中药复合材料在创伤修复中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究对丹参促进烧伤创面修复的研究进展和表皮细胞培养及其临床应用进行了系统的文献复习,回顾了丹参的主要化学成分及抗氧自由基损伤、保护内皮细胞、改善微循环、促进组织修复和再生、抑制过再生、免疫调节作用等功能;总结了培养的表皮细胞来源、表皮细胞的分离和培养方法及表皮细胞的临床应用,并对其将来的发展趋势进行了展望。同时也回顾了纳米技术在生物医学工程中的应用及纳米生物安全性问题。
     目的:构建丹参纳米银壳聚糖膜复合材料。研究该复合材料对治疗SD大鼠深Ⅱ度切割伤的作用及其生物安全性;研究角质形成细胞在丹参纳米银壳聚糖膜复合材料上的贴壁、生长及增殖情况。方法:首先用纳米自组装技术将纳米银组装到壳聚糖膜上,再将丹参固定在组装有纳米银的壳聚糖膜上。用无菌试验、热原试验、原发性皮肤刺激试验、皮内刺激试验、急性全身毒性试验对丹参纳米银壳聚糖膜复合材料的生物安全性情况进行评价,再将其用于治疗SD大鼠深Ⅱ度切割伤,通过肉眼观察、计算愈合率、组织病理切片手段评价该材料的治疗疗效,用火焰原子吸收分光光度法对经该材料治疗的SD大鼠全血及肝、脑、肾中的痕量银进行测定;将丹参纳米银壳聚糖膜复合材料用于培养角质形成细胞,计算培养6h,12h,24h后的贴壁率,用免疫组织化学的方法和透射电子显微镜等手段对培养的角质形成细胞进行鉴定。结果:通过无菌试验、热原试验、原发性皮肤刺激试验、皮内刺激试验、急性全身毒性试验发现丹参纳米银壳聚糖膜复合材料无菌、无热原、无皮肤刺激作用、无皮内刺激作用、无毒性;该材料用于治疗SD大鼠深Ⅱ度切割伤,术后10d、13d愈合率分别为90.65±4.03%和98.98±5.04%,比对照组显著提高了愈合率(P<0.05),且经丹参纳米银壳聚糖膜复合材料治疗的SD大鼠无感染;对经丹参纳米银壳聚糖膜复合材料及磺胺嘧啶银治疗后的SD大鼠全血及组织中的痕量银进行测定,发现丹参纳米银壳聚糖膜组各个时点全血银的含量明显比磺胺嘧啶银组低(P<0.01)。第13d丹参纳米银壳聚糖膜组SD大鼠创面恢复时,全血银含量基本恢复正常水平(与正常组银含量相比,P>0.05),而此时磺胺嘧啶银组SD大鼠创面未恢复,其银含量是正常全血银的5倍(P<0.01)。深Ⅱ度切割伤大鼠使用丹参纳米银壳聚糖膜复合材料和磺胺嘧啶银后,各组织银含量都有不同程度的升高,磺胺嘧啶银组各组织银含量都比丹参纳米银壳聚糖膜复合材料组高(P<0.01)。在丹参纳米银壳聚糖膜复合材料上培养新生鼠的角质形成细胞,与壳聚糖膜组、空白培养板组相比,该材料显著提高了角质形成细胞的贴壁率。24h时,角质形成细胞在该材料上的贴壁率为65.55±3.01%,在空白培养板上仅为28.61±2.23%;12h、24h时,角质形成细胞在丹参纳米银壳聚糖膜复合材料上的贴壁率是最高的,而6h时,角质形成细胞在壳聚糖膜上的贴壁率最高。另外,在该复合材料上几乎没有成纤维细胞的生长。结论:丹参纳米银壳聚糖膜复合材料无菌、无热原、无刺激、无毒性,具有促进创面愈合、缩短创面愈合周期及抗感染功能,且机体对纳米银的吸收比经典创面抗感染药磺胺嘧啶银要少得多,减少了银中毒的可能性,提高了纳米材料的生物安全性;该材料能显著提高角质形成细胞的贴壁率,并能促进其增殖,且增殖的角质形成细胞保持原有的生物活性,该材料在临床上具有良好的应用前景,将为研究应用组织工程化皮肤开阔美好的前景。
This dissertation reviewed research progress of salvia miltiorrhiza in promoting burn wound recovery and the culture and clinical application of epidermal cells and summarized chemical composition and anti-oxyradica injure, protecting endothelial cell, improving microcirculation, promoting tissue repair, inhibiting excessive regenerate and immunoregulation function of salvia miltiorrhiza. This paper also summarized resource of epidermal cells, separation of epidermal cells, cultural method of epidermal cells, clinical application ofepidermal cells and view its development. In addition, applications of nanotechnology in biomedical engineering and biological security of nanomaterials were reviewed.
