钱塘江河口围涂工程对涌潮影响的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
涌潮是水力学、水波动力学研究的一个热点。人类活动对涌潮的影响已不容忽视,随着社会文明的发展和进步,涌潮已作为一项不可多得的自然景观和旅游资源越来越受到人们的重视和保护。因此,涌潮研究不仅需要研究涌潮本身的特性,更需采用适宜的研究方法来分析预测人类活动对其影响,从而采取有效措施保护涌潮。
     数值模拟是研究涌潮的重要手段,本文建立了KFVS(Kinetic Flux Vector Splitting)格式的平面二维涌潮数学模型,用近年来的涌潮实测资料对模型进行了较好的验证。不仅模拟了钱塘江涌潮的产生、发展、衰减的过程,而且成功地复演了一线潮、交叉潮、回头潮等潮景,分析了钱塘江涌潮的特性。数学模型研究计算表明,涌潮沿程形成不同的潮景,涌潮高度约3m,出现在盐官和大缺口一带,最大流速达6~8m/s,主要分布于弯道的凸岸,出现在涌潮到达后的5~40分钟不等,涌潮传播速度达4~7m/s。
     首次采用数值模拟方法研究了河口围涂工程对涌潮的影响,并预测了海宁三期拟建围涂工程条件下涌潮的变化。计算表明:海宁三期围涂工程的实施不会影响涌潮形成的基本条件,但围涂后,大缺口至曹娥江口河段高潮位有所抬高、低潮位变化不大,潮差略有增大,盐官、大缺口、曹娥江口断面涨潮历时缩短2~5分钟。在走南河势下,盐官和大缺口的涌潮高度分别增加0.09m和0.23m;涌潮到达的时间提前3分钟;涌潮最大流速增大5%左右;对潮景的影响较小,一线潮更加壮观、尖山附近的交叉潮位置下移,老盐仓附近的回头潮基本不变;另外,涌潮对海塘的压力也会相应增大。
The research of tidal bore has long been a hotspot in hydrodynamics and wave dynamics. The impact of human activities on the tidal bore can not be ignored. With the development and progress of social civilization, the tidal bore is regard as the rare natural scenery and tourist resources in the world, to which people pay more attention. Therefore, the research focus of the tidal bore is not only its own characteristics, but also finding appropriate research methods to analyze and forecast the impact of human activities, thus effective measures and methods can be taken to protect the tidal bore.
     Mathematical model is an important means of studying tidal bore. 2D numerical model of the tidal bore in the Qiantang River was developed by using KFVS (Kinetic Flux Vector Splitting) scheme in this paper. Based on the good agreement between the observed and computed data on the tidal bore, the model was employed to simulate the formation, evolution and dissipation of the tidal bore in the Qiantang River, and replicate some sceneries of the tidal bore, such as the thread-shape bore ,cross-shape bore and returned bore. The characteristics of the tidal bore in the Qiantang River was analyzed.The computational results of the mathematical model showed that there are different sceneries of the tidal bore along the Qiantang River. The maximum bore height is up to 3m,appearing at the reach from Yanguan to Daquekou. The maximum fluid velocity of the tidal bore is up to 6~8m/s, emerging about 5~40 minutes after the arrival of the tidal bore, mainly locating in the convex bank of curve shore. The propagation speed of the tidal bore is up to 4~7m/s.
     It is the first time to study the impact of reclamation project on the tidal bore, and the model predicted the effect of the third Hailing reclamation project on the tidal bore. The third Hailing reclamation project would not affect the basic formation conditions of the tidal bore.. However, after the construction of the reclamation project, the high tidal level raises a little and the low tidal level changes little, the tidal range increases slightly from the reach of Daquekou to Cao'e River mouth. The flood tidal duration at Yanguan, Daquekou and Cao'e River mouth is shorter 2~5 minutes than that before the construction of the project. When the main channel goes south at Jianshan reach, the bore height at Daquekou and Yanguan increases by 0.23m and 0.09m separately After the construction of the project, the bore arrival time advances about three minutes, the maximum fluid velocity of the bore increases 5%. The effect of the project on the sceneries of the tidal bore is a little. A thread-shape tidal bore in Yanguan reach will be grander, the location happened a crossed tidal bore near Jianshan moves downstream, and returned tidal bore near Laoyancang does not change. In addition, the impact force of the tidal bore on the levee will increase.
