一维浅水方程的Runge-Kutta间断有限元数值模拟与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浅水方程在海洋、河流、气候模拟、海洋生物学和环境等众多领域有着广泛的应用,例如风暴潮、海啸和洪水的预测,泥沙和污染物的输运等。
     本文在一维浅水方程组的基础上建立了二阶Runge-Kutta司断有限元数值模型,并成功应用于复杂地形条件下间断浅水流动的数值模拟。本文的主要内容和结论如下:
     (1)从守恒形式的浅水方程组出发,对求解区域进行单元剖分,并在单元上对方程进行积分。在模型的空间离散过程中,跨单元边界处采用HLL和HLLC的近似Riemann解算子形式的数值流向量,将非线性方程转化为线性方程;在时间离散过程中,采用具有TVD性质的三阶Runge-Kutta时间离散方法。
     (2)模型建立过程中,为了抑制间断处的非物理伪振荡,采用了间断检测器结合斜率限制器或稳定算子的方法。考虑了对底坡源项的离散处理,使模型能够处理复杂地形条件下包含强间断的浅水流动问题,并建立了一种均衡格式的Runge-Kutta间断有限元数值模型。
     (3)将本文建立的Runge-Kutta间断有限元数值模型对浅水流动中的一些经典或存在解析解的算例,例如理想化溃坝问题、稳定水体微小扰动问题、跨临界流问题、水跃、潮波以及涌潮等问题,进行了数值模拟。而且在模拟过程中考虑了非棱柱体渠道、不连续底坡等实际情况。所有计算结果与解析解吻合较好,在间断处不含非物理的伪振荡,从而验证了模型的正确性与适用性。
The shallow water equations have a wide range of applications in the ocean, river, climate modeling, marine biology and environmental engineering.Related issues include storm surges, tsunamis and floods prediction, sediment and contaminant transport, etc.
     A second-order Runge-Kutta discontinuous Galerkin finite element model is built based on one-dimensional shallow water equations, and is applied to numerical simulation of discontinuous shallow flows on irregular bottom topography successfully. The main contents and conclusions are as follows:
     (1) The model is based on conservation forms of the shallow water equations. The computational domain is partitioned into a set of elements, and then the equations are integrated over the element. For the space discretization in the model, the HLL or HLLC approximate Riemann solver as the numerical flux at interfaces of elements is employed. For the time discretization, a third-order Runge-Kutta scheme which is TVD, is applied.
     (2) In the model, a slope limiter or stabilization operator only around discontinuities using discontinuity detector is used in order to alleviate spurious oscillations near discontinuities. A discretization of the source terms is applied, so the model can solve the discontinuous shallow water flows with complex bed topography. So a well-balanced discontinuous Galerkin finite element model is constructed finally.
     (3) The model is applied to numerical simulation of some classic discontinuous flow examples to prove its validity and applicability. The examples include idealized dam-break problem, a small perturbation of a steady-state water, transcritical flow over a hump, hydraulic jump, tidal waves and tidal bores. When solving discontinuous shallow water flow, the situations of non-prismatic channels and discontinuous bed topography can be considered. All the computations are good agreement with the analytical solutions, and the results exclude non-physical spurious oscillations near the shock.