     Objective: To construct salvia miltiorrhiza /nano-silver/ chitosan film composite. Investigate the efficacy and bio-safety of salvia miltiorrhiza /nano-silver/ chitosan film composite and adherence, growth, proliferation of keratinocytes on this composite. Method: Using nanometer and self-assembly technology to construct salvia miltiorrhiza/nano-silver/ chitosan film composite. Sterility test, pyretogen test, primarily skin stimulus test, intradermally stimulation test, acute general toxicity test were performed to investigate the bio-safety of this composite. The efficacy of salvia miltiorrhiza/nano-silver/chitosan filmcomposite was tested in in vivo experiments on deep partial-thickness wound created on Sprague Dawley rats (SD rats). Therapeutic effect was evaluated through macroscopic observation, calculating healing ration and pathological section. In addition, the concentration of silver in SD rats' blood and other tissues were determined by flame atomic absorption spectrophotometry (FAAS); Keratinocytes were cultured on salvia miltiorrhiza/nano-silver/ chitosan film composite. 6h, 12h, 24h after inoculation, the cell attached rations were calculated respectively. The cultured cells identified and characterized by immunohistochemistry and transmissive electron microscope (TEM). Results: Salviamiltiorrhiza/nano-silver/chitosan film composite was sterility, no pyretogen, no stimulus to skin, no general toxicity. 10 and 13 post scald day, the wound healing rates were 90.65±4.03 % and 98.98±5.04 % respectively in salvia miltiorrhiza /nano-silver/ chitosan film composite group. This was higher than control groups (P<0.05) and SD rats curing by this composite were free from infection. The silver level in blood was lower than SD-Ag group (P<0.01). 13 post scald day, the blood silver content in salvia miltiorrhiza/nano-silver/chitosan film composite returned to normal level, while in SD-Ag group, the silver content was 5 times than normal level(P<0.05). The concentration of tissue silver was higher than normal level in salvia miltiorrhiza/nano-silver/ chitosan film composite and SD-Ag group. But the silver level in tissues in SD-Ag group was much higher than composite group (P<0.01). Salvia miltiorrhiza/nano-silver/chitosan film composite could significantly (P<0.01) increase the attached ration of keratinocytes. 24h after inoculation, the attached ration of keratinocytes were 65.55±3.01% and 28.61±2.23 %on this composite and cell culture plastic, respectively. After inoculation 12h, 24h, the attached rations on this composite were the highest. However, the attached ration after inoculation 6h on this composite was lower than that on chitosan film. Meanwhile, there were not any fibroblasts growing on this composite. Conclusion: Salvia miltiorrhiza/nano-silver/chitosan film composite was sterility, no pyretogen, no stimulus to skin, no general toxicity. It can accelerate wound healing and decrease the risk of silver poisoning. In addition, it could significantly promote keratinocytes attached ration and effectively inhibited the growth of fibroblasts. The rapidly proliferating keratinocytes, which were cultured on this composite, maintained their bioactivity. Its good efficacy and bio-safety shows a prosperous future in clinical setting. This indicates that the composite was nontoxic and was a good candidate for wound dressing in skin tissue engineering.
引文
[1] 徐尔真,周爱莲,李秀兰,等.巨噬细胞在脂多糖下的趋化性及悬滴培养的移动抑制实验—生肌橡皮膏对巨噬细胞功能的影响.中华骨科杂志,1987;7(1):65-69.
    [2] 李秀兰,王淑云,徐尔真.外用中药抗感染作用的研究—小鼠腹腔巨噬细胞Fc受体的观察.中国中西医结合杂志,1995,15(4):229-231.
    [3] 李秀兰,徐尔真,师宜健,等.创面愈合中巨噬细胞功能与异质性动态研究—“偎脓长肉”作用机制研究之二.中国骨伤,1995;8(2):8-11.
    [4] 李秀兰,纪跟媛,赵凤仪,等.创面愈合中外用中药对免疫活性细胞氧化代谢功能的影响—“偎脓长肉”作用机制研究之三.中国骨伤,1995;8(3):9-11.
    [5] 李波,吴强国,张世芳.六一散对大鼠体表溃疡结缔组织增生机理研究.中医药学刊,2001:19(5):516-517.
    [6] 李建新,汤华琴.5号祛腐生肌散“生肌”作用的实验研究.中国中西医结合杂志,1988;8(6):355.
    [7] 李秀兰,师宜健,徐尔真,等.纤维结合蛋白在创伤愈合中的动态研究—“偎脓长肉”作用机制研究之四.中国骨伤,1995,8(4):10-12.
    [8] 徐顺民,张旭.血浆纤维结合蛋白治疗皮肤浅表性溃疡的临床与实验研究.徐州医学院学报,1997;17(1):63-65.
    [9] 章学林,唐汉钧,黄灶华.复黄生肌膏促进伤口愈合作用的实验研究.天津中医,1997;14(2):75-77.
    [10] 章学林,唐汉钧,黄灶华.复黄生肌膏对肉芽组织及血液中纤维结合蛋白的影响.天津中医,1999,16(4):27-28.
    [11] 黄灶华,葛志英,章学林,等.复黄生肌膏创伤大鼠纤维结合蛋白水平的影响.江西中医学院学报,2000;12(1):42-43.
    [12] 李斌,王振宜,唐汉钧.祛腐生肌法对实验性创面新生肉芽组织中EGFR、FN的影响.中国中西医结合杂志,2001,21(6):387-389.
    [13] 寇焕珠,王鸿志.生肌玉红膏对疮疡肉芽组织中PG取TXB水平的影响.中国中西医结合外科杂志,2002;8(1):5.
    [14] 王林扬,唐汉钧.复黄生肌愈创油膏促愈作用的研究.辽宁中医杂志,2000;27(3):134-135
    [15] Mccord JM. Oxygen derived free radicals inpostishemia tissue injury. New Eng J Med, 1985; 312(3): 159.
    [16] 杨卫东,朱鸿良,赵保路,等.丹参的氧自由基清除作用.中国药理学通报,1990;6(2):118-121.
    [17] Ren DC, Du GH, Zhang JT, Inhibitory effect of salvianolic acids on the endothelial cells damage induced by hydrogen peroxide. Chin J Pharmacol Toxicul, 2003; 17(5): 333-337.
    [18] Ren DC, Du GH, Zhang JT, Inhibitory effect of the uater-soluble extract of salvia militiorrhiza on neutrophile endothelial adhesion. Jpn J Pharmaco, 2002; 90(4): 276-280.
    [19] Ren DC, Du GH, Zhang JT, Effect of salvianolic acids on endothelial cells against damage induced by cholestane-3beta-5alpha-6beta-triol. Medical J, 2003; 116(4): 630-632.
