双圆盾构隧道施工扰动及对周边构筑物影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市建设的发展,土地资源日益减少,交通不断拥堵等问题日益突出。盾构隧道施工在城市地下空间开发中发挥着重要的作用。盾构施工扰动引起的环境效应是城市环境土工学的一个重要课题。盾构隧道在施工过程中不可避免地对周围土体产生扰动,进而危及周围邻近建(构)筑物及其基础和地下管线等的安全和正常使用。目前对于双圆盾构工法引起的注浆效应,土体位移、附加应力等尚缺乏足够的认识,探索双圆盾构工法的引起的土体扰动及其对周边构筑物的影响规律研究既是生产实践需求,也具有一定的理论研究价值。本文围绕双圆盾构其独特的施工工艺,从工厂需求出发,进行了多方面的研究。主要工作和研究成果如下:
     (1)基于广义达西定理和两类流体方程,对双圆盾构隧道管片同步注浆扩散机理进行分析,分别推导了牛顿流体、非牛顿宾汉姆流体的管片注浆的浆液扩散半径公式,可计算管片同步注浆工艺参数及不同注浆时间盾尾空隙中浆液扩散半径的大小与及管片环向压力分布。
     (2)基于随机介质理论推导了双圆盾构由于土体损失引起的三维土体变形计算公式、同时运用Mindlin解建立考虑刀盘正面、侧面与土体摩擦所引起的三维土体变形计算公式,结合双圆盾构掘进正面附加推力、侧摩阻力引起的土体变形,盾尾注浆力引起的土体变形叠加得到双圆盾构施工引起的三维土体变形计算公式。
     (3)应用Sagaseta"源汇法”理论,推导了土体损失产生的三维附加应力计算公式。结合弹性力学的Mindlin解推导了双圆盾构掘进正面附加推力、侧摩阻力引起的土体附加应力,盾尾注浆力引起的土体变形叠加得到双圆盾构施工引起的三维土体附加应力计算公式。
     (4)在考虑正面附加推力、侧摩阻力引起的土体变形,盾尾注浆力三个因素作用下,分别分析了双圆盾构施工对临近地下管线、建筑物桩基、平行既有隧道的影响。
     (5)采用三维MIDAS/GTS软件,考虑建筑物-土体-隧道共同作用,模拟了双圆盾构隧道垂直穿越十字交叉梁基础框架结构建筑物的工况,并分析该施工对建筑物的影响。
With the development of urban construction, land resources are dwindling, and traffic congestion and other problems have become increasingly prominent. Shield tunneling plays an important role in the development of urban underground space. The effects of shield construction disturbances on surrounding environmental are an important topic of urban environmental geotechnics. Surrounding soil is inevitably disturbed during shield tunneling construction, and thus it endangers the neighboring building (structure) building, its foundation and adjacent underground pipelines and so on. For grouting effect, soil displacement and additional stress caused by the Double-O-Tube (DOT) shield tunnel method, is still a lack of sufficient knowledge, it is important to explore the law of soil disturbance and its impact on the surrounding structures caused by DOT shield tunneling. Not only has it production practice needs, but also has some theoretical research value. From the theoretical research needs, this dissertation focuses on the its unique construction technology of DOT shield tunnel to carry out a wide range of research. The main work and results are as follows:
     Based on the generalized Darcy and two types of fluid equations, synchronous grouting diffusion mechanism of DOT shield tunnel segment was analyzed. Newtonian fluid, non-Newtonian Bingham fluid segment slurry grouting diffusion radius formula were separately derived, which can calculate the synchronous grouting parameters and size of the slurry diffusion radius in segment shield tail void and the pressure distribution of segment ring at different time.
     Based on the random medium theory, the three-dimensional (3D) soil deformation calculation formula caused by soil loss is derived in Double-O-Tube (DOT) shield tunneling. Considering the friction between the cutter facade, side and soil, the soil3D soil displacement formulas were deduced by caused by using Mindlin solution. Combined with additional driving positive force, frictional resistance force, shield tail grouting force, the3D soil deformation formula of caused by DOT construction caused by three-dimensional soil displacement formula was deduced.
