部稳定性进行了研究。
     为了拓展二维滑动面搜索新方法的应用,将单一曲线滑动面进行改进,提出了多段曲线滑动面搜索新方法并将应用于分层土坡中;提出了折线滑动面搜索新方法并将其应用于坡面外形复杂的土坡。
     通过以单一曲线滑动面搜索新方法为基础,提出了由母线和准线生成三维任意滑动面的新方法,并就工程上滑动体非对称情况(包括准线不对称和长度不对称)、母线不在滑动体内沿滑动方向断面尺寸最大的面上、土坡含软弱夹层的情况,提出了解决措施,将其应用于三维简单均质土坡和工程上常见的填挖方复合土坡、水平分层填方路堤、公路纵断面为平斜坡的土坡和含软弱夹层的土坡这四种复杂土坡算例中。
     通过对比计算与分析,获得了如下研究成果:
     (1)通过各种实例对比与分析,可得出新方法在均质土坡、分层土坡或有稳定渗流作用下的土坡中(包括边坡的整体稳定性或局部稳定性),计算出的安全系数与以往研究成果颇为接近,但得到的最危险滑动面与实际情况更为相符,因而可说明新方法的可行性;
     (2)稳定渗流作用下土坡的稳定性分析中,以非圆弧滑动面计算得到的结果较以圆弧滑动面得到的结果更为可靠,随着土坡坡内地下水位的升高,计算出的安全系数急剧下降,因而渗流效应会成为边坡发生失稳的一个重要因素;
     (3)在土坡的整体稳定性和局部稳定性中,边坡的几何外形、土层之间的差异、坡内外水位及土层的材料参数γ、c和φ的变化对土坡可能出现的局部失稳影响较大,但是φ与c的无量纲之比的减小可能使土坡转为整体稳定性;
     (4)在分层土坡中,计算出的安全系数以分段曲线滑动面方法最小,其次是单一曲线滑动面方法,圆弧滑动面方法最大。而从得到的临界滑动面的结果来看,当土层间材料物理性质相差较大时,其滑动面表现为非圆弧性,且各土层间的滑动面也不完全一致,可说明分段曲线滑动面新方法能够得到更接近于实际情况的最危险滑动面;
     (5)对三维土坡问题进行研究,可知:①在同一土坡中,土坡的三维稳定性高于二维稳定性性;②当填挖边坡上填方段和挖方段的材料不一致时,更容易在抗滑稳定性差的材料处发生失稳,但在填方段和挖方段的材料重度γ相同时,两种材料的φ/c是否相等在一定程度上对滑动体的对称性和大小有影响;③对于公路纵断面为平斜坡的土坡,其潜在最危险滑动面更倾向于平坡段,斜坡对边坡的稳定有一定的积极影响;④在含软弱夹层的土坡中,当滑动体的长度无限长时,其三维稳定性趋于二维稳定性。
     其中,本文创新点如下:
     (1)本文方法较新颖,不仅能够适用于土坡的二维和三维稳定性分析,而且能够较容易地在计算机上编程实现安全系数的计算和滑动面图形的绘制;
     (2)用本文新方法通过实例分析讨论了含软弱夹层土坡的滑动面型式选择(软弱夹层的存在对滑动面型式的选择有影响),得到了其滑动面的一般模式;
     (3)考虑渗流效应时,将竖直土条视为三种划分情况,并分别进行受力分析,推导出简化Janbu法中土条的浮力和渗透力计算公式。
This article puts forward a new method of using random angle to generate random sliding surface, and by studying generation law of random curves search of two-dimensional random sliding surface was simplified into search of approximate curve generated by combination of delineation of different angles and vertical soil slices.Some basic solutions were provided under a number of different circumstances of slopes with complicated shape,a variety of heterogeneous layered soil and water encountered (including the general stability and local stability) in new method. And the new method of search of sliding surface is applied to homogeneous soil slope, stratified slopes and slopes under action of seepage.Then, considering three cases of slope geometry, soil parameters and change of water level in slope, possible of local stability of slope was studied.