    [20] 陈炫,沙建平,尹毅,等.丹参抗严重烧伤早期中性粒细胞-内皮细胞粘附机理的研究. 成都中医药大学学报,2002;25(2):16-18.
    [21] 胡俊勇,任林森.丹参对兔Ⅱ度烧伤创面皮肤活力的影响.中国修复重建外科杂志,1998;12(4):205-208.
    [22] 胡美珠.丹参注射液对家兔挠骨骨折的后肢体血容量的影响.中华外科杂志,1979;17:33.
    [23] 郑谦,王翰章.丹参对下颌骨骨折后血供的影响.临床口腔医学杂志,1995;11(2):78-80.
    [24] 范林军,顾红光,段恒春,等.丹参对大鼠急性出血坏死性胰腺炎的作用.第三军医大学学报,1996,18(4):334.
    [25] 薛全福,戴顺龄,吴云清,等.川芍嗪、丹参对金黄地鼠颊囊微循环的作用.中华医学杂志,1986;66(6):334-337.
    [26] 李承珠,林嘉宝,杨诗春,等.丹参对血小板释放血管收缩物质的影响.中西医结合杂志,1984,4(9):565-567.
    [27] 魏岳斌,李国成.丹参对胃溃疡大鼠血清一氧化氮含量和胃黏膜表皮生长因子受体表达的影响.中国中西医结合消化杂志,2001;9(4):211-212.
    [28] 徐荣辉.丹参对家兔皮肤切口愈合影响的组织化学观察.中草药,1982;13(12):15.
    [29] 李筱华.丹参对大鼠部分肝切除后肝脏再生的影响.首都医学院学报,1987;8(4):286.
    [30] 徐萃华,李燕娜.丹参对体外培养肝细胞(甲基—~3H)胸腺嘧啶核苷掺入的影响.药学通报,1987,22(9):535-534.
    [31] Liu J, Hua G, Liu W, et al. The effect of IH764-3 on fibroblast proliferation and function. Chin Med Sci, 1992; 7(3): 142-147.
    [32] 董莉.生肌化瘀方及其拆方对大鼠创面成纤维细胞Ⅰ、Ⅲ型胶原合成的影响.中国中西医结合杂志,2002;22(3):200-201.
    [33] 姜兰庆.丹参素对成纤维细胞生物学作用机制的研究.中华烧伤杂志,2001;17(1):36-38.
    [34] 王祯苓.四种中药预防肝硬变发生的实验研究.中国中西医结合杂志,1992;12(6):357-358.
    [35] 苏青和,杨敏杰,周红梅,等.丹参素对烧伤创面成纤维细胞DNA和胶原合成的影响.交通医学,2003;17(6):666-667.
    [36] Hemd DN, Barrow RE, Kunkel KP, et al. Regulation of fibroplasion coetaneous wound repair. Ann Surg, 1990; 212(4): 424-429.
    [37] 马学惠,赵元昌,尹镭,等.丹参对肝纤维重吸收的作用.中西医结合杂志,1988;8(3):161-163.
    [38] 杨卫.丹参治疗陈旧性疤痕疙瘩1例.中西医结合杂志,1989;9(7):417-418.
    [39] 商庆新.丹参和川芪对瘢痕成纤维细胞生长的体外抑制实验.中国修复重建外科杂志,1998;12(12):321-324.
    [40] Martin GR, Peacock EE. Current perspectives in wound healing, In: Cohen IK, Diegelman RF, Lindblad WJ eds. Wound healing-biochemical and clinical aspect. Philadelphia: Saunders Company, 1992: 1-4.
    [41] 付小兵,王德文编著.创伤修复基础.北京:人民军医出版社,1997:24-25.
    [42] Lekic P, Mcculloch CA. Periodontal ligament cell populations: The central role of fibroblasts in creating a unique tissue. AnatRec, 1996; 245(2): 327-341.
    [43] Choi BM, Kwak HJ, Jun CD, et al. Control of scaring in adult wounds using antisense transforming growth factor-β1 oligodeoxynucleotides. Immunol Cell Biol, 1996; 74(2): 144-150.
    [44] 王益民,韦福康,刘敏,等.丹参对体外培养成纤维细胞自分泌生长因子的影响.中国修复重建外科杂志,2002;16(6):408-410.
    [45] Akasaka Y, Fujita K, Ishikawa Y, et al. Detection of apoptosis in keloids and a comparative study on apoptosis between keloids, hypertrophic scars, normal healed flat scars, and dermat of ibroma. Wound Repair Regen, 2001; 9(6): 501-506.
    [46] Luo S, Benathan M, raffoul W, et al. Abnormal balance between prolife ration and apoptotic cell death in fibroblasts derived from keloid lesions. Plast Reconstr Surg, 2001; 107(1): 87-96.
    [47] 左强,张培华,罗少军,等.丹参酮Ⅱ A对瘢痕成纤维细胞增殖及凋亡的影响.广东医学,2004;25(6):636-637.
    [48] Wang JH, Redmond HP, Watson WG, et al. Role of lipopo lysaccharide and tumor necrosis factoralpha in induction of hepatocytene crosis. Am J Physiol, 1995; 269(2): 297-304.
    [49] Writte MB, Barbul A. General principles of wound healing. Surg Clin North Am, 1997; 77(1): 509-528.
    [50] Smith PD, polo M, Soler PM, et al. Efficacy of growth factors in accelerated closure of interstices in explanted meshed humans kingrafts. J Burn Rehabil, 2000; 21(3): 5-9.
    [51] 王文俊,吴咸中,姚智.大黄素、丹参素对单核细胞分泌炎性细胞因子的调节.中国免疫学杂志,1995;11(6):370-372.
    [52] 郭颂铭,华斌,柏连松.复方丹参凝胶对感染创面炎症介质及其基因表达的影响.江西医学院学报,2002;42(6):5-8.
