高速铁路软粘土地基压密注浆及劈裂注浆试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,高速铁路在我国得到了跨越式发展,其长期使用性能值得关注。地基和路基的稳固是高速铁路安全运营的控制性因素,而地基和路基一旦出现性能劣化将直接威胁高速铁路的正常服役。因此,一方面需要开展如何保持高速铁路下部结构安全服役的结构状态和长期性能的研究,另一方面也要加强运营维护技术尤其是病害快速修复技术的研究。目前,注浆加固是地基病害整治的主要手段之一,但是注浆理论研究落后于工程实践,缺少配套的可以直接指导注浆施工的注浆理论和相关技术研究成果。本文通过理论分析、室内模型试验等方法探究了软粘土中注浆浆液的流动扩散规律以及对土体的加固效果,旨在丰富注浆理论,为软粘土地基中注浆加固的实施提供借鉴。得到的主要研究成果如下:
     (1)建立了扩孔理论计算模型,考虑浆液流变特性和土体特性,初步推导出了注浆中土体的应力应变变化特性以及注浆后土层的加固和抬升规律。
     首先,将注浆孔周围土体划分为塑性变形区和弹性变形区,推导了各区域的应力场和位移场;其次,在扩孔理论的基础上又考虑了单液水泥浆的流变特性、粘时变特性和粘土的土体特性,应用浆液在土体中的流变理论,从理论上分析了注浆量、注浆压力、浆液水灰比以及土体参数对注浆范围的影响,探究了起劈压力大小的确定方法。最后,将上述的注浆加固理论进一步延伸,探索注浆后地表的抬升理论,利用镜像原理推导注浆抬升量。将上述理论分析结果与注浆试验相结合,得到了粘土中注浆的一些规律性认识,有助于实现预期的注浆效果,指导工程实践,便于推广应用。
     (2)自行研制了一套室内高压注浆试验系统和装置,设计了完整的软粘土室内模型注浆试验方案。
     研制成功的试验系统可以通过在模型表面施加不同的竖向柔性荷载来模拟不同深度处的土体,可以实现注浆土体土体和原状土体的分离。利用空气压力和气液转换装置实现压力注浆过程,通过调压阀和压力监测器实现注浆压力的双向控制;在土体中埋设土压力盒和孔隙水压力计来监测注浆过程中土压和水压的变化规律,从而充分探究粘土中的注浆性状。
     (3)根据室内模型注浆试验结果探究了不同注浆条件下注浆浆液在粘土中的扩散规律,分析了注浆参数对土体加固效果的影响规律。
     利用试验过程中监测到的注浆时的土压力数据、孔隙水压力数据、注浆量数据、注浆压力数据和试验结束后模型开挖过程中的发现的浆泡、浆脉特征来分析不同注浆条件下浆液在粘土中的扩散规律,得到了注浆压力和浆液水灰比对注浆性状的影响规律。提出了类似土层条件下的“启劈压力”的经验值。通过提取注浆土体和原状土体的土样进行室内常规剪切试验和压缩固结试验,得出了注浆后土体物理力学效能改善的程度以及注浆参数对土体加固效果的影响规律。
In recent years, the leaping development of China's high-speed railway requires us to pay more attention to the railway's long term performance. The stability of the foundation and subgrade is the controlling factor to guarantee the operation safety of the high-speed railway, however the deteriorated performance of the foundation and subgrade will be a direct threat to the natural service of the high-speed railway. Therefore, on one hand, we need to develop the research about how to maintain the safe structural state and the long-term performance of the high-speed railway substructure. On the other hand, we should strengthen the research about the operation maintenance technology and especially the rapid repair techniques. At present, grouting reinforcement is one of the main methods to regulate the foundation disease, but the theory and research achievements which can be used to guide the grouting construction are deficient and behind the engineering practice. In this paper, the flowing and diffusion law of the grouting slurry and the strengthening effect of the soils are discussed by means of theoretical analysis and indoor model tests and the research results can be used to enrich the theory of grouting and provide reference for the practice of grouting reinforcement in the soft clay foundation.The research achievements are as follows:
     (1) The calculation model of reaming theory is established while the rheological characteristics of the grouting slurry and the soil characteristics are considered. It can be used to deduce the variation characteristics of stress and strain in the soft soil during grouting and the law of the reinforcing and lifting in the soil layer after grouting.