     Based on the source-sink method, the three-dimensional additional stress formula caused by DOT shield tunnel construction soil loss was derived. Combined with additional driving positive force, frictional resistance force, shield tail grouting force, the3D soil additional stress formula of caused by DOT construction caused by three-dimensional additional stress formula was deduced.
     Combined with additional driving positive force, frictional resistance force, shield tail grouting force, the effect of DOT shield tunnel construction on adjacent underground pipelines, buildings pile, parallel existing tunnel were separately analyzed.
     Considering the interaction of building-soil-tunnel, the grillage beams foundation frame building vertical crossed by DOT shield tunnel was simulated by3D MIDAS/GTS software, and the impact of construction on the building was analyzed.
引文
[1]张风祥,朱合华,傅德明.盾构隧道[M].北京:人民交通出版社,2004.
    [2]Koyaama Y. Present status and technology of shield tunneling method in Japan[J]. Tunnelling and Underground Space Technology,2003,18 (2/3):145-159.
    [3]周文波.双圆盾构法隧道施工对地面沉降的影响及控制研究[博士学位论文D].上海:上海大学,2005.
    [4]Bob Chow. Double-O-tube shield tunneling technology in the Shanghai Rail Transit Project. Tunnelling Underground Space Technology,21 (6):594-601 (2006)
    [5]孙统立.多圆盾构施工扰动土体变形场特性及其控制技术研究[博士学位论文D].上海:同济大学,2007.
    [6]Lee K M, Rowe R K, Lo K Y. Subsidence owing to tunneling Ⅰ:Estimating the gap parameter[J]. Canadian Geotechnical Journal,1992,29(6):929-940.
    [7]王晖,李大勇,夏广红.盾构机盾尾注浆施工中存在的问题及其对策分析[J].苏州科技学院学报(工程技术版),2004,17(1):40-45.
    [8]谢自韬,江玉生,刘品.盾构隧道同步注浆压力对地表沉降及围岩变形的数值模拟研究[J].隧道建设,2007,27(4):12-15.
    [9]Rowe R. K. & Lee K. M. Subsidence owing to tunneling. Ⅱ. Evaluation of a prediction technique[J]. Canadian Geotechnical Journal,1992,29:941-954.
    [10]Working Group 2, International Tunnelling Association. Guidelines for the design of shield tunnel lining[J]. Tunnelling and Underground Space Technology,2000,15 (3):303-331.
    [11]张云,殷宗泽,徐永福.盾构法隧道引起的地表变形分析[J].岩石力学与工程学报,2002,21(3):388-392.
    [12]张庆贺,王慎堂,严长征等.盾构隧道穿越水底浅覆土施工技术对策[J].岩石力学与工程学报,2004,23(5):857-861.
    [13]张海涛.盾构同步注浆材料试验及隧道上浮控制技术[D].上海:同济大学,2007.
    [14]宋天田,周顺华, 徐润泽.盾构隧道盾尾同步注浆机理与注浆参数的确定[J].地下空间与工程学报,2008,4(1): 130-133.
    [15]叶飞,朱合华,丁其文等.施工期盾构隧道上浮机理与控制对策分析[J].同济大学学报(自然科学版),2008,36(6):738-743.
    [16]何炬,杨有海,陈达.深圳地铁盾构施工注浆机理与参数分析[J].低温建筑技术,2009,10:108-109.
    [17]叶飞,朱合华,何川.盾构隧道同步注浆扩散模式及对管片的压力分析[J].岩土力学,2009,30(5):1307-1312.
    [18]Komiya. K.. Soga K., Akagi H., Hagiwara T. & Bolton M.D. Finite element modeling of excavation and advancement processes of a shield tunneling machine[J]. Soils and Foundations,1999, Vol.39(3):37-52.
    [19]黄宏伟,刘通剑,谢雄耀.盾构隧道同步注浆效果的雷达探测研究[J].岩土力学,2003,14(增刊):353-356.
    [20]杜军.盾构隧道同步注浆探测图像识别及沉降控制研究[博士学位论文D].上海:同济大学,2006.
    [21]Hashimoto T., Brinkman J., Konda T., Kano Y. and Feddema. Simultaneous backfill grouting pressure development in construction phase and in the long-term[C]. Proceeding of 30th ITA-AITES World Tunnel Congress, Singapore,2004:52-59.