     At the same time,for expanding application of the new method of two-dimensional sliding surface search, through improving new method of a single curve sliding surface search the new methods of multi-segment curve sliding surfaces search and line sliding surfaces search was proposed, and apply them in stratified soil and soil slope with complex shape respectively.
     As a basic of the new method of a single curve sliding surface, a new method of arbitrary sliding surface generated by mother line and standard line is proposed.For the sliding body of asymmetry in the engineering (including the case of standard line of asymmetric and length of asymmetric) and mother line being not in the largest cross-section of the sliding body along the sliding direction, and slopes with weak interlayer, some solution measures are used.Then these are applied to three-dimensional simple homogeneous slopes and four examples of common excavation and filling compound slope in the engineering, filling embankment at form of hierarchical Level,vertical section of road with flat and oblique slope and the slopes with weak interlayer.
     By contrast and analysis of calculating, the following conclusions can be obtained.
     (1)Through comparison and analysis of various examples, it can be obtained that in homogeneous soil, layered soil or soil under steady seepage (including the overall slope stability or local stability), factor of safety calculated by using new method is quite close to previous research, and the critical sliding surface got by using new method is consistent with the actual situation. Therefore those demonstrate the feasibility of the new method.
     (2) On stability analysis of slope under effect of seepage,the calculated results with non-circular sliding surface are more reliable than with circular sliding surface, and with increase of groundwater level in slope factor of safety of slopes were sharply decline, so effect of seepage is an important factor for occurring of slope instability.
     (3) In general stability and local stability of slopes,changes of slope geometry, difference between soil, water level in outside and inside of slope and soil material parameters y, c andφchanges may impact occurrence of local instability of slopes, but decrease of dimensionless ratio ofφand c may turn to general stability of slopes.
     (4) In the layered soil,comparing with factor of safety, the result of multi-segment curve sliding surface method is minimum, followed by single curve sliding surface method, and that of circular sliding surface method is the largest, at the same time from the results of critical sliding surface obtained, while physical properties between soil have large difference, sliding surface performs non-circular arc, and sliding surface between soil is also not entirely consistent, so those can illustrate that multi-segment curve sliding surface method could get closer to actual situation of the critical sliding surface.
     (5)Research on problems of three-dimensional slope showed that firstly three-dimensional stability is higher than two-dimensional stability in the same slopes and secondly when the fill material and excavation material is inconsistent in excavation and filling compound slope, the sliding instability occurs easier at poor stability of materials, but at the case of material of filling and excavation with same severe y, whetherφ/ c of two materials is equal impacts symmetry and size of the sliding body on a certain extent, and thirdly for the slope of vertical section of road with flat slope, the most potential dangerous sliding surface is more inclined to flat slope section of the slope and oblique slope section of the slope have some positive impact on the slope stability, and fourthly in slope with weak interlayer, when the length of sliding body reaches infinite length its three-dimensional stability tends to two-dimensional stability.
     In this article there are some innovations as follows:
     (1)The method of this article is relatively new, and that can not only be applied to stability analysis of two-dimensional and three-dimensional slope,but also easily calculate factor of safety and draw graphics sliding surface through programming in computer.
     (2) An example of soil slope containing soft interlayer (existence of weak interlayer impact the choose of type of sliding surface) is discussed and analyzed in type selection of sliding surface by using new method, and obtain general calculations model of sliding surface in this case.
     (3)When considering the effect of seepage, soil slices was seen as three kinds of division and conducted mechanical analysis to derive the formula of buoyancy and penetration of slices in simplified Janbu method respectively.
引文
[1]刘成宇.土力学[M].北京:中国铁道出版社,2005.
    [2]燕建龙.凤凰山滑坡稳定性分析及治理监测研究[D].长沙:中南大学,2005.