     Firstly, the soils around the grouting hole are divided into plastic and elastic areas, the stress field and displacement field of the area are calculated. Secondly, the rheology theory about the grouting slurry creeping in the soil is discussed according to the reaming theory, the rheological and time-varying properties of the single cement slurry and the characteristics of the soil. What's more, the grouting range are effected by the grouting pressure, grouting capacity, grouting density and the soil parameters is analyzed by related theories.The methods to determine the splitting pressure are explored. Finally, the above mentioned grouting theories are extended to explore the uplifting amount through Principle of Mirror Image. The combination of the above theoretical research and the subsequent experimental study can help to form a series of regular recognition about grouting in the soft clay and predict the grouting effect correctly,which can also be used to provide the guidance to the project practice.
     (2) A set of device and system which can be used to carry out the grouting experiment under high-pressure environment were self-developed. What's more, a complete range of experiment project that can be used to guide the laboratory test for grouting in the soft clay was designed.
     The developed experimental system can simulate different soil depths by applying different confining pressure to the soil, can simulate different consolidation degrees by imposing pre-consolidation load to the surface of the soil, can realize the separation between the soil affected by the grouting slurry and the undisturbed soil. The air pressure and the pneumatic-liquid transfer device can be used to realize the processes of pressure casting, the bilateral control of the grouting pressure can be realized by the pressure regulating valve and the pressure monitoring devices. In order to explore the grouting characteristics, a lot of earth pressure cells and pore pressure gauges were buried in the soil that can be used to monitor the changing law of the earth pressure and the pore water pressure.
     (3) According to the results of the laboratory model tests,many laws under different grouting parameters were put forward including the law about the diffusion of the grouting slurry in the clay and the law about the soil's strengthening effects by the grouting slurry.
     The law about the diffusion of the grouting slurry in the clay and the law about the grouting characteristics affected by the different grouting parameters were analyzed by the pressure test information, the pore water pressure test information, the grout amount test information, the grouting pressure information during grouting and the characteristics of the grouting foams and the grouting choroids discovered in the processes of model excavation after grouting. The empirical value of the "splitting-opening pressure" was put forward under similar condition of the soil layer. The laws of the soil strengthening effect affected by the grouting parameters and the improvement degree of the soil's physical and mechanical properties after grouting were educed by means of doing conventional shear tests and consolidation tests towards the samples extracted in the soil affected by the grouting slurry and the undisturbed soil after grouting in the laboratory.
引文
[1]邝健政,咎月稳,王杰等.岩土注浆理论与工程实践[M].北京:科学出版社,2001.
    [2]李冠奇.致密土体劈裂注浆的力学机理及试验研究[D].铁道科学研究院,2006.
    [3]Graf D D.Compaction grouting technique and observations[J].Journal of SoilMechanics and Found—action Engineering, ASCE,1969,95(SM5):1151-1158.
    [4]Brown D R, Warner J,Compaction grouting [J]. Journal of Soil Mechanics and Foundation, ASCE,1973,99(8):589-601.
    [5]Baker W H,Cording E J,Macpherson H H. Compaction grouting to control ground movement during tunneling[J]. Underground Space,1983,7(3):205.213.
    [6]Greenwood D. Underpinning by grouting [A]. Ground Engineering.London,1987, 20(3):21-32.
    [7]Boulanger R W,Hayden R F. Aspects of compaction grouting of liquefiable soil[J]. Journal of Geotechnical and Geoenvironmental Engineering,ASCE,1995, 121(12):844-855.