引文
[1]Aizinger V. A discontinuous Galerkin method for two-and three-dimensional shallow-water equations. PhD thesis, The University of Texas at Austin,2004
    [2]章本照.流体力学中的有限元方法.北京:机械工业出版社,1986
    [3]Zienkiewicz O C, Phillips D V. An automatic mesh generation scheme for plane and curved surface by isoparametric coordinates. Int. J. Num. Meth. Eng.,1971,3: 519-528
    [4]Zieniewicz O C, Gago J P De S R, Kelly D W. The hierarchical concept in finite element analysis. Computers & structures,1983,16(1-4):53-65
    [5]Zienkiewicz O C, Zhu J Z, Gong N G. Effective and practical h-p version adaptive analysis procedures for the finite element method. Int. J. Numer. Meth. Eng.,1989,28(1-6):879-891
    [6]忻孝康,刘儒勋,蒋伯诚.计算流体动力学.长沙:国防科技大学出版社,1989
    [7]Noelle S, Pankratz N, Puppo G, et al. Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. Journal of Computational Physics,2006,213:474-499
    [8]Reed W H, Hill T R. Triangular mesh methods for the neutron transport equation. LA Report,1973
    [9]LeSaint P, Raviart P L. On a finite element method for solving the neutron transport equation. Mathematical aspect of finite element in partial differential equation, Academic Press,1974,89-145
    [10]Chavent G, Salzano G. A finite element method for the 1d water flooding problem with gravity. J. Comput. Phys.,1982,45:307-344
    [11]Chavent G, Cockburn B. The local projection P0-P1-discontinuous Galerkin method for scalar conservation laws. Model. Math. Anal. Numer.,1989,23: 565-592
    [12]van Leer B. Towards the ultimate conservative difference scheme.Ⅱ. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys.,1974,14:361-370
    [13]Cockburn B, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws Ⅱ:general framework. Mathematics of Computation.,1989,52(186):411-435
    [14]Cockburn B, Lin S, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws Ⅲ:one dimensional systems. J. Comput. Phys.,1989,84(1):90-113
    [15]Cockburn B, Hou S, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws Ⅳ:The multidimensional case. Math. Comp.,1990,54:545-581
    [16]Cockburn B, Shu C W. The Runge-Kutta local projection P1-discontinuous Galerkin method for scalar conservation laws. ESAIM:Mathematical Modelling and Numerical Analysis.,1991,25(3):337-361
    [17]Cockburn B, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws V:Multidimensional systems. J. Comput. Phys.,1998,141:199-224
    [18]Cockburn B, Shu C W. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Scien. Comput.,2001,16(3):173-261
    [19]Casulli V. Semi-implicit finite difference methods for the two-dimensional shallow water equation. J. Comput. Phys.,1990,86:56-74
    [20]Grammeltvedt A. A survey of finite-difference schemes for the primitive equations for a barotropic fluid. Mon. Wea. Rev.,1969,97(5):384-404
    [21]Castro M J, Garcia J A, Gonzalez J M, et al. Solving shallow-water systems in 2D domains using finite volume methods and multimedia SSE instructions. J. Comput. Appl. Math.,2008,221:16-32
    [22]Gallouet T, Herard J M, Seguin N. Some approximate Godunov schemes to compute shallow-water equations with topography. Comput.& Fluids,2003,32: 479-513
    [23]Toro E F, Garcia-Navarro P. Godunov-type methods for free-surface shallow flows:a review. J. Hydra. Res.,2007,45(6):737-751
    [24]Hirsch C. Numerical computation of internal and external flows, computational methods for inviscid and viscous flows. Wiley:Chichester, England, New York, 1990
    [25]Xing Y, Shu C W. High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. J. Comput. Phys.,2006,214:567-598
    [26]Shu C W, Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys.,1988,77(2):439-471
    [27]Cockburn B. Discontinuous Galerkin methods. Zeitschrift fur Angewandte Mathematik und Mechanik.,2003,83(11):731-754
    [28]Schwanenberg D, Liem R, Kongeter J. Discontinuous Galerkin method for the shallow water equations.http://www.iww.rwth-aachen.de/fileadmin/internet/ research/papers/ShallowWaterEquations.pdf,2000