引文
[1]李约瑟,中国科学技术史,上海:科学技术出版社,1975
    [2]韩曾萃,戴泽蘅,李光炳等.钱塘江河口治理开发[M],北京:中国水利水电出版社,2003.9,262-290。
    [3]潘存鸿,鲁海燕,曾剑.人类活动对钱塘江涌潮的影响[A],中国水利学会 2007学术年会论文集[C],2007,49-54。
    [4]陈来华.钱塘江河口大规模治江围涂后对涌潮高度的影响[J],水科学进展,2007,Vol.18,No.3,385-389.
    [5]曾剑,孙志林,熊绍隆.钱塘江河口建桥对涌潮的影响研究[J],浙江大学学报,2006,40(9):1574-1637.
    [6]宋正海,郭永芳,陈瑞平编.中国古代海洋学史[M],海洋出版社,1986。
    [7]Peregine,D.h.,Calculations for the Development of an Undular Bore[J],J.Fluid Mech,1966,25:321-330.
    [8]陈沈良,谷国传,刘勇胜.长江口北支涌潮的形成条件及其初生地探讨[J],水利学报,2003a,(11):30-36
    [9]Branner,J.C.,The "pororoca," or bore of the Amazon[J],Science,1884,4(95):488-490
    [10]Moore,W.u,The Bore of the Tsien-Tang kiang(Hang-Chau Bay)[J],J.China Branch,Royal Asiatic Society,1888,(23):185-247.
    [11]Hurlbut G C,Geographical notes[J],Journal of American Geographical Society of New York,1889,21:583-646.
    [12]Champion,H.H.,and Corkan,R.H.,The bore in the Trent[J]:Proceedings of the Royal Society of London,Series A,1936,154(881):158-180.
    [13]Barnes,F.A.,The Trent Eagre:University of Nottingham[J],1952,Survey 3,No.1
    [14]Waters,B.,Severn tide[M],London,J.M.Dent and Sons,1947,183p.
    [15]Rowbotham,F.W.,1964,The Severn Bore[M],2nd edition:Newton-Abbot,North Ponfret,Vt.,David & Charles,104 p.
    [16]James H.G.,Tidal bore at the mouth of Colorado River December 8 to 10,1923[J],Monthly Weather Review,1924,98-99.
    [17]Sykes,G.G.,The Colorado Delta[M],American Geographic Society Special Publication 19,New York,1937,193 p.,and Carnegie Institute,Washington,Publication 460,193 p.1945,A westerly trend:Tucson,Ariz.,University of Arizona Press,325 p.
    [18]Dalton,F.K.,Fundy's prodigious tides and Petitcodiac's tidal bore[J],Journal of the Royal Astronomical Society of Canada,1951,45(6):225-230.
    [19]Mitchell,D.G.,Report on tidal measurements in the Petitcodiac River[J],Canadian Hydrographic Service,Tides and Water Levels,Fisheries and Oceans,1968,v.2,29 p.
    [20]Chanson H,Coastal Observations:The Tidal Bore of the Selune River,Mont Saint Michel Bay,France[J].Shore & Beach,2004,72(4):14-16.
    [21]Chanson H.,Tidal bore process in the Baie Du Mont Saint Michel(France):Field observations and discussion[A],Proceedings of 31st IAHR Congress,2005b,p 4037-4046,Seoul,Korea.
    [22]Chitale,S.V.,Bores on tidal rivers with special reference to Hooghly[J],Irrigation and Power,1954,2(1):110-120.
    [23]Roy,S.C.,Inception and propagation of the bore on the Hooghly,in Bagchi[A],K.G.,ed.,The Bhagirathi-Hooghly Basin:Proceedings of the Interdisciplinary Symposium[C],1972,p.133-142.
    [24]Treske,A.,Undular Bore in Channels-Experimental Studies[J],J.Hydraul.Res.,1994,32(3):355-370.
    [25]Mazumder,N.C.,Bose,S.,Formation and Propagation of Tidal Bore[J],J.of Waterway Port Coastal and Ocean Engineering,1995,12(3):167-175.
    [26]Chanson H.,Physical Modelling of the Flow Field in an Undular Tidal Bore.Journal of Hydraulic Research,2005a,43(3):234-244.