    [8]Adel,MEl-Kelesh,M E. Mossaad, etc. Model of Compaction routing[J]. Journal of Geotechnical and Geoenvironmental Engineering,2001,127(11):955.964.
    [9]苏世丰,廖洪钧.挤压灌浆后粘土之正规化不排水剪力强度变化[C].第八届大地工程学术研究讨论会论文集[C],1999:665.662.
    [10]罗恒.注浆理论研究及其在公路工程中的应用[D].中南大学,2010.
    [11]邹金锋.扩孔问题的线性与非线性解析及其工程应用研究[D].中南大学,2007.
    [12]沈可.唐津高速公路路基压密注浆加固效果的研究[D].天津大学,2010.
    [13]丁亚峰.水平压密注浆法在既有建筑物加固工程中的试验研究[D].郑州大学,2011.
    [14]于勇.考虑注浆过程的后压浆桩有限元模拟与分析[D].天津大学,2007.
    [15]饶晓.廊沧高速公路软土地基注浆加固试验研究[D].西安科技大学,2011.
    [16]陈必盛.高压喷射注浆在软土地基处理中的应用研究[D].中南大学,2005.
    [17]唐智伟,赵成刚.注浆抬升地层的机制、解析解及数值模拟分析[J].岩土力学,2008,29(6):1512-1516.
    [18]邹金锋,李亮,杨小礼等.压密注浆的能量分析方法[J].岩土力学,2006,27(3):475-478.
    [19]孙锋,张顶立,王臣等.劈裂注浆抬升既有管道效果分析及工程应用[J].岩土力学,2010,31(3):932-938.
    [20]CCG注浆过程的数值模拟研究[J].岩石力学与工程学报,2003,22(z1):2322-2327.
    [21]王广国,杜明芳,苗兴城等.压密注浆机理研究及效果检验[J].岩石力学与工程学报,2000,19(5):670-673.
    [22]邹金锋,李亮,杨小礼,胡振南.土体劈裂灌浆力学机理分析[J].岩土力学, 2006,27(4):625-628.
    [23]吴治生,戴传英,丁新红.岩溶病害路基注浆机理及设计[J].路基工程,2003,(5)47-49.
    [24]杨秀竹,王星华,雷金山.正交法在注浆材料优化没计中的应用[J].探矿工程.岩土钻掘工程.2004,3 1(3):7.9.
    [25]杨秀竹,王星华.铁路岩溶路基加固的一种新方法[J]岩土力学,2004,25(6):988-990.
    [26]倪宏革,孙峰华,杨秀竹等.采用粘土固化浆液进行岩溶路基注浆加固试验研究[J].岩石力学与工程学报.2005.24(7):1242.1247.
    [27]张寒.注浆法在路基加固处理中的应用[J].中国市政工程,2004,(3):22-22.
    [28]张文强.袖阀管注浆技术在高速公路路基工程中的应用[J].隧道建设,2006,26(5):70—73.
    [29]曲元梅.公路路基缺陷加固技术的应用研究[J].2006.
    [30]李广平,宿文姬.钢花管注浆在高速公路填方路基缺陷治理中的应用[J].城市勘测,2006,(6):67—69.
    [31]吴裕铭.布袋注浆桩在时速200 km/h客运专线铁路上的应用[J].铁道标准设计,2006,(12):4-7.
    [32]黄昌富.类抗滑桩注浆技术在高填土路基处理中的应用[J].辽宁工程技术大学学报(自然科学版),2006,,25(B06):154.156.
    [33]付海峰,闫澍旺,舒晓武.加筋及灌浆联合处理软土地基在路基加宽中的应用和分析[J].岩土力学,2007,28(1):197—200.
    [34]刘茂,魏安,邱恩喜.铁路专用线大型采空区注浆治理及工后变形计算[J].四川建筑,2007,27(3):89.90.