    [53] 贾泰元.丹参对巨噬细胞免疫活性的双向调节.中医研究,1995;8(4):17-18.
    [54] 苗戎.丹参对肺巨噬细胞分泌功能的影响.天津中医学院学报,1998;17(1):38-39.
    [55] 龙振洲.医学免疫学第2版.北京:人民卫生出版社,1997;47.
    [56] 高骥援,王淑芬,张克坚,等.丹参对人白细胞趋化性影响的观察.中西医结合杂志,1985;5(11):684-685.
    [57] 赵忠保,冯经义,陈素青,等.丹参、川芍嗪和复方丹参对大鼠血液淋巴细胞免疫功能的影响.四川中医,1993;11(11):13.
    [58] 郎杏彩,李明湘,贾秉义,等.丹参、复方丹参、川芍嗪增强小鼠免疫功能的实验研究.河北医学院学报,1991;12(3):140-144.
    [59] 孙庆林,朱锦祥,张锡庆.丹参对小肠缺血再灌注损伤保护作用的研究.苏州医学院学报,1996;16(5):826.
    [60] 俞云松,干梦九,马亦树.浙江省耐甲氧西林金黄色葡萄球菌流行状况及耐药性.中华传染病杂志,1994;12:149-152.
    [61] 郇京宁,陈玉林,葛绳德.烧伤患者耐甲氧西林金黄色葡萄球菌的感染和治疗.中华外科杂志,1994;32:244-245.
    [62] 石乃玉,董华明,黄海金.丹参酮的药理及临床应用.中国医师杂志,2001;3(2):150-151.
    [63] 胡德林,汪昌荣,陈侠贡,等.丹参酮促进金黄色葡萄球菌感染烧伤残余创面愈合.Jornal of Chinese Physician, 2001; 3(5): 394.
    [64] Watt FM. Proliferation and terminal differentiation of human epidermal keratinocytes in culture. Biochem Soc Trans, 1988; 16(5): 666-668.
    [65] Kumagai N, Oshima H, Tanabe M, et al. Favorable donor site for epidermal cultivation for the treatment of burn scars with autologous cultured epithelium. Ann Plast Surg, 1997; 38(5): 506-513.
    [66] Lenoir-Viale MC, Galup C, Darmon M, et al. Epidermis reconstructed from the outer root sheath of human hair follicle. Effect of retinoic acid. Arch Dermatol Res, 1993; 285(4): 197-204.
    [67] Suzuki T, Ui K, Shioya N, et al. Mixed cultures comprising syngeneic and allogeneic mouse keratinocytes as a graftable skin substitute. Transplantation, 1995; 59(9): 1236-1241.
    [68] Tenchini ML, Ranzati C, Malcovati M. Culture techniques for human keratinocytes. Burns, 1992; 18(suppl 1): s11-s16.
    [69] 苏波,赵雪莲,张仕敏,等.表皮细胞培养与移植研究—表皮细胞分离技术.中华整形烧伤外科杂志,1996;12(2):159-160.
    [70] 苏波,俞为荣,朱世辉,等.混合培养白体与异体表皮细胞的移植方法.第二军医大学学报,1997;18(1):30-31.
    [71] 苏波,张素贞.大量培养表皮细胞方法的研究.中华整形烧伤外科杂志,1995;11(6):433-435
    [72] Walzer C, Benathan M, Frenk E. Thermolysin treatment: a new method for dermo-epidermal separation. J Invest Dermatol, 1989; 92(1): 78-81.
    [73] 刘杰,王德文,崔雪梅,等.表皮细胞培养最佳条件德探索.军事医学科学院院刊. 2001;25(4):293-296.
    [74] 欧阳安力,周燕,华平,等.胰酶对皮肤角质细胞分离和传代德影响.生物医学工程学报,2002;17(1):59-62.
    [75] Van Dorp AG, Verhoeven MC, Nat-Van Der Meij TH, et al. A modifiled culture system for epidermal cells for grafting purposes: an in vitro and in vivo study. Wound Repair Regen, 1999; 7(4): 214-225.
    [76] Hybbinette S, Bostrom M, Lindberg K. Enzymatic dissociation of keratinocytes from human skin biopsies for in vitro cellpropagation. Exp Dermatol, 1999; 8(1): 30-38.
    [77] Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell, 1975; 6(3): 331-343.
    [78] 汪培铭,冯光珍,孙红,等.体外人表皮细胞培养技术:不同滋养层细胞对角朊细胞生长融合的影响.中国临床康复,2004;8(35):7945-7948.
    [79] Elisa T, Marsch-Moreno M, Castro-Munozledo F, et al. Frozen cultured sheets of human epidermal keratinocytes enhance healing of full-thickness wounds in mice. Cell Tissue Res, 1999; 296(3): 575-585.
    [80] Daniels JT, Kearney JN, Ingham E. Human keratinocyte isolation and cell culture: a survey of current practices in the UK. Burns,1996; 22(1): 35-39.
    [81] Boyce ST, Ham RG. Calcium-regulated differentiation of normal human epidermal keratinocytes in chemically defined clonal culture and serum-free serial culture. J Invest Dermatol, 1983; 81(suppl 11): 33s-40s.
    [82] Yuspa SH, Hawley-Nelson P, Stanley JR. Epidermal cell culture. Transplant Proc, 1980; 12(3suppl 1): 114-122.
    [83] Bernstam LI, Vaughan FL, Bernstein IA. Keratinocytes grown at the air-liquid interface. In Vitro Cell Dev Biol, 1986; 22(12): 695-705.
    [84] Horch RE, Bannasch H, Kopp J, et al. Single-cell suspensions of cultured human keratinocytes in fibrin-glue reconstitute the epidermis. Cell Transplant, 1998; 7(3): 309-317.