    [22]Bezuijen A, Talmon A M, Kaalberg F J, et al. Field measurement of grout pressures during tunnelling of the Sophia rail tunnel[J]. Soils and Foundations, 2004,44 (1):39-48.
    [23]陈福全,李大勇,王晖.地铁盾构机掘进对周围环境影响的现场测试研究[J].2007,9,46-50.
    [24]施建勇,付磊,朱宁.考虑注浆材料流变的隧道施工土层变形计算[J].岩土力学,2009,30(8):2331-2336.
    [25]Kuwahara, H., Yamazaki, T., and Kusakabe, O. Ground deformation mechanism of shield tunneling due to tail void formation in soft clay[J]. Proc,14th Int. Conf. on Soil Mech and Found Engin. Vol.2. Balkema, Rotterdam, The Netherlands, 1997:1457-1460.
    [26]Yukinorik, Yutakas, Noriyukio, et al. Back-fill grouting model test for shield tunnel[J]. Quarterly Report of PTRI,1998,39 (1):35-39.
    [27]吴全立.同步注浆材料配合比设计与试验研究[J].施工技术,2005,32(1):55-57.
    [28]梁精华.盾构隧道同步注浆材料配比优化及浆液变形特性研究[硕士学位论文D].南京:河海大学,2006.
    [29]韩月旺,钟小春,虞兴福.盾构同步注浆体变形及压力消散特性试验研究[J].地下空间与工程学报,2007,3(6):1142-1147.
    [30]苏华,李珍,汪在芹.南水北调中线穿黄隧道盾构注浆浆材试验[J].南水北调与水利科技,2008,6(1):28-30.
    [31]晁东辉,张得煊,罗春泳.检测盾构施工中注浆效果的模型试验[J].地下空间与工程学报,2008,4(1):62-65,]04.
    [32]范昭平,袁小会,韩月旺,等.盾构隧道同步注浆浆体变形特性[J].土木建筑与环境工程,2009,31(5):65-68,80.
    [33]董其昌,黄醒春,於昌荣.砂砾地层中盾构施工同步同步注浆的模型实验与研究[J].四川建筑科学研究,2009,35(5):78-82.
    [34]Swoboda G. & Mansour M. Three-dimensional numerical modeling of slurry shield tunneling[A]. In:Proceedings of the international lecture series TBM tunneling trends[C], Edited by Harald Wagner & Alfred Schulter,1996:27-41.
    [35]Ezzeldine O Y. Estimation of the surface displacement field due to construction of Cairl metro line R1 KhalafawySt Therese[J]. Tunnelling and Underground Space Technology,1999,14 (3):267-279.
    [36]朱合华,丁文其,李晓军.盾构隧道施工力学形态模拟及工程应用[J].土木工程学报,2000,33(3):98-103.
    [37]Manuel Melis, et al. Prediction and analysis of subsidence induced by shield tunneling in the Madrid metro extension. Canadian Geotechnical Journal,2002, 39 (6):1273-1287.
    [38]季亚平.考虑施工过程的盾构隧道地层位移与土压力研究[M].南京:河海大 学.2004.
    [39]邓宗伟,冷伍明,陈建平.盾构隧道同步注浆作用机理的计算研究[J].塑性工程学报,2005,12(6):114-117.
    [40]Kasper Thomas, Meschke Gunther. On the influence of face pressure, grouting pressure and TBM design in soft ground tunnelling[J]. Tunnelling and Underground Space Technology,2006,21 (2):160-171.
    [41]Kasper Thomas, Meschke Gunther. A numeri cal study of the effect of soil and grout material properties and cover depth in shield tunnelling[J]. Computers and Geotechnics,2006,33 (4-5):234-247.
    [42]Swoboda G, Abukrisha A. Three-dimensional numerical modelling for TBM tunnelling in consolidated clay[J]. Tunnelling and Underground SpaceTechnology,1999,14 (3):327-2333.
    [43]张平松,吴健生,刘盛东.隧道同步注浆质量高密度电法测试的可能性[J].地下空间与工程学报,2008,4(2):331-334,360.
    [44]孙统立,张庆贺,韦良文,等.双圆盾构掘进施工扰动土体附加应力分析[J].岩土力学,2008,29(8):2246-2251.
    [45]Peck R B. Deep excavations and tunneling in soft ground[A]. In:Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering[C]. Mexico,1969,225-290.