    [35]王清海,褚宇光.铁路路基岩溶防治单液注浆工艺研究.路基工程,,2010(B04):153-156.
    [36]姚伟.碎石注浆在铁路软土路基处理中的应用——以甬台温铁路新温州站站场路基工程为例[J].建筑,2010,(3):46-47
    [37]杜娟.带承压板注浆工法在软土路基加固中的研究及其应用[J].2006.
    [38]陈新瑜,唐亦川,文建军.注浆在路基下沉整治中的应用[J].西北水力发电,2003,19(1):50-52.
    [39]肖华溪.深厚软土桩基后注浆技术试验与研究[D].中南大学,2009.
    [40]王广国,杜明芳,苗兴城等.压密注浆机理研究及效果检验[J].岩石力学与工程学报,2000,19(5):670-673.
    [41]曾胜,赵健,邹金锋等.压密注浆极限注浆压力研究[J].哈尔滨工业大学学报,2008,40(7):1173-1176.
    [42]邹金锋,李亮,杨小礼等.压密注浆的能量分析方法[J].岩土力学,2006,27(3):475-478DOI:10.3969/j.issn.1000-7598.2006.03.028.
    [43]温世游,陈云敏,李夕兵等.饱和粘土中平均塑性体积应变对压密注浆的影响[J].中国有色金属学报,2002,12(1):161-164.
    [44]巨建勋.土体压密注浆机理及其抬升作用的研究[D].中南大学,2007DOI:10.7666/d.y1083334.
    [45]邹会锋,李亮.杨小礼等.劈裂注浆扩敞半径及压力衰减分析[J].水利学报,2006.37(3):314-319.
    [46]孙锋,陈铁林,张顶立等.基于宾汉体浆液的海底隧道劈裂注浆机理研究[J].北京交通大学学报,2009,33(4):1-6.
    [47]阮文军.基于浆液粘度时变性的岩体裂隙注浆扩散模型[J].岩石力学与工程学报,2005,24(15):2709.2714.
    [48]黄红元,荣耀.饱和砂层驱水渗透注浆分析[J].岩土力学,2009,30(7):2016.2020.
    [49]杨秀竹,雷金山,夏力农等.幂律型浆液扩散半径研究[J].岩土力学,2005,26(11):1803-1806.
    [50]GOLLEGGER J. Numerical and analytical studies of theeffects of compensation grouting[D]. Austria:GrazUniversity ofTechnology,2001.
    [51]程晓,张凤祥.土建注浆施工与效果检测[M].上海:同济大学出版社,1998:1.
    [52]Graf, E. D. Compaction grouting technique and observations [J]. J. Soil Mech. and Found. Div., ASCE,1969,95(5),1151-1158.
    [53]Brown D R, Warner J. Compaction grouting[J] Journal of soil Journal of soil Mechanics and Foundation Engineering, ASCE,1973,99(8):589-601.
    [54]Warner J, Brown D R. Planing and performing compaction grouting [J]. Journal of soil Mechanics and Foundation Engineering, ASCE,1974,100(6):653-666.
    [55]Wang Shanyong. Fundamental Study of Static and Dynamic Compaction Grouting in Completely Decomposed Granite Soil in Hong Kong[D].PhD Thesis, city university of Hong Kong,2006.
    [56]杨秀竹,雷金山,夏力农等.幂律型浆液扩散半径研究[J].岩土力学,2005,26(11):1803-1806.
    [57]俞茂宏,何丽楠,刘春阳.广义双剪应力屈服准则及其推广[J].科学通报,1992,37(2):182-185.
    [58]Rawlings, C.G., Helliwell, E. E. and Kilkenny, W.M. (2000). CIRA C514 Grouting for Ground Engineering Construction Industry Research and Information Association, London.
    [59]Warner, J., and Brown, D. R. (1974). Planning and performing compaction grouting[J]. J. Geotech. Engrg. Div., ASCE,1974,100(6),653-666.