    [3]郑颖人.边坡与滑坡工程治理[M].北京:人民交通出版社,2007.
    [4]张爱英,陈弦,刘均红.边坡各种极限平衡条分法对比分析[J].山西建筑,2009,35(27):116-117.
    [5]陈祖煜.土质边坡稳定性分析——原理、方法、程序[M].北京:中国水利水电出版社,2003.
    [6]Bishop A W. The use of the slip circle in the stability analysis of slopes[J]. Geotechnique,1955,5(5):7-17.
    [7]Johnson S J. Analysis and design relating to embankments[A].Proceedings of Conference on Analysis and Design in Geotechnical Engineering[C].1974.
    [8]Fredlund D G,Krahu J. Comparisonfor slope stability methods of analysis[J]. Canadian Geotechnical Journal,1977,104(3):429-439.
    [9]Chen Z.,Morgenstern N R. Extensions to the generalized method of slices for stability analysis[J].Canadian Gcotechnical Journal,1983,20(1):104-109.
    [10]Ching R K H,Fredlund D G. Some difficulties associated with the limit equilibrium method of sliees[J].Canadian Geotechnical Journal,1983,20(4): 661-672.
    [11]Leshchjnsky D.Slope stability analysis:generalized approach[J].Journal of Geotechnical Engineering,1990,116(5):851-867.
    [12]Donald I,Giarn P. The ACAD slope stability analysis program review[A]. Proceedings of the 6th International Symposium on Land-slides[C].1992: 1665-1670.
    [13]Duncml J M.State of the art:limit equilibrium and finite element analysis of slopes[J].Journal of Geotechnical Engineering,ASCE,1996,122(7):577-596.
    [14]陈昌富,杨宇,龚晓南.基于遗传算法地震荷载作用下边坡稳定性分析水平条分法[J].岩石力学与工程学报,2003,22(11):1919-1923.
    [15]王志斌,李亮,杨小礼,等.水平条分法在贴坡高填方路堤稳定性分析中的应用[J].中国公路学报,2007,20(3):29-34.
    [16]黄玉萍.路基边坡稳定性分析的新方法——径向条分法[J].引进与咨询,2004,20(8):45-46.
    [17]王平,刘东升.计算土坡安全系数的辐向条分模型[J].工程力学,2002,19(3):148-152.
    [18]刘子振,言志信.边坡稳定性计算斜条分法机理分析[J].岩土工程技术,2006,20(5):217-220.
    [19]杨明成.基于力平衡求解安全系数的一般条分法[J].岩石力学与工程学报,2005,24(7):1216-1221.
    [20]杨明成.一般条分法的安全系数显示解[J].岩土力学,2004,25(增刊):568-573.
    [21]张鲁渝.一个用于边坡稳定分析的通用条分法[J].岩石力学与工程学报,2005,24(3):496-501.
    [22]ZHU D Y,LEE C E. Explicit limit equilibrium solution for slope stability[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002.26:1573-1590.
    [23]ZHU D Y,LEE C F,JIANG H D. Generalised framework of limit equilibrium methods and numerical procedure for slope stability analysis[J].Geotechnique, 2003,53(4):377-395.
    [24]李亮,刘宝琛.边坡极限承载力的下限分析法及其可靠度理论[J].岩石力学与工程学报,2001,20(4):508-513.
    [25]李亮,刘宝琛.边坡极限承载力的下限分析法[J].中国铁道科学,2001,22(1):79-83.
    [26]杨小礼李亮刘宝琛,等,非线性破坏准则对竖直边坡稳定性分析的影响[J].岩石力学与工程学报,2004,23(4):592-596.
    [27]杨小礼,李亮,李克坤.上限有限元法及其在路堤稳定性分析中的应用[J].长沙铁道学院学报,2002,20(1):41-45.
    [28]杨小礼,李亮,刘宝琛.大规模优化及其在上限定理有限元中的应用[J].岩土工程学报,2001,23(5):602-605.