    [27]Chanson H,Mixing and dispersion in tidal bores,a Review[A],Proceedings of International Conference on Estuaries & Coasts,2003,Hangzhou,China.
    [28]Koch,C and Chanson,An Experimental Study of Tidal Bores and Positive Surges:Hydrodynamics and Turbulence of the Bore Front[R],Department of Civil Engineering,The University of Queensland,2005
    [29]Yeh H.H.and Mok Kai-Meng,On turbulence in bores[J],Physics Fluid A,1990,2(5):821-828
    [30]Peregine,D.h.,Calculations for the Development of an Undular Bore[J],J.Fluid Mech,1966,25:321-330.
    [31]Johnson,R.S.,A non-linear equation incorporating damping and dispersion[J],J.Fluid Mech.,1970,42:49-60.
    [32]Johnson,R.S.,Shallow Water Waves on a Viscous Fluid-The Undular Bore[J],The Physics of Fluids,1972,15(10):1693-1699。
    [33]Marshall E,Mendez R.Computational aspects of the random choice method for shallow water equations[J].J.Comput.Phys.,1981,39:1-21.
    [34]Munchow A.,Garvine RW,Nonlinear barotropic tides and bores in estuaries[J],Tellus TELLAL,1991,43A(3):246-256.
    [35]Zienkiewicz O.C.,Ortiz P.,A split-characteristic based finite element model for the shallow water equations[J],Int.J.Numer.Methods in Fluids,1995,20(8-9):1061-1080.
    [36]Caputo J.-G.and Stepanyants Y.A.,Bore formation,evolution and disintegration into solitons in shallow in shallow inhomogeneous channels[J],Nonlinear Processes in Geophysics,2003,10:407-424.
    [37]Gusev A.V.and Lyapidevskii Y V.Turbulent bore in a supercritical flow over an Irregular bed[J],Fluid Dynamics,2005,40(1):54-61.
    [38]Rayleigh Lord,On The Theory of Long Waves and Bores[J],Proceedings of the Royal Society of London,Series A,1914,90(619):324-328.
    [39]张书农.治河工程学[M],上海:中国科学图书仪器公司,1951
    [40]Abbott,M.R.,A theory of the propagation of bores in channels and rivers:Proceedings[J],Cambridge Philosophical Society,1956,52:344-362.
    [41]Dracos,TA,Glenne,B.:Stability criteria for open-channel flow[J].J.Hydr.Div.ASCE,1967,93:79-101.
    [42]Whitham,G.B.,Linear and nonlinear waves[M],Wiley New York,1974.
    [43]Gurtin ME,On the breaking of water wave on a sloping beach of arbitrary shape[J],Quart.Appl.Math.,1975,33:187-189
    [44]Roy,S.C.,Inception and propagation of the bore on the Hooghly,in Bagchi[A],K.G.,ed.,The Bhagirathi-Hooghly Basin:Proceedings of the Interdisciplinary Symposium[C],1972,p.133-142.
    [45]Mazumder N C.,Chatterjee P K.,and Basak S K.Generation of Bore[J],J.of Waterway,Port,Coastal and Ocean Engineering,1984,110(2):159-170.
    [46]Tricker,R.A.R.,Bores,breakers,waves,and wakes--An introduction to the study of waves on water[M],New York,Elsevier,1965,250 p.
    [47]Lynch,D.K.Tidal bores[J],Scientific American,1982,247(4):146-156.
    [48]Mamood K.,Yevievich V.,Unsteady flow in open channels,Colorado[M],Water Resource Pub.1975.
    [49]Whangpoo Conservancy Board,Report on hydrology of Hangchow Bay and the Chien-Tang Estuary[R],Printed by the North-Ch
    [50]张书农,钱塘江的潮汐,工程建设,1949(1)
    [51]周胜等,水利学报,1992(1):20-30
    [52]林炳尧,黄世昌,毛献忠等,钱塘江河口潮波变化过程[J],水动力学研究与 进展A辑,2002,17(6):665-675.