    [60]Warner, J. Compaction grout; rheology vs. effectiveness[J]. Grouting, soil improvement and geosynthetics, Geotech. Spec. Publ. No.30, R. H. Borden, R. D. Holtz, and I. Juran, eds., Vol.1, ASCE,1992,New York,229-239.
    [61]孙金海,金爱兵,吴顺川.粉喷桩+压密注浆软基处治方案探讨及工程应用[J].中外公 路,2005,25(6):37-39.
    [62]钱玉林,朱榆,周余民.压密注浆处理回填土地基的沉降模拟分析[J].水利与建筑工程学报,2010,8(3):66-69.
    [63]屈尚侠,贾邦中.压密注浆法在治理桥头跳车现象中的应用及其施工工艺[J].广东土木与建筑,2005,7,45-46.
    [64]冯清波,陈忠.压密注浆法在某地下室上浮中的应用[J].工程勘察,2009,2(增刊):334-337.
    [65]杨永富.压密注浆法在既有建筑物地基加固中的应用[J].公路与汽运,2007,3,99-101.
    [66]崔齐飞,李恒.压密注浆在宁西铁路涵洞地基加固中的应用[J].路基工程,2009,147(6):184-185.
    [67]Baker, W.H., MacPherson,H.H. and Cording, E.J. Compaction grouting to limit ground movements:Instrumented case history evaluation of the Bolton Hill Subway Tunnels, Baltimore, MD[J]. Technical Report, US Department of Transportation,1980.
    [68]Harris, D.I., Mair, R.J., Love, J.P., Taylor, R.N. and Henderson, T.O. Observations of ground and structure movements for compensation grouting during tunnel construction at Waterloo station[J]. Geotechnique.1994,44(4):691-713.
    [69]Kramer, G.J.E., Tavares, P.D. and Drooff, E.R. Settlement protection works for the new St. Clair River tunnel[J]. Canadian Tunnelling.1994,291-302.
    [70]Burland, J.B. Standing, J.R. and Jardine, F.M. Building response to tunneling:case histories[M]. Vols. Land2. CIRIC,6 Storey's Gate, Westminster, London,2001.
    [71]Bishop, R. F., Hill, R.& Mott, N. F. (1945). Theory of indentation and hardness tests. Proc. Phys. Sot.57,147.
    [72]Hill R.. The mathematical theory of plasticity[M]. University of Nottingham Oxford at the Clarendon Press,1950.
    [73]Gibson, R.E.& Anderson, W.F. (1961). In situ measurement of soil properties with the pressuremeter[J]. Ciu. Engng Publ. Wks Rev.56,615-618.
    [74]Ladanyi, B. Expansion of cavities in brittle media[J]. Int. J. Rock Mech. Min. Sci.4, 1967,301-328.
    [75]Vesic, A. S. (1972). Expansion of cavities in infinite soil mass[J]. J. Soil Mech. Fdns Div. Am. Sot. Civ. Engrs 98, SM3,265-290.
    [76]Carter J.P., Cavity expansion in cohesive frictional soil[J]. Geoteehnique,1986, 36(3):349-358.
    [77]Luger H.J.& Hergarden H.J.A.M.,1988. Directional drilling in soft soil:influence of mud pressure, Proc. No-Dig'88, Washington.
    [78]H. S. Yu and G. T. Houlsby, A large strain analytical solution for cavity contraction in dilatant soils[J]. Int. J. Numer. Anal. Meth. Geomech.1995,19,793-811.
    [79]蒋明镜,沈珠江.考虑材料应变软化的柱形孔扩张问题[J].岩土工程学报,1995,17(4):10-19.
    [80]蒋明镜,沈珠江.考虑剪胀的弹脆塑性软化柱形孔扩张问题[J].河海大学学报,1996, 24(4):65-72.