    [46]Attewell P B, Farmer I W. Ground disturbance caused by shield tunneling in a stiff fissured overconsolidated clay[M]. In press-Engineering Geology,1974.
    [47]Atkinson J H, Potts D M. Subsidence above shallow tunnels in soft ground[J]. Journal of Geotechnical Engineering,1977,103 (4):307-325.
    [48]Clough G W, Schmidt B. Design and performance of excavations and tunnels in soft clay[M]. Soft Clay Engineering, Brand E W, Brenner R P (eds.):Elsevier Science Publishing Company, New York,1981,569-634.
    [49]O'Reilly M P, New B M. Settlements above tunnels in the United Kingdom-their magnitude and prediction. Proceedings of Tunnelling'82 symposium, Jones MJ, ed., London:Institution of Mining and Metallurgy, pp.173-181,1982.
    [50]Loganathan N, Poulos H G. Analytical prediction for tunnelinginduced ground movement in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering,1998,124 (9):846-856.
    [51]Attewell P B, Farmer I W. Ground settlement above shield driven tunnels in clay[J]. Tunnels and Tunnelling,1975,7(1):58-62.
    [52]Attewell P B. Ground movements caused by tunneling in soil [A]. Conference on Large Ground Movements and Structures, Cardiff, London:Pentech Press, 1978,812-948.
    [53]Attewell P B, Selby A R. Tunnelling in compressible soils:large ground movements and structural implications[J]. Tunnelling and Underground Space Technology,1989,4 (4):481-487.
    [54]刘建航,候学渊.盾构法隧道[M].北京:中国铁道出版社,1991.
    [55]Attewell P B, Woodman J P. Predicting the dynamics of ground settlement and its derivatives caused by tunneling in soil[J]. Ground Engineering,1982.15 (8): 13-20,36.
    [56]房营光,莫海鸿,张传英.顶管施工扰动区土体变形的理论与实测分析[J].岩石力学与工程学报,2003,22(4):601-605.
    [57]R.J.Mair,R.N.Taylor and A.Bracegirdle. Surface settlement Profiles above tunnels inclay[J].Geotechnique,1993,43 (2):315-320.
    [58]姜忻良,赵志民,李圆.隧道开挖引起土层沉降槽曲线形态的分析与计算[J].岩土力学,2004,25(10):1542-1544.
    [59]王占生,王梦恕,张弥.盾构隧道施工引起地表下土体变位的分析评估[J].岩土力学,2009,30(6):1699-1704.
    [60]沈培良,张海波,殷宗泽.上海地区地铁隧道盾构施工地面沉降分析[J].河海大学学报(自然科学版),2003,31(5):556-559.
    [61]周文波.双圆隧道施工对环境的影响[J].上海建设科技,2004(6):36-37.
    [62]翁承显,张庆贺,朱继文,等.软土地区双圆盾构施工引起的地表沉降分析[J].地下空间与工程学报,2006,2(1):124-127.
    [63]吕虎,张庆贺.地铁双圆盾构施工引起的地面沉降模型[J].建井技术,2006, 27(1):32-34.
    [64]朱洪高,郑宜枫,陈吴.双圆盾构隧道土体地表沉降特性[J].建筑科学与工程学报,2006,23(2):62-67.
    [65]孙统立,张庆贺,胡向东,等.双圆盾构施工土体沉降参数敏感性分析[J].岩土力学,2006,27(增刊):434-438.
    [66]Sagaseta C. Analysis of undrained soil deformation due to ground loss[J]. Geotechnique,1987,37 (3):301-320.
    [67]Sagaseta C. Author's reply to Schmidt[J]. Geotechnique,1988,38 (4):647-649.
    [68]Verruijt A, Booker J R. Surface settlements due to deformation of a tunnel in an elastic half plane [J]. Geotechnique,1996,46 (4):753-756.
    [69]陈枫,胡志平.盾构偏航引起的地表位移预测[J].岩土力学,2004,25(9):1427-1431.
    [70]姜忻良,赵志民.盾构法施工引起土体变形的空间计算方法[J].华中科技大学学报,2005,22(2):1-4.
    [71]姜忻良,赵志民.镜像法在隧道施工土体位移计算中的应用[J].哈尔滨工业大学学报,2005,27(6):801-803.