    [53]赵渭军,韩海骞,林炳尧.涌潮水流条件下排桩式低丁坝水力学冲淤试验研究[J],水动力学研究与进展,2001,16(3):62-69
    [54]杨火其,吴一鸣,林炳尧.强潮河口护塘丁坝上游冲刷研究[J],水道港口,2000,21(1):14-18。
    [55]杨火其,王文杰.钱塘江河口导型块体抗冲稳定特性试验研究[J],长江科学院院报,2001,4:19-22。
    [56]曾剑.钱塘江河口建桥对涌潮的影响分析[D],浙江大学硕士学位论文,2004。
    [57]万德成,缪国平.数值模拟波浪翻越直立方柱[J],水动力学研究与进展,A 辑,1998,13(3):363-370。
    [58]朱军政,林炳尧.涌潮翻越丁坝过程数值试验初步研究[J],水动力学研究与进展,2003,A辑,18(6):671-678。
    [59]吕江,祝梅良,翟洪刚.涌潮冲击丁坝的数值计算[J],海岸工程,2005a,24(1):1-8
    [60]陈海军,徐长节,蔡袁强等,涌潮冲击排桩式丁坝的数值模拟[J],浙江大学学报(工学版),2007.1第47卷第1期,171-175
    [61]金旦华,刘国俊,周本华.一维涌潮计算[J],应用数学与计算数学,1965,3(2):183-195。
    [62]赵雪华.钱塘江涌潮的一维数学模型[J],水利学报,1985,(1):50-54。
    [63]谭维炎,胡四一,韩曾萃等.钱塘江涌潮的二维数值模拟[J],水科学进展,1995,6(2):83-93。
    [64]苏铭德,徐昕,朱锦林.数值模拟在钱塘江涌潮分析中的应用--Ⅰ数值计算方法[J],力学学报,1999a,31(5):521-533。
    [65]苏铭德,徐昕,朱锦林.数值模拟在钱塘江涌潮分析中的应用--Ⅱ计算结果分析[J],力学学报,1999b,31(6):700-716。
    [66]杜珊珊,薛雷平.长江口北支涌潮的一维数值模拟[J].上海水务,2006,22(2):44-47。
    [67]潘存鸿,林炳尧,毛献忠.求解二维浅水流动方程式的Godunov格式[J],水动力学研究与进展,2003,A辑,18(1):16-23。
    [68]潘存鸿,林炳尧,毛献忠.一维浅水流动方程的Godunov格式求解[J],水科学进展,2003,14(4):430-436。(EI收录Accession number:03467728488)。
    [69]Zhou JG,Causon D M,.Mingham C G et al.The surface gradient method for the treatment of source terms in the shallow-water equations[J].J.Comput.Phys.,2001,168:1-25.
    [70]W.H.Hui,Cun-Hong Pan,Water level-bottom topography formulation for the shallow-water flow with application to the tidal bores on the Qiantang river[J],Computational Fluid Dynamics Journal,2003,12(3):549-554.
    [71]潘存鸿,徐昆.三角形网格下求解二维浅水方程的KFVS格式[J],水利学报,2006,37(7):858-864。
    [72]吴维庆.涌潮形成条件及计算[R],南京水利科学研究所研究报告汇编(河港研究第二分册),1963。
    [73]林炳尧,浅水流动中涌潮的形成,水动力学研究与进展,1988,Vol.3,No.4,63-69.
    [74]杜勇.河口变形效应与涌潮的形成[J],青岛海洋大学学报,1989,19(3):28-33。
    [75]杜勇.河口均匀流涌潮波的形式[J],海洋与湖沼,1991,22(1):78-83。
    [76]林炳尧,黄世昌,潘存鸿.涌波的基本性质[J].长江科学院院报,2003,20(6):12-14.
    [77]林炳尧,周潮生,黄世昌.关于涌潮的研究[J],自然杂志,1998a,20(1):28-33。
    [78]林炳尧,黄世昌,毛献忠.波状水跃和波状涌潮分析[J],水动力学研究与进展,1998b,13(1):106-115。
    [79]陈希海.钱塘江涌潮动力浅析[J],河口与海岸工程,1993,(1-2):35-50。
    [80]曾剑,熊绍隆,潘存鸿,等.运用神经网络理论研究钱塘江涌潮的影响因素[J],长江科学院院报,2006,23(5):14-16
    [81]潘存鸿.浅水间断流动数值模拟及其在钱塘江河口涌潮分析中的应用[D],上海大学博士学位论文,2007.5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700