    [81]H.S. Yu and J.P Carter. Rigorous Similarity Solutions for Cavity Expansion in Cohesive-Frictional Soils[J]. The International Journal of Geomechanics,2002, Volume 2, Number 2,233-258.
    [82]汪鹏程,朱向荣,方鹏飞.考虑土应变软化及剪胀特性的大应变球孔扩张的问题[J].水利学报,2004,9,78-82.
    [83]汪鹏程.软化剪胀土中孔扩张理论及沉桩挤土性状研究[D].浙江大学博士学位论文,杭州,2005.
    [84]邹健.桩端后注浆浆液扩散机理及残余应力研究[D].浙江大学博士学位论文,杭州,2010.
    [85]张忠苗,邹健,何景愈,等.考虑压滤效应下饱和黏土压密注浆柱扩张理论[J].浙江大学学报(工学版),2011,45(11):1980-1984.
    [86]邹健,张忠苗.考虑压滤效应饱和黏土压密注浆球孔扩张理论[J].哈尔滨工业大学学报,2011,43(12):119-123.
    [87]Younis, M.A. Small Scale Physical Modeling of Compaction Grouting[D]. Masters Thesis Presented to the University of Maryland at College Park,1994.
    [88]Nichols, S. C. and Goodings, D.G. Physical model testing of compaction grouting in cohesionless soil [J]. Journal of Geotechnical and Geoenvironmental, ASCE,2000, pp.848-852.
    [89]Naudts. A and Impe.R.V. An Alternate Compaction Grouting Technique[J]. Proceedings of Geodenver 2000 Conference Advances in Grouting and Ground Modification, Denver Geotechnical Special Publication,2000,Vol.104, pp.32-41.
    [90]Au SKA. Fundamental study of compensation grouting [D]. PhD dissertation, Department of Engineering, University of Cambridge, Cambridge, England; 2001.
    [91]Soga K., Bolton M.D., Au S.K.A., Komiya K., Hamelin J.P., Van Cotthem A., Buchet G. and Michel J.P. Development of compensation grouting modelling and control system[J]. In O. Kusakabe, K. Fujita and Y. Miyazaki, Editors, Geotechnical aspects of underground construction is soft ground, Proc., International Symposium on Underground Construction in Soft Ground:IS-Tokyo'99. Rotterdam:A.A. Balkema, 2000, pp.425-430.
    [92]S. K. A. Au, K. Soga, M. R. Jafari, M. D. Bolton, and K. Komiya. Factors Affecting Long-Term Efficiency of Compensation Grouting in Clays
    [93]S.Y. Wang, D.H. Chan, K.C. Lam and S.K. Au. Effect of lateral earth pressure coefficient on pressure controlled compaction grouting in triaxial condition[J]. Soil and Foundation,2010, Vol.50, No.3,441-445.
    [94]S.Y. Wanga, D.H. Chan, K.C. Lam, S.K.A. AU. Numerical and experimental studies of pressure-controlled cavity expansion in completely decomposed granite soils of Hong Kong[J]. Computers and Geotechnics,2010,37,977-990.
    [95]葛家良,陆士良.注浆模拟试验及其应用的研究[J].岩土工程学报,1997,19(3):28-33.
    [96]杨坪,唐益群,彭振斌,陈安.砂卵(砾)石层中注浆模拟试验研究[J].岩土工程学 报,2006,28(12):2134-2138.
    [97]张忠苗,邹健,贺静漪,王华强.黏土中压密注浆及劈裂注浆室内模拟试验分析[J].岩土工程学报,2009,31(12):1818-1824.
    [98]Mori,A., Tamura,M.. Hydrofracturing pressure of cohesive soils[J]. Soil and Foundations,1987,27(1):14-22.
    [99]Panah,A.K., Yanagisawa,E.. Laboratory studies on hydraulic fracturing criteriain soil[J].Soils and Foundations,1989,29(4):14-22.