    [29]赵炼恒,李亮,杨小礼,等.非线性破坏准则下法向受力条形浅锚抗拔力上限计算方法[J].中南大学学报(自然科学版),2009,40(5):1444-1450.
    [30]赵炼恒,李亮,杨峰,等.加筋土坡动态稳定性拟静力分析[J].岩石力学与工程学报,2009,28(9):1904-1917.
    [31]赵炼恒李亮杨峰,等.基于SQP和上限法的非饱和土条形基础极限承载力计算[J].岩石力学与工程学报,2009,28(增1):3021-3028.
    [32]赵炼恒罗强李亮,等.水平浅埋条形锚板极限抗拔力上限计算[J].岩土力学,2010,31(2):516-522.
    [33]周海.宜万线巴东车站顺层边坡滑动范围现场监测与数值分析[D].成都:西南交通大学,2007.
    [34]王小明,王宝军.基于遗传算法的土质边坡稳定性分析[J].人民长江,2009,40(7):53-55.
    [35]肖专文,张奇志,梁力,林韵梅.遗传进化算法在边坡稳定性分析中的应用[J].岩土工程学报,1998,20(1):44-46.
    [36]阙金声,陈剑平,王清等.遗传算法在土坡整体稳定性分析中的应用[J].岩土力学,2008,29(2):415-418.
    [37]丰土根,刘汉龙,高玉峰等.遗传算法在边坡抗震稳定性分析中的应用[J].岩土力学,2002,23(1):63-66.
    [38]吕文杰,李晓军,朱合华.基于遗传算法的边坡稳定分析通用算法[J].岩土工程学报,2005,27(5):595-599.
    [39]弥宏亮,陈祖煜.遗传算法在确定边坡稳定最小安全系数中的应用[J].岩土工程学报,2003,25(6):671-675.
    [40]刘玉静.遗传算法在岩土边坡稳定性分析中的应用[J].露天采矿技术,2008,(2):1-4.
    [41]李亮,迟世春,郑榕明等.一种新型遗传算法及其在土坡任意滑动面确定中的应用[J].水利学报,2007.38(2):157-162.
    [42]聂跃高,刘伟全,施建勇,等.加速遗传算法在路堤边坡稳定性分析中的应用[J].中国公路学报,2003,16(4):16-20.
    [43]金菊良,丁晶,魏一鸣.加速遗传算法在地下水位动态分析中的应用[J].水文地质工程地质,1999,25(5):4-7.
    [44]刘华强,陆明志,殷宗泽.基于模拟退火算法的边坡临界滑面搜索方法[J].岩石力学与工程学报,2008,27(增2):3686-3691.
    [45]邹广电,陈永平.滑坡和边坡稳定性分析的模拟退火一随机搜索耦合算法[J].岩石力学与工程学报,2004,23(12):2032-2037.
    [46]李守巨,刘迎曦,何翔,等.基于模拟退火算法的边坡最小安全系数全局搜索方法[J].岩石力学与工程学报,2003,22(2):236-240.
    [47]谭新,丁万涛,李术才.一个新的非圆弧滑动全局最优化算法[J].岩石力学与工程学报,2005,24(12):2060-2064.
    [48]张浩,王常明,马文东.边坡最危险滑动面全局搜索的模拟退火算法及改进[J].吉林大学学报(地球科学版),2007,37(1):129-133.
    [49]陈云敏,魏新江,李育超.边坡非圆弧临界滑动面的粒子群优化算法[J].岩石力学与工程学报,2006,25(7):1443-1449.
    [50]李亮,迟世春,郑榕明,等.改进的粒子群算法及其在土坡临界滑动面搜索中的应用[J].防灾减灾工程学报,2007.27(2):153-158.
    [51]王成华,高文梅,李成.粒子群优化算法搜索土坡临界非圆弧滑动面[J].四川建筑科学研究,2007,33(5):79-82.