    [29]Li H, Liu R. The discontinuous Galerkin finite element method for the 2D shallow water equations. Math. Comput. Simulation.,2001,56:223-233
    [30]Aizinger V, Dawson C N. A discontinuous Galerkin method for two-dimensional flow and transport in shallow water. Adv. WaterResour.,2002,25:67-84
    [31]王立辉,胡四一.一维浅水方程组的间断有限元计算.水力发电学报,2007,26(1):37~41
    [32]Zhou J G, Causon D M, Mingham C G, et al. The surface gradient method for the treatment of source terms in the shallow-water equations. J. Comput. Phys.,2001, 168:1-25
    [33]Xing Y, Shu C W. A new approach of high order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. Commu. Comput. Phys.,2006,1(1):101-135
    [34]Audusse E, Bouchut F, Bristeau M-O, et al. A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput.,2004,25:2050-2065
    [35]Kesserwani G, Ghostine R, Vazquez J, et al. Application of a second-order Runge-Kutta discontinuous Galerkin scheme for the shallow water equations with source terms. Int. J. Numer. Meth. Fluids.,2008,56:805-821
    [36]Kesserwani G, Mose R, Vazquez J, et al. A practical implementation of high-order RKDG models for the 1D open-channel flow equations. Int. J. Numer. Meth. Fluids.,2009,59:1389-1409
    [37]Roe P L. Upwinding differencing schemes for hyperbolic conservation laws with source terms. In Proceedings of Nonlinear Hyperbolic Problems, Carasso C, Raviart P, Serre D. (eds). Lecture Notes in Mathematics, vol.1270. Springer: Berlin,1986,41-51
    [38]Harten A. High resolution schemes for hyperbolic conservation laws. J. Comput. Phys.1983,49:357-393
    [39]Harten A, Hyman J, Lax P. On finite-difference approximations and entropy conditions for shocks. Comm. Pure Appl. Math.,1976,29:297-322
    [40]Krivodonova L, Xin J, Remacle J-F, et al. Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Applied Numerical Mathematics,2004,48:323-338
    [41]Ambati V R, Bokhove O. Space-time discontinuous Galerkin finite element method for shallow water flows. Journal of Computational and Applied Mathematics,2007,204:452-462
    [42]Ottevanger W. Discontinuous finite element modeling of river hydraulics and morphology, with application to the Parana river. Master's Thesis, Dept. of Applied Mathematics, University of Twente,2005
    [43]Osher S. Convergence of generalized MUSCL schemes. SIAM J. Nume. Anal., 1984,22(5):947-961
    [44]Sweby P K. High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Nume. Anal.,1984,21(5):995-1011
    [45]van der Vegt J J W, van der Ven H. Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows I. general formulation. Journal of Computational Physics,2002,182:546-585
    [46]Harten A, Lax P D, Leer B V. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev.,1983,25:35-61
    [47]Toro E F, Spruce M, Speares W. Restoration of the contact surface in the HLL Riemann solver. Shock Waves,1994,4:25-34
    [48]Shu C W, Osher S. Efficient implementation of essientially non-oscillatory shock capturing schemes II. J. Comput. Phys.,1989,83:32-78
    [49]Toro E F. Shock-capturing methods for free-surface shallow flows. England: John Wiley & Sons, Ltd.2001
    [50]Batten P, Clarke N, Lambert C, et al. On the choice of wavespeeds for the HLLC Riemann solver. SIAM J. Sci. Comput.,1997,18(6):1552-1570
    [51]Toro E F, Spruce M, Speares W. Restoration of the contact surface in the HLL Riemann solver. Shock Waves,1994,4:25-34
    [52]Toro E F. Riemann solvers and numerical methods for fluid dynamics:a practical introduction.2nd. Germany:Springer.1999
    [53]潘存鸿.浅水间断流动数值模拟及其在钱塘江河口涌潮分析中的应用.博士学位论文,上海大学,2007
    [54]Bermudez A, Vazquez M E. Upwind methods for hyperbolic conservation laws with source terms, Computers and Fluids,1994,23:1049-1071