    [72]魏纲,张世民,齐静静,等.盾构隧道施工引起的地面变形计算方法研究[J].岩石力学与工程学报,2006,25(增1):3317-3323.
    [73]孙统立,李浩,吕虎等.双圆盾构施工引起的地表位移特征分析[J].土木工程学报,2009,42(6):108-114.
    [74]曾晓清.地铁工程双线隧道平行推进的相互作用及施工力学的研究[硕士学位论文D].上海:同济大学,1995.
    [75]黄宏伟,胡听.顶管施工力学效应的数值模拟分析[J].岩石力学与工程学报,2003,22(3):400-406.
    [76]张冬梅,黄宏伟,王箭明.软土隧道地表长期沉降的粘弹性流变与固结耦合分析[J].岩石力学与工程学报,2003,22(S1):2359-2362.
    [77]陈昊.双圆盾构隧道地表沉降分析[硕士学位论文D].上海:上海交通大学,2007.
    [78]孙统立,张庆贺,胡向东,等.双圆盾构施工土体沉降有限元数值模拟[J].同 济大学学报(自然科学版),2008,36(4):466-471.
    [79]陈宇,张庆贺,朱继文,等.双圆盾构穿越下立交结构的流-固耦合数值模拟[J].岩土力学,2010,31(6):1950-1955.
    [80]杨国祥,林家祥,吴惠明,等.双圆盾构近距离穿越构建筑物关键施工技术[J].地下空间与工程学报,2006,2(8):1366-1373.
    [81]徐敏.双圆盾构近距离下穿原水管渠施工技术[J].城市轨道交通,2006,6:71-72.
    [82]张正,马华明,钟巍健,等.双圆盾构推进中对地下大口径原水管涵保护的施工技术[J].建筑施工,2006,28(2):147-150.
    [83]朱继文.双圆盾构下穿引起下立交底板的附加荷载分析[J].地下空间与工程学报,2009,5(增刊2):1776-1780,1785.
    [84]杨秀竹.静动力作用下浆液扩散理论与试验研究[博士学位论文D].长沙:中南大学,2005.
    [85]土与基础互相作用的弹性分析[M].范文田译.北京中国铁道出版社,1984.
    [86]J.N.Shidaw, D.P.Richard, P.Ramond. P, et al. Recent experience in automatic tail void grouting with soft ground tunnel boring machines[J]. Tunnelling and Underground Space Technology,2004,19 (4-5):446-413.
    [87]岩土注浆理论与工程实例协作组.岩土注浆理论与工程实例[M].北京:科学出版社,2001:54-55.
    [88]Samuel A, Harbin B C, Stauber R L. Modeling of annular fluid pressures in horizontal boring[J]. Tunnelling and Underground Space Technology,2007,22 (5/6):610-619.
    [89]Talmon A M, Bezuljen A. Simulating the consolidation of TBM grout at Noordplaspolder[J]. Tunnelling and Underground Space Technology,2009,24 (5):493-499.
    [90]韩月旺,梁精华,袁小会.盾构隧道同步注浆体变形模型及土体位移分析[J].岩石力学与工程学报,2007,26(增刊2):3646-3652.
    [91]阮文军.注浆扩散与浆液若干基本性能研究[J].岩土工程学报,2005,27(1):69-73.
    [92]叶飞.软土盾构隧道施工期上浮机理分析及控制研究[博士学位论文D].上海:同济大学,2007.
    [93]张顺金.砂砾地层渗透注浆的可注性及应用研究[硕士学位论文D].长沙:中南大学,2007.
    [94]郑大为, 张彬, 王笑冰.粘度渐变型浆液渗透注浆灌注均匀砂层计算方法的研究[J].岩石力学与工程学报,2005,24(1):5086-5089.
    [95]朱洪高,郑宜枫, 杨滨.双圆盾构(DOT)隧道的地表沉降分析[J].河海大学学报(自然科学版),2007,35(2):191-196.
    [96]魏纲,陈伟军,魏新江.双圆盾构隧道施工引起的地面沉降预测[J].岩土力学,2011,32(4):991-996.
    [97]Litwiniszyn, J.,1957. The theories and model research of movements of ground masses. Proceedings of the European Congres Ground Movement, Leeds, UK, pp.203-209.