    [52]Dorigo M,Maniezzo V,Colorni A. Ant system:optimization by a colony of cooperating agents[J].IEEE Trans.on SMC.,1996,26(1):29-41.
    [53]高玮,郑颖人.蚁群算法及其在洞群施工优化中的应用[J].岩石力学与工程学报,2002,21(4):471-474.
    [54]高玮.搜索土坡潜在滑动面的蚁群算法[J].水利学报,2005,36(9):1100-1104.
    [55]王小虎.蚁群算法及其在搜索土坡滑动面中的应用[J].露天采矿技术,2007,(1):1-3.
    [56]陈昌富,龚晓南,王贻荪.自适应蚁群算法及其在边坡工程中的应用[J].浙江大学学报(工学版),2003,37(5):566-569.
    [57]陈昌富,谢学斌.露天采场边坡临界滑动面搜索蚁群算法研究[J].湘潭矿业学院学报,2002,17(1):62-64.
    [58]王殉,李云华,云峰.退火遗传算法在边坡稳定性分析中的应用[J].岩土工程技术,2008,22(5):249-252.
    [59]徐佳,张勤,吴继敏.小生境与遗传模拟退火耦合算法在岩质边坡滑动面搜索中的应用[J].水利水电科技进展,2008,28(6):28-31.
    [60]李亮,迟世春.新型和声搜索算法在土坡稳定分析中的应用[J].水利与建筑工程学报,2007,5(3):1-6.
    [61]Stark T D,Eid H T. Performance of three-dimensional slope failure, II:stability aanalysis[J].J.ASCE Journal of Geotechnical Engineering,1988,124: 1049-1060.
    [62]朱大勇,丁秀丽,邓建辉.基于力平衡的三维边坡安全系数显式解及工程应用[J].岩土力学,2008,29(8):2011-2015.
    [63]Lam. L,Fredlund D G..A general limit equilibrium model for three-dimensional slope analysis[J].Journal for Numerical and Analytical Method in Geomechanics,1985,9:199-233.
    [64]高德彬,王艳霞,王丽,等.边坡稳定性分析方法综述[A].地球探测科学与技术新进展[M].北京:中国科学技术出版社,2001.93-99.
    [65]李同录,王艳霞,邓宏科.一种改进的三维边坡稳定性分析方法[J].岩土工程学报,2003,25(5):611-614.
    [66]Hovland,H J.Three-dimensional slope stability analysis method[J]. Geotechnical Division,ASCE,1977,103:971-986.
    [67]Hungr O. An extension of Bishop's simplified method of slope stability analysis to three-dimensions[J].Geotechnique,1987,37:113-117.
    [68]Hungr O,Salgado,F M,Byrne,P M. Evaluation of a three dimensional method of slope stability analysis[J].Canadian Geotcchnical Journal,1989,26:679-66.
    [69]Zhang X. Three-dimensional stability analysis of concave slope in plan view[J]. Geotechnical Engineering,ASCE.1988,114:658-671.
    [70]Chen. R. H,Chameau. J.L. Three-dimensional linit equilibrium analysis of slopes[J].Geotechnique,1982,33:31-40.
    [71]陈祖煜,弥宏亮,汪小刚.边坡稳定三维分析的极限平衡方法[J].岩土工程学报,2001,23(5):524-529.
    [72]冯树仁,丰定祥,葛修润,等.边坡稳定性的三维极限平衡分析方法及应用[J].岩土工程学报,1999,21(6):657-661.
    [73]Huang C C,Tsai C C.New method for 3D and asymmetric slope stability analysis[J].ASCE. Journal of Geotechnical and Environmental Engineering, 2000,126(10):917-927.
    [74]张常亮,李同录,李萍.三维边坡稳定性分析的解析算法[J].中国地质灾害与防治学报,2007,18(1):99-103.
    [75]张均锋.三维简化Janbu法分析边坡稳定性的扩展[J].岩石力学与工程学报,2004,23(17):2876-2881.