    [85] Presonil JE, Villeneuve PE. Automated production of cultured epidermal autografts and sub-confluent epidermal autografts in a computer controlled bioreactor. Biotechnol Bioeng, 1998; 59(6): 679-683.
    [86] Presonil JE, Kino-oka M. Computer controlled bioreactor for large scale production of cultured skin grafts. Ann N Y Acad Sci, 1999; 875: 386-397.
    [87] Hirai H, Umegaki R, Kino-oka M, et al. Characterization of cellular motions through direct observation of individual cells at early stage in anchorage-dependent culture. J Biosci Bioeng, 2002; 94(4): 351-356.
    [88] Masahiro KO, Taya M. Development of culture techniques of keratinocytes for skin graft production. Adv Biochem Engin/Biotechnol, 2004; 91:135-169.
    [89] Howling GI, Dettmar PW, Goddard PA, et al. The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro. Biomaterials, 2001; 22(22):2959-2966.
    [90] Wang TW, Huang YC, Sun JS, et al. Organotypic keratinocyte-fibroblast cocultures on a bilayer gelatin scaffold as a model of skin equivalent. Biomed Sci Instrum, 2003; 39:523-528.
    [91] Noh HK, Lee SW, Kim JM, et al. Electrospinning of chitin nanofibers: Degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials, 2006; 27(21): 3934-3944.
    [92] 吴国选,伍津津,朱堂友,等.猪复方壳多糖组织工程皮肤替代物的构建.中国临床康复,2006:10(13):67-69.
    [93] Gilbert V, Rouabhia M, Wang H, et al. Characterization and evaluation of whey protein-based biofilms as substrates for in vitro cell cultures. Biomaterials, 2005; 26(35): 7471-7480.
    [94] Min BM, Lee G, Kim SH, et al. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials, 2004; 25(7-8): 1289-1297.
    [95] Krasna M, Planinsek F, Knezevic M, et al. Evaluation of a fibrin-based skin substitute prepared in a defined keratinocyte medium. Int J Pharm, 2005; 291 (1-2): 31-37.
    [96] Mangoldt F. Die Uberhautung von Wundflachen und Wundhohlen durch Epithelausaat, eine neue Methode derTransplantation. Deut Med Wschr, 1895; 21: 798-799.
    [97] Pels-Leusden F. Die Anwendung des Spalthautlappens in der Chirurgie. Deut Med Wschr, 1905; 31: 99-102.
    [98] Billingham R, Reynolds J. Transplantation studies on sheet of pure epidermal epithelium and of epidermal cell suspensions. Br J Plast Surg, 1952; 23: 25-32.
    [99] Altmeppen J, Hansen E, Bonnlander GL, et al. Composition and characteristics of an autologous thrombocyte gel. J Surg Res, 2004; 117(2): 202-207.
    [100] Archambault M, Yaar M, Gilchrest BA. Keratinocytes and fibroblasts in a human skin equivalent model enhance melanocyte survival and melanin synthesis after ultravioletirradiation. J Invest Dermatol, 1995; 104(5): 859-867.
    [101] Pellegrini G, Ranno R, Stracuzzi G, et al. The control of epidermal stem cells (holoclones) in the treatment of massive full-thickness bums with autologous keratinocytes cultured on fibrin. Transplantation, 1999; 68(6): 868-879.
    [102] Green H, Kehinde O, Thomas J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci USA, 1979; 76(11): 5665-5668.
    [103] O'Conner NE, Mulliken JB, Bunks SG, et al. Grafting of bums with cultured epithelium prepared formautogous epidemal cell. Lancet, 1981; 1(8211): 75-78.
    [104] 夏照帆.永久性皮肤替代物研究进展和现状.解放军医学杂志,2003;28(5):389-391.
    [105] 吴国群,桑琳霞,周娜静,等.人自体表皮细胞培养及移植研究.河北医科大学学报,2006;27(3):168-170.
    [106] Compton CC, Butler CE, Yannas IV, et al. Organized skin structure is regenerated in vivo from collagen-GAG matrices seeded with autologous keratinocytes. J Invest Dermatol, 1998; 110(6): 908-916.
    [107] Fabre JW. Epidermal allografts. Immunol Lett, 1999; 29: 161-165.
    [108] Horch RE, Debus M, Wagner G, et al. Cultured human keratinocytes on type Ⅰ collagen membranes to reconstitute the epidermis. Tissue Eng, 2000; 6(1): 53-67.
    [109] Ronfard V, Rives JM, Neveux Y, et al. Long-term regeneration of human epidermis on third degree bums transplanted with autologous cultured epithelium grown on a fibrin matrix. Transplantation, 2000; 70(11): 1588-1598.
    [110] 夏照帆,肖仕初,杨珺,等.混合表皮细胞与异种脱细胞真皮构建复合皮的移植和转归研究.解放军医学杂志,2003,28(5):402.
    [111] Larochelle F, Ross G, Rouabhia M. Permanent skin replacement using engineered epidermis containing fewer than 5% syngeneic keratinocytes. Lab Invest, 1998; 78(9): 1089-1099.
    [112] 肖仕初,夏照帆,刘旺.异种无细胞真皮活性复合皮的制备.现代康复,2000;4(12):1844-1845.
    [113] 苏波,赵雪莲,张仕敏.表皮细胞培养与移植.中华整形烧伤外科杂志,1996;12(2):159-160.
    [114] Minuth WW, Sittinger M, Kloth S. Tissue engineering: generation of differentiated artificial tissues for biomedical applications. Cell Tissue Res, 1998; 29(1): 1-11.
    [115] Kirsner RS, Falanga V, Eaglstein WH. The biology of skin grafts, skin grafts as pharmacologic agents. Arch Dermatol, 1993; 129(4): 481-483.
    [116] Renneekampff HO, Hansbrough JF, Kiessing V, et al. Wound closure with human keratinocytes cultured on a polyurethane dressing overlaid on a cultured human dermal replacement. Surg, 1996; 12: 16-22.