    [100]ADVANI S H, LEE T S, AVASTHI J M. Parametric sensitivity investigations for hydraulic fracture configuration optimization[J]. Rock Mechanics as a Guide for Efficient Utilization of Natural Resources,1989,(5).
    [101]武科,马明月,郝冬雪,陈榕.基于柱形孔扩张大应变理论的劈裂灌浆压力研究[J].防灾减灾工程学报,2010,30(3):293-297.
    [102]邹金峰,徐望国,罗强,等.饱和土中劈裂灌浆压力研究[J].岩土力学,2008,29(7):1802-1806.
    [103]张忠苗,邹健.桩底劈裂注浆扩散半径和注浆压力研究[J].岩土工程学报,2008,30(2):181-184.
    [104]杨秀竹.静动力作用下浆液扩散理论与试验研究[D].博士学位论文,2005.
    [105]杨秀竹,雷金山,夏力农,王星华.幂律型浆液扩散半径研究[J].岩土力学,2005,26(11):1803-1806.
    [106]杨秀竹,王星华,雷金山.宾汉体浆液扩散半径的研究及应用同.水利学报,2004,(6):7579.
    [107]白云,侯学渊.软土地基劈裂注浆加固的机理和应用[J].岩土工程学报,1991,13(2):89-93.
    [108]A. Bezuijen, R. te Grotenhuis, A. F. van Tol, et al. Analytical Model for Fracture Grouting in Sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011-7,:611-620
    [109]Bezuijen, A.& Tol, A.F.van. Compensation grouting in sand, fractures and compaction. Proc. XIV European Conference on Soil Mechanics & Geotechnical Engineering,Madrid,2007.
    [110]Bezuijen, A., Sanders, M.P.M., Hamer, D.& Tol, A.F.van.. Laboratory tests on compensation grouting, the influence of grout bleeding. Proc. World Tunnel Congress, Prague,2007.
    [111]王起才,张戎令.劈裂注浆浆液走势与不同压力下土体位移试验研究[J].铁道学报,2011,33(12):107-111.
    [112]马丽娜,严松宏.劈裂注浆模拟试验设计及工程应用[J].路基工程,2010,(5):67-69.
    [113]王玉平.软黏土劈裂注浆微观结构分形特征研究[D].硕士学位论文,2008.
    [114]王玉平,朱宝龙,陈强.饱和粘性土劈裂注浆加固室内试验[J].西南科技大学学报,2010,25(3):72-75.
    [115]孙锋,张顶立,王臣,等.劈裂注浆抬升既有管道效果分析及工程应用[J].岩土力学, 2010,31(3):932-938.
    [116]周书明和陈建军.软流塑淤泥质地层地铁区间隧道劈裂注浆加固[J].岩土工程学报,2002,24(2):222-224.
    [117]蒋明镜,沈珠江.岩土类软化材料的柱形孔扩张同一问题[J].岩土力学,1996,17(1):1-8.
    [118]蒋明镜,沈珠江.考虑剪胀的线性软化柱形孔扩张问题[J].岩石力学与工程学报,1997,16(6):550-557.
    [119]俞茂宏.岩土类材料的统一强度理论及其应用[J].岩土工程学报,1994,16(2):1-10.
    [120]Yu Mao-hong, He Li-nan, Liu Chun-yang. Generalized Twin Shear Stress Yield Criterion and Its Generalization[J]. Chinese Science Bulletin,1992,37(24):2085-2089.
    [121]郭密文,隋旺华.高压环境条件下注浆模型试验系统设计[J].工程地质学报,2010,(05):720-724.
    [122]闫常赫.路基土体注浆离心模型试验研究及数值模拟分析[D].西南交通大学,2008.
    [123]高岗荣,安许良,陈慧,蒲朝阳.室内动水注浆模拟试验台研制及应用[J].建井技术,2011,(Z1):32-34+14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700