    [76]朱大勇,刘华丽,范鹏贤,等.旋转对称边坡三维安全系数显式解[J].解放军理工大学学报(自然科学版),2006,7(5):446-449.
    [77]Lara L,Fredlund D G.A general limit equilibrium model for three-dimensional slope stability analysis[J].Canadian Geotcchnical Journal,1993,30:905-919.
    [78]陈祖煜,汪小刚.岩石高边坡失稳机理和分析方法[A].张有天,周维垣,主编.岩石高边坡的变形与稳定[M].北京:中国水利水电出版社,1999,86-116.
    [79]Leshchinsky D Baker R,Silver M L. Three-dimensional analysis of slope stability[J].International Journal for Numerical and Analytical Method in Geomechanics,1985,9:199-233.
    [80]赵尚毅,郑颖人,时卫民,等.用有限元强度折减法求边坡稳定安全系数[J].岩土工程学报.2002,24(3):343-346.
    [81]张永兴.边坡工程学[M].北京:中国建筑工业出版社,2008.
    [82]王根龙,伍法权,张军慧.非均质土坡稳定性分析评价的刚体单元上限法[J].岩石力学与工程学报.2008,28(S2):3425-3430.
    [83]范鹏贤,朱大勇,郭志昆,等.动态规划法求解边坡安全系数最小上限解[J].岩土工程学报.2007,29(3):467-470.
    [84]李隽蓬,谢强.土木工程地质[M].成都:西南交通大学出版社,2001.
    [85]陈祖煜.土力学经典问题的极限分析上、下限解[J].岩土工程学报,2002,24(1):1-11.
    [86]莫海鸿,唐超宏,刘少跃.应用模式搜索法寻找最危险滑动圆弧[J].岩土工程学报,1999,21(6):696-699.
    [87]朱大勇,李焯芬,姜弘道等.基于滑面正应力修正的边坡安全系数解答[J].岩石力学与工程学报,2004,23(16):2788-2791.
    [88]范鹏贤,朱大勇,郭志昆等.动态规划法求解边坡安全系数最小上限解[J].岩土工程学报,2007,29(3):467-470.
    [89]Rocscience Inc. Slide Verification manual[R].Toronto:Rocscience Inc.,2003.
    [90]Jongmin Kim,Rodrigo Salgado,M.ASCE,et al. Stability Analysis of Complex Soil Slopes using Limit Analysis[J].Journal of Geotechnical and Geoenvironmental engineering,2002,128(7):564-557.
    [91]李广信.高等土力学[M].北京:清华大学出版社,2004.
    [92]刘成宇.土力学[M].北京:中国铁道出版社,2005.
    [93]陈仲颐,周景星,王洪瑾.土力学[M].北京:清华大学出版社,1994.
    [94]毛昶熙,李吉庆,段祥宝.渗流作用下土坡圆弧滑动有限元计算[J].岩土工程学报,2001,23(6):659-665.
    [95]胡焕校,刘静,佘重九,等.高速公路路堑边坡稳定模拟分析及治理措施[J].中南大学学报(自然科学版),2004,35(5):856-859.
    [96]傅鹤林,李昌友,郭峰,等.滑坡触发因素及其影响的原位试验[J].中南大学学报(自然科学版),2009,40(3):781-785.
    [97]黄燕宏,龚文惠,刘军.渗流对土坝边坡稳定性影响的有限元分析[C].第九届全国岩石力学与工程学术大会论文集,2006.
    [98]杜明亮.考虑渗流作用的土质边坡稳定性分析[D].南京:河海大学,2007.
    [99]毛昶熙,李吉庆.土坡渗流整体稳定性分析与控制:滑动面、水力条件与渗流控制措施[J].人民长江,1991,22(1):45-52.
    [100]张卫民,陈兰云.地下水位线对土坡稳定的影响分析[J].岩石力学与工程学报,2005,24(增2):5319-5322.