    [117] Rouabhia M, German L, Bergeron J, et al. Allogeneic-syngeneic cultured epithelia: A successful therapeutic option for skin regeneration. Transplantation, 1995; 59(9): 1229-1235.
    [118] Larochelle F, Ross G, Rouabhia M, Permanent skin replacement using engineered epidermis containing fewer than 5% syngeneic keratinocytes. Lab Inv, 1998; 78(9): 1089-1098.
    [119] Lafrance ML, Artastrong DW, Novel living skin replacement biotherapy approach for wounded skintissues. Tissue Engineering, 1999; 5(2): 153-170.
    [120] 焦向阳,Kopp J,刑新,等.新型表皮细胞生物膜移植物的研究.中国修复重建外科杂志,1999:13:105-108.
    [121] Horch RE, Debus M, Wagner G, et al. Cultured human keratinocytes on type Ⅰ collagen membranes to reconnstitute the epidermis. Tissue Engineering, 2000; 6(1): 53-67.
    [122] Wang TW, Sun JS, Wu HC, et al. The effect of gelatin-chondroitin sulfate-hyaluronic acid skin substitute on wound healing in SCID mice. Biomaterials, 2006; 27(33): 5689-5697.
    [123] Hefton JM, Ambershon JB, Bizes DG, et al. Loss of HLADR expression by human epidermal cells after growth in culture. J Invest Dermal, 1984; 83(1): 48-50.
    [124] Amirpour ML, Ghosh P, Lackowski WM, et al. Mammalian Cell Cultures on Micropatterned Surfaces of Weak-Acid, Polyelectrolyte Hyperbranched Thin Films on Gold. Anal. Chem, 2001; 73(7): 1560-1566.
    [125] Gu HY, Chen Z, Sa RX, et al. The immobilization of hepatocytes on 24 nm-sized gold colloid for enhanced hepatocytes proliferation. Biomaterials, 2004; 25(17): 3445-3451.
    [126] Rho KS, Jeong L, Lee G, et al. Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials, 2006; 27(8): 1452-1461.
    [127] Park KE, Jang SY, Lee SJ, et al. Biomimetic nanofibrous scaffolds: Preparation and characterization of chitin/silk fibroin blend nanofibers. Int J Biol Macromol, 2006; 38(3-5): 165-173.
    [128] Sun T, Jackson S, Haycock JW, et al. Culture of skin cells in 3D rather than 2D improves their ability to survive exposure to cytotoxic agents. J Biotechnol, 2006; 122(3):372-381.
    [129] 张杰,刘伟,曹宜林.角质干细胞及其在皮肤组织工程中的应用前景.中国实用美容整形外科杂志,2004;15(1):40-43.
    [130] 任少强,黄跃生.人表皮干细胞的分离和鉴定.第三军医大学学报,2002;24(11):1336-1339.
    [131] 李建福,付小兵.表皮干细胞体外分离与培养.解放军医学杂志,2002;27(5):386-387.
    [132] 董蕊,金岩,刘源,等.人表皮干细胞在不同培养基中生长状态的观察及其生物学性状的初步探讨.中国修复重建外科杂志,2005;19(4):314-317.
    [133] Xie JL, Li TZ, Qi SH, et al. A study of using tissue-engineered skin reconstructed by candidate epidermal stem cells to cover the mice nude with full-thickness skin defect. Journal of Plastic, Reconstructive & Aesthetic Surgery, 2006; In Press
    [134] 梁丽娜,李根林,王津津,等.中药对新生小牛视网膜组织细胞增殖作用的研究.中国中医眼科杂志,2004;14(3):139-141.
    [135] 王永东,刘晓青.中药黄芪对成骨细胞体外成骨能力的观察.华夏医学,2004;17(3):306-308.
    [136] 黄翔,申吉泓,李虹,等.尿道瘢痕成纤维细胞培养及药物对其生长的影响.华西医大学报,2002;33(2):220-222.
    [137] 冯伟,傅文或,朱雅萍,等.接骨中药对培养成骨细胞增殖、分化和矿化功能的影响.浙江中医学院学报,2004;28(2):65-67.
    [138] Schoonman J. Nanostructured material in solid state ionics. Solid State tonics, 2000; 135(1~4): 15-19.
    [139] Liao SS, Wang W, Uo M, Ohkawa S et al. A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration. Biomaterials, 2005; 26(36): 7564-7571.
    [140] Goto K, Tamura J, Shinzato S, Fujibayashi S et al. Biocative bone cements containing nano-sized titania particles for use as bone substitutes. Biomaterials, 2005; 26(33): 6496-6505.
    [141] Chris Arts JJ, Verdonschot N, Schreurs BW, Buma P. The use of a bioresorbable nano-crystalline hydroxyapatite paste in acetabular bone impaction grafting. Biomaterials, 2006; 27(7): 1110-1118.
    [142] Service RF. Nanomaterials show signs of toxicity. Science, 2003; 300(5617): 243.
    [143] Brumfiel G. Nanotechnology: A little knowledge. Nature, 2003; 424(17): 246-248.
    [144] Kelly KL. Nanotechnology grows up. Science, 2004; 304(5678): 1732-1734.
    [145] 赵宇亮,柴之芳.纳米生物效应研究进展.科学发展,2005;20(3):194-199.
    [146] Chen Z, Meng H, Xing G M, et al. Acute toxicological effects of copper nanoparticles in vivo. Toxicology Letters, 2006; 163(2): 109-120.
    [147] Jia X, Li N, Chen J. A subchronic toxicity study of elemental nano-Se in Sprague-dawley rats. Life Science, 2005; 76(17): 1989-2003.