    [98]Mindlin R D. Force at a point in the interior of a Semi-Infinite solid[J]. Physics, 1936,7 (5):195-201.
    [99]李志明,廖少明,戴志仁.盾构同步注浆填充机理及压力分布研究[J].岩土工程学报,2010,32(11):1752-1757.
    [100]唐晓武,朱季,刘维等.盾构施工过程中的土体变形研究[J].岩石力学与工程学报,2010,29(2):417-422.
    [101]刘宝琛,张家生.近地面开挖引起的地面沉降的随机介质方法[J].岩石力学与工程学报,1995,14(4): 289-296.
    [102]韩煊.隧道施工引起地层变形及建筑物变形预测的实用方法研究[博士学位论文D].西安:西安理工大学,2006.
    [103]齐静静,徐日庆,魏纲.盾构施工引起土体三维变形的计算方法研究[J].岩土力学,2009,30(8):2442-2446.
    [104]姬永红.隧道试引起横向地层沉降的随机预测[J].岩土工程技术,2004,18(1):16-18.
    [105]李永盛,黄海鹰.盾构推进对相邻桩体力学影响的实用计算方法[J].同济大学学报,1997,25(3):274-280.
    [106]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,1996.
    [107]张冬梅,黄宏伟.地铁盾构推进引起周围土体附加应力分析[J].地下空间,1999,19(5):379-382.
    [108]胡昕,黄宏伟.相邻平行双圆盾构机推进引起附加荷载的力学分析[J].岩土力学,2001,22(1):75-77.
    [109]齐静静,徐日庆,魏纲.双线平行盾构法隧道施工附加荷载的计算分析[J].岩土力学,2009,30(6):1665-1670.
    [110]王涛,徐日庆,齐静静,等.盾构掘进引起的土体附加应力场分析[J].浙江大学学报(工学版),2008,42(11):2009-2014.
    [111]] Johnson K L. Contact Mechanics[M]. London:Cambridge Univ. Press, 1985.
    [112]Attewell P B, Yeates J, Selby A R. Soil movements induced by tunneling and their effects on pipelines and structures[M]. London:Blackie & Son Ltd.,1986.
    [113]Vorster T E B, Klar A, Soga K, et al. Estimating the effects of tunneling on existing pipelines[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131 (11):1399-1410.
    [114]王涛,魏纲,徐日庆.隧道开挖对邻近地下管线的影响预测分析[J].岩土力学,2006,27(增刊):483-486.
    [115]毕继红,刘伟,江志峰.隧道开挖对地下管线的影响分析[J].岩土力学,2006,27(8):1317-1321.
    [116]魏纲,朱奎.顶管施工引起邻近地下管线附加荷载的分析[J].岩石力学与工程学报,2007,26(增刊1):2724-2729.
    [117]魏纲,魏新江,裘新谷,等.过街隧道施工对地下管线影响的三维数值模拟[J].岩石力学与工程学报,2009,28(增刊1):2853-2859.
    [118]Mroueh. H., Shahour. I.. Three-dimensional finite element analysis of the interaction between Tunneling and Pile foundations [J]. International Journal For Numerical And Analytical Methods In Geomechanics,2002,26(3):217-230.
    [119]芮勇勤,岳中琦,唐春安, 等.隧道开挖方式对建筑物桩基影响的数值模拟分析.岩石力学与工程学报[J].岩石力学与工程学报,2003,22(5):735-741.
    [120]Lee. Gordon T.K., NG. Charles W.W.. Effects of Advancing open Face Tunneling on an Existing loaded Pile[J]. Journal of Geotechnical & Geoenvironmental Engineering,2005,132 (2):193-201.
    [121]李强,王明年,李德才, 等.隧道开挖方式对建筑物桩基影响的数值模拟分析.岩石力学与工程学报[J].2006,25(1):184-190.
    [122]杨晓杰,邓飞皇,聂雯,等.地铁隧道近距穿越施工对桩基承载力的影响研究[J].岩石力学与工程学报,2006,25(6):1290-1295.
    [123]杨超,黄茂松,刘明蕴.隧道施工对临近桩基影响的三维数值分析[J.].岩石力学与工程学报,2007,26(增1):2601-2607.