    [101]赵明华,邹新军,蒋德松.边坡稳定分析及其在堤防工程中的应用[J].湖南大学学报,2001,28(6):97-101.
    [102]汪益敏,陈页开,韩大建,等.降雨入渗对边坡稳定影响的实例分析[J].岩石力学与工程学报,2004,23(6):920-924.
    [103]刘才华,陈从新,冯夏庭,等.地下水对库岸边坡稳定性的影响[J].岩土力学,2005,26(3):419-422.
    [104]王均星,李泽,陈炜.考虑孔隙水压力的土坡稳定性的有限元下限分析[J].岩土力学,2005,26(8):1258-1262.
    [105]王均星,李泽.考虑孔隙水压力的土坡稳定性的有限元上限分析[J]. 岩土力学,2007,28(2):213-218.
    [106]赵志峰,陈育民.边坡整体和局部失稳的风险研究[J].南京林业大学学报(自然科学版),2009,33(2):121-124.
    [107]孙开畅,胡昌顺.溪洛渡水电站拱肩槽及进水口高边坡稳定性研究[J].长江科学院院报,2007,24(2):17-21.
    [108]杨继红,董金玉,陈亚鹏,等.某水电站库区堆积体边坡的成因机制分析及稳定性评价[J].工程地质学报,2008,16(3):311-318.
    [109]朱继永,倪晓荣.深基坑边坡失稳实例分析[J].岩石力学与工程学报,2005,24(增2):5410-5412.
    [110]郝瀛.铁道工程[M].北京:中国铁道出版社,1999.
    [111]Radoslaw L. Michalowski,F.ASCE. Critical Pool Level and Stability of Slopes in Granular Soils[J].Journal Of Geotechnical and Geoenvironmental Engineering,2009,135(3):444-448.
    [112]JYANT Kumar,PIJUSH Samui.Stability determination for layered soil slopes using the upper bound limit analysis[J].Geotechnical and Geological Engineering,2006,24:1803-1819.
    [113]姜清辉,王笑海,丰定祥,等.三维边坡稳定性极限平衡分析系统软件SLOPE3D的设计及应用[J].岩石力学与工程学报,2003,22(7):1121-1125.
    [114]祝玉学.边坡稳定性分析的三维方法[J].金属矿山,1994,222(12):6-10.
    [115]张均锋,丁桦.边坡稳定性分析的三维极限平衡法及应用[J].岩石力学与工程学报,2005,24(3):365-370.
    [116]谭亮,孙世国,林国棋,等.对称破坏机制下的边坡稳定三维滑动场分析方法[J].北方工业大学学报,2007,19(3):79-84.
    [117]卢萌盟,曾宪桃.边坡稳定的三维极限平衡分析法及工程应用[J].四川建筑,2004,24(5):77-78.
    [118]Hutchinson J N,Sarma S K. Discussion on three-dimensional limit equilibrium analysis of slope[J].Geotechnique,1985,35:215-216.
    [119]万文,曹平,冯涛.加速混合遗传算法在搜索边坡最危险滑动面中的应用[J].岩石力学工程学报.2006,25(增1):2770-2776.
    [120]袁恒,孟衡.边坡稳定分析三维极限平衡方法探讨[J].灾害与防治工程,2008,65(2):20-24.
    [121]Lam L,Fredlund D G. A general limit equilibrium model for three-dimensional slope stability analysis[J].Canadian Geotcchnical Journal,1993,30(4):905-919.
    [122]Chen Zu-yu,Wang Xiao-gang,Haherfiel C,et al. A three-dimensional slope stability method using the upper bound theorem,part Ⅰ:theory and methods[J]. Rock Mech.& Mim.,2001,38(2):369-378.
    [123]Chen Zu-yu,Wang Jian,Wang Yu-jie,Et al.A three-dimensional slope stability method using the upper bound theorem,part Ⅱ:numerical apprnaches[J].Rock Mech.& Mim.,2001,38(2):379-397.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700