    [55]LeVeque R J. Balancing source terms and flux gradients in high-resolution Godunov methods:the quasi-steady wave-propagation algorithm. J. Comput. Phys.,1998,146:346-365
    [56]潘存鸿,林炳尧,毛献忠.一维浅水流动方程的Godunov格式求解.水科学进展,2003,14(4):430~436
    [57]Bouchut F, Sommer J L, Zeitlin V. Frontal geostrophic adjustment and nonlinear-wave phenomena in one dimensional rotating shallow water. Part 2: high-resolution numerical simulations. J. Fluid. Mech.,2004,514:35-63
    [58]Hubbard M E, Garcia-Navarro P. Flux difference splitting and the balancing of source terms and flux gradients. Journal of Computational Physics,2000,165 (1): 89-125
    [59]Vazquez-Cendon M E. Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry. J. Comput. Phys.,1999,148:497-526
    [60]Greenberg J M, LeRoux A Y. A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM Journal on Numerical Analysis,1996,33:1-16
    [61]Jin S. A steady state capturing method for hyperbolic systems with geometrical source terms, Mathematical Modelling and Numerical Analysis,2001,35: 631-646
    [62]Rebollo T C, Delgado A D, Nieto E D F. A family of stable numerical solvers for the shallow water equations with source terms, Computer Methods in Applied Mechanics and Engineering,2003,192:203-225
    [63]Xu K. A well-balanced gas-kinetic scheme for the shallow-water equations with source terms, Journal of Computational Physics,2002,178:533-562
    [64]Hirsch C. Computational methods for inviscid and viscous flows:numerical computation of internal and external flows. New York, Wiley,1990
    [65]Garcia-Navarro P, Saviron J M. McCormack's method for the numerical simulation of one-dimensional discontinuous unsteady open channel flow. J. Hydra. Res.,1992,30(1):95-105
    [66]Capart H, Eldho T I, Huang S Y, et al. Treatment of natural geometry in finite volume river flow computations. Journal of Hydraulic Engineering,2003,129(5): 385-393
    [67]Younus M, Chaudhry M H. A depth-averaged κ-ε turbulence model for the computation of free-surface flow. J. Hydraul. Res.,1994,32(3):415-444
    [68]Vukovic S, Sopta L. ENO and WENO schemes with the exact conservation property for one-dimensional shallow water equations. J. Comput. Phys.,2002, 179:593-621
    [69]Alcrudo F, Benkhaldoun F. Exact solutions to the Riemann problem of the shallow water equations with a bottom step. Computers and Fluids,2001,30(6): 643-671
    [70]Kesserwani G, Liang Q, Vazquez J. Well-balancing issues related to the RKDG2 scheme for the shallow water equations. Int. J. Numer. Meth. Fluids,2010,62: 428-448
    [71]Goutal N, Maurel F. Proceedings of the second workshop on dam-break wave simulation,technical report HE-43/97/016/A, Electricite de France, Departement Laboratoire National d'Hydraulique, Groupe Hydraulique Fluviale,1997
    [72]Khalifa A M. Theoretical and experimental study of the radial hydraulic jump. PhD thesis, Univ. of Windsor, Windsor, Ont., Canada,1980
    [73]Goutal N, Maurel F. Proceedings of the second workshop on dam-break wave simulation, technical report HE-43/97/016/B, Electricite de France, Departement Laboratoire National d'Hydraulique, Groupe Hydraulique Fluviale,1997
    [74]Mahmood K, Yevjevich V. Unsteady flow in open channels.Vo.l. USA:Water Res. Pub.1975,29-62
    [75]Abbott M R. A theory of the propagation of bores in channels and river. Proe. Camb. Phil. Soc.,1956,52:334-362
    [76]林炳尧.浅水流中涌潮的形成,水动力学研究与进展,1988,3(4):63~69
    [77]杜珊珊.涌潮问题的一维数值方法研究.硕士学位论文,上海交通大学,2004
    [78]苏铭德,徐昕,朱锦林等.数值模拟在钱塘江涌潮分析中的应用Ⅰ.数值计算方法.力学学报,1999,31(5):521~533
    [79]苏铭德,徐昕,朱锦林等.数值模拟在钱塘江涌潮分析中的应用Ⅱ.计算结果与分析.力学学报,1999,31(6):700~716
    [80]Krivodonova L. Limiters for high-order discontinuous Galerkin methods. Journal of Computational Physics,2007,226:879-896
    [81]刘儒勋,舒其望.计算流体力学的若干新方法.北京:科学出版社,2003
    [82]王立辉.溃坝水流数值模拟与溃坝风险分析研究.博士学位论文,南京水利科学研究院,2006
    [83]Stoker J J. Water waves. Interscience Publications, Wiley, New York,1957

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700