    [148] Hosteler MJ, Green SJ, Stokes JJ, et al. Monolayers in three dimensions: synthesis and electrochemistry of ω-Functionalized alkanethiolate- stabilized gold cluster compounds. J Am Chem Soc, 1996; 118(17): 4212-4213.
    [149] Zhao JG, Henkens RW, Stonehuerner J, et al. Direct electron transfer at horseradish peroxidase-colloidal gold modified electrodes. J Electroanal Chem, 1992; 327(1-2): 109-119.
    [1] 白春礼.2002科技发展报告.中国科学院,2002.
    [2] 朱道本,王佛松.有机固体.上海科学技术出版社,1999.
    [3] Shipway AN, Katz E, Willner I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chem. Phys. Chem, 2000; 1(1): 18-52.
    [4] Perry Klokkevold DDS. On the horizon: Advances and new technology Biotechnology, nanotechnology, and nanomedicine. Journal of evidence based dental practice, 2002; 2(2): 175-177.
    [5] Demling RH, Leslie-DeSanti MD. The rate of re-epithelialization across meshed skin grafts is increased with exposure to silver. Bums, 2002; 28(3): 264-266.
    [6] Ulkur E, Oncul O, Karagoz H, et al. Comparison of silver-coated dressing (Acticoat~(TM)), chlorhexidine acetate 0.5% (Bactigrass), and fusidic acid 2%(Fucidin) for topical antibacterial effect in methicillin-resistant staphylococci-contaminated, full-skin thickness rat bum wounds. Bums, 2005; 31(7): 874-877.
    [7] Rustogi R, Mill J, Fraser J F, et al. The use of Acticoat~(TM) in neonatal bums. Bums, 2005; 31(7): 878-882.
    [8] 姜会庆,汪军,胡心宝,等.纳米银敷料在烧伤创面的应用.医学研究生学报,2001;5:439.
    [9] 陈炯,韩春茂,余朝恒.纳米银用于烧伤患者创面后银代谢的变化.中华烧伤杂志,2004;20(3):161-163.
    [10] 邓敏瑞,陈燕辉.阿希米治疗宫颈糜烂60例疗效观察.中国实用妇科与产科杂志,2005;21(2):115-116.
    [11] Michael AA O'Neill, George JV, Anthony EB, et al. Corrigendum to "Antimicrobial properties of silver-containing wound dressing: a microcalorimetric study" International jourmal of pharmaceutics, 2003; 270(1-2): 61-68.
    [12] Katrin K, Yang W, Harald K, et al. Single molecule detection using surface enhanced Raman scattering. Phys Rev Lett, 1997; 78(9): 1667-1670.
    [13] 袁久荣,何慧,高鲁霞,等.怀牛膝与红牛膝、紫花地榆与白花地榆的紫外谱线组法鉴别.时珍国药研究,1997;8(5):425-426.
    [14] Nassar AE, Willis WS, Rusling JF. Electron transfer from electrodes to myoglobin: facilitated in surfactant films and blocked by adsorbed biomacromolecules. Anal Chem, 1995; 67(14): 2386-2392.
    [15] 索志荣,秦海燕,曹炜,等.复方丹参片中四种成分的高效液相色谱—电化学检测—紫外检测法分析.色谱,2005;23(6):626-629.
    [16] 莫志江,张丽娟.不同复方丹参片(滴丸)紫外吸收光谱的相关分析.中国中药杂志,2005;30(7):507-510.
    [17] 夏苗芬,周双林.紫外分光光度法测定香丹注射液中水溶性酚和酚酸的总含量.科技通报,2004;20(6):549-551.
    [18] 毛维伦,刘先琼,段雪云,等.净丹参与酒炙丹参紫外谱线鉴别.时珍国医国药,2005;16 (6):560.
    [19] Kharitonov AB, Alfonta L, Katz E, et al. Probing of bioaffinity interactions at interfaces using impedance spectroscopy and chronopotentiometry. J Electroanal Chem, 2000; 487: 133-141.
    [20] Zhao J, Henkens RW, Stonehuemer J, et al. Direct Electron Transfer at Horseradish Peroxidase-Colloidal Gold Modified Electrodes. J Electroanal Chem, 1992; 327: 109-119.
    [21] Wright JB, Lam K, Hanson D, et al. Efficacy of topical silver against fungal bum wound pathogens. Am J Inf Cont, 1999; 27: 344-350.
    [22] Klein DG; Fritsch DE, Amin SG. Wound infection following trauma and bum injuries. Crit Care Nursing Clin NA, 1995; 7: 627-642.
    [23] Ken Dunn. The role of Acticoat~(TM) with nanocrystalline silver in the management of bums. Bums, 2004; 30(Suppl 1): s1-s9.
    [24] Bragg PD, Rainnie DJ. The effect of silver ions on the respiratory chain of E coli. Can J Microbiol, 1974; 20: 883-889.
    [25] Cervantes C, Silver S. Metal resistance in Pseudomonas: genes and mechanisms. In: Nakazawa T, Furukawa K, Haas D, Silver S, EDITORS. Molecular Biology of Pseudomonas. Washington: American Society for Microbiology, 1996.
    [26] Modak SM, Fox CL. Binding of silver sulfadiazine to the cellular components of Pseudomonas aeruginosa. Biochem Pharmacol, 1973; 22: 2391-2404.
    [27] Rosenkranz HS, Rosenkranz S, Silver sulfadiazine: interaction with isolated deoxyribonucleic acid. Antimicrob Agents Chemother, 1972; 2: 373-383.
    [1] 中华人民共和国卫生部药典委员会.中华人民共和国药典 (二部).北京:化学工业出版社,2005:附录ⅪH, 89-93.
    [2] 中国标准出版社第一编辑室.GB/T16886.12-2000 医疗器械生物学评价.北京:中国标准出版社,2003:第12部:样品制备与参照样品,191-192.