    [124]朱逢斌,杨平,林水仙.盾构隧道施工对邻近承载桩基影响研究[J].岩土力学,2010,31(12):3894-3900.
    [125]Loganathan N, Poulos H G, Stewart D P. Centrifuge modeling testing of tunneling-induced ground and pile deformation[J]. Geotechnique,2000,50(3): 283-294.
    [126]JacobszS.W., Bowers K.H., Moss N A, et al. The Effects of Tunnelling on Piled Structures on the CTRL[C]//5th International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground. Amsterdam:Taylor & Francis,2005:15-17.
    [127]Ong C W, Leung C.F, Chow Y.K. Experimental study of tunnel-soil-pile interaction [C]//Proc Underground Singapore. Singapore:National University of Singapore,2007:256-263.
    [128]孙庆,杨敏, 冉侠, 等.隧道开挖对周围土体及桩基影响的试验研究[J].同济大学学报(自然科学版),2011,39(7):989-993,1025.
    [129]Chen L T, Poulos H G, Loganathan N. Pile responses caused by tunnel ing[J]. Journal of Geotechnical and Geoenvironmental Engineering,1999,125 (3): 207-215.
    [130]Loganathan N, Poulos H G, XU K J. Ground and pile-group response due to tunneling[J]. Soils and Foundations,2001,41 (1):57-67.
    [131]Pang C H. The effects of tunnel construction on nearby piled foundation [PhD Thesis D]. Singapore:National University of Singapore,2006.
    [132]黄茂松,李早,杨超.隧道开挖条件下被动群桩遮拦效应分析[J].土木工程学报,2007,40(6):69-74.
    [133]Huang Mao-song, Zhang Chen-rong, LI Zao. A simplified analysis method for the influence of tunneling on grouped piles[J]. Tunnelling and Underground Space Technology,2009,24 (4):410-422.
    [134]Manuel Melis, et al. Prediction and analysis of subsidence induced by shield tunneling in the Madrid Metro extension[J]. Canadian Geotechnical 3oumal. 2002,39 (6):1273-1287.
    [135]Lee K M, Ji H W, Shen C K, et al. Ground response to the construction of shanghai metro tunnel-line2[J]. Soil and Foundations,1999,39(3):113-134.
    [136]Park K H. Elastic solution for tunneling-induced ground movements in clays[J]. International Journal of Geomechanics.2004,4 (4):310-318.
    [137]魏纲.顶管工程土与结构的性状及理论研究[博士学位论文D].浙江:浙江大学,2005.
    [138]Mroueh H, Shahour I. A full 3-D finite element analysis of tunneling-adjacent structures interaction[J]. Computers and Geotechnics,2003, 30:245-253.
    [139]于宁,朱合华.盾构施工仿真及其相邻影响的数值分析[J].岩土力学,2004,25(2):292-296.
    [140]周冠南,周顺华,王春凯,等.盾构隧道施工对短桩基—框架结构的影响[J].中国铁道科学,2009,30(4):51-56.
    [141]王春凯,许恺,周冠南,等.盾构隧道穿越条基框架结构影响研究[J].城市轨道交通研究,2009,9:47-51.
    [142]毕继红,江志峰, 常斌.近距离地铁施工的有限元数值模拟[J].岩土力学,2005,26(2):277-282.
    [143]彭畅,伋雨林,骆汉宾,等.双线盾构施工对邻近建筑物影响的数值分析[J].岩石力学与工程学报,2008,27(增2):3868-3874.
    [144]郑知斌,刘军,李东海,等.双线盾构隧道穿越对既有结构变形的影响 研究[J].市政技术,2009,27(3):287-289.
    [145]朱合华,丁文其,李晓军.盾构隧道施工力学形态模拟及工程应用[J].土木工程学报,2000,33(3):98-103.
    [146]丁智.盾构隧道施工与邻近建筑物相互影响研究[硕士学位论文D].杭州:浙江大学,2007.
    [147]中国建筑科学研究院.GB50007—2002建筑地基基础设计规范[S].北京: 中国建筑工业出版社,2002.
    [148]中华人民共和国建设部.GB50010—2002混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.
    [149]Richaed J, Finno, Frank T, et al. Evaluating damage potential in buildings affected by excavations [J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131 (10):1199-1210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700