    [3] 中国标准出版社第一编辑室.GB/T16175-1996医用有机硅材料生物学评价试验方法.北京:中国标准出版社,2003:热原试验,16-17.
    [4] 中国标准出版社第一编辑室.GB/T16175-1996医用有机硅材料生物学评价试验方法.北京:中国标准出版社,2003:原发性皮肤刺激试验,10-11.
    [5] 中国标准出版社第一编辑室.GB/T16175-1996医用有机硅材料生物学评价试验方法.北京:中国标准出版社,2003:皮内刺激试验,9-10.
    [6] 中国标准出版社第一编辑室.GB/T16175-1996医用有机硅材料生物学评价试验方法.北京:中国标准出版社,2003:急性全身毒性,15-16.
    [7] 胡骁骅,张普柱,孙永华,等.纳米银抗菌医用敷料银离子吸收和临床应用.中华医学杂志,2003;83(24):2178-2179.
    [1] 周宏礽,谭谦.皮肤组织工程学研究进展.中华烧伤杂志,2001;17(1):56-59.
    [2] Wang TW, Huang YC, Sun JS, et al. Organotypic keratinocyte-fibroblast cocultures on a bilayer gelatin scaffold as a model of skin equivalent. Biomed Sci Instrum, 2003; 39: 523-528.
    [3] Howling GI, Dettmar PW, Goddard PA, et al. The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro. Biomaterials, 2001; 22(22): 2959-2966.
    [4] Noh HK, Lee SW, Kim JM, et al. Electrospinning of chitin nanofibers: Degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials, 2006; 27(21): 3934-3944.
    [5] 吴国选,伍津津,朱堂友,等.猪复方壳多糖组织工程皮肤替代物的构建[J].中国临床康复,2006;10(13):67-69.
    [6] Gilbert V, Rouabhia M, Wang H, et al. Characterization and evaluation of whey protein-based biofilms as substrates for in vitro cell cultures. Biomaterials, 2005; 26(35): 7471-7480.
    [7] Min BM, Lee G, Kim SH, et al. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials, 2004; 25(7-8): 1289-1297.
    [8] Krasna M, Planinsek F, Knezevic M, et al. Evaluation of a fibrin-based skin substitute prepared in a defined keratinocyte medium. Int J Pharm, 2005; 291(1-2): 31-37.
    [9] Amirpour ML, Ghosh P, Lackowski WM, et al. Mammalian Cell Cultures on Micropatterned Surfaces of Weak-Acid, Polyelectrolyte Hyperbranched Thin Films on Gold. Anal Chem, 2001; 73(7): 1560-1566.
    [10] Gu HY, Chert Z, Sa RX, et al. The immobilization of hepatocytes on 24 nm-sized gold colloid for enhanced hepatocytes proliferation. Biomaterials, 2004; 25(17): 3445-2451.
    [11] Lin HR, Chen KS, Chen SC, Lee CH, Chiou SH, Chang TL, Wu TH. Attachment of stem cells on porous chitosan scaffold crosslinked by Na_5P_3O_(10). Mater Sci Eng C, 2007; 27: 280-284.
    [12] Rho KS, Jeong L, Lee G; et al. Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials, 2006; 27(8): 1452-1461.
    [13] Park KE, Jang SY, Lee SJ, et al. Biomimetic nanofibrous scaffolds: Preparation and characterization of chitin/silk fibroin blend nanofibers. Int J Biol Macromol, 2006; 38(3-5): 165-173.
    [14] Sun T, Jackson S, Haycock JW, et al. Culture of skin cells in 3D rather than 2D improves their ability to survive exposure to cytotoxic agents. J Biotechnol, 2006; 122(3): 372-381
    [15] Zhang WJ, Li GX. Third-generation biosensors based on the direct electron transfer of proteins, Analytical sciences, 2004; 20: 603.
    [16] Liu YJ, Nie LH, Tao WY, et al. Amperometric study of Au-colloid function on xanthine biosensor based on xanthine oxidase immobilized in polypyrrole layer. Electroanalysis, 2004; 15: 1271.
    [17] Gu HY, Lu SY, Jiang QY, et al. A novel nitric oxide cellular biosensor based on red blood cells immobilized on gold nanoparticals. Analytical Letters, 2006; 39(15): 2849-2859.
    [18] Gu HY, Sa RX, Yuan SS, et al. The self-assembly, characterization of hepatocytes on nano-sized gold colloid and construction of cellular biosensor. Chemistry Letters, 2003; 32(10): 934-935.
    [19] Gu HY, Yu AM, Yuan SS, et al. Amperometric nitric oxide biosensor based on the immobilization of hemoglobin on a nanometer-sized gold colloid modified Au electrode. Analytical Letters, 2002; 35(4): 647-661.
    [20] Gu HY, Yu AM, Chen HY. Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid-cysteamine-modified gold electrode. Journal of Electroanalytical Chemistry, 2001; 516: 119-126.
    [21] 王小红,马建标,何炳林.甲壳素、壳聚糖及其衍生物的应用.功能高分子学报,1999:12:112-197.
    [22] Muzzarelli RA, Guerrieri M, Goteri G., Muzzarelli C, Armeni T, Ghiselli R, Cornelissen M. The biocompatibility of dibutyryl chitin in the context of wound dressings. Biomaterials, 2005; 26(29): 5844-5854.
    [23] Balakrishnan B, Mohanty M, Umashankar PR, Jayakrishnan A. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials, 2005; 26(32): 6335-6342.
    [24] Eaglstein WH, Falanga V. Tissue engineering for skin: an update. J Am Acad Dematal, 1998; 39(6): 1007.
    [25] 李明,王强,杨春欣,等.丹参对系统性硬皮病患者皮肤成纤维细胞增殖和胶原合成的影响.中华皮肤科杂志,1998;31(1):22-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700