大直径后注浆桩尺寸效应、受力性状及残余应力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着越来越多的超高层建筑和大跨度桥梁的出现,大直径灌注桩因其所具有的诸多技术优势,在工程中得到了越来越广泛的应用。但由于钻孔灌注桩存在泥皮降低侧阻和沉渣降低端阻问题,灌注桩后注浆技术应运而生,它不仅可减少桩基沉降还可提高基桩承载能力。
     本文在前人工作的基础上,开展了杭州奥体中心注浆与未注浆大直径桩对比试验,以及多个工地桩端后注浆大直径灌注桩尺寸效应现场试验研究,通过试验数据分析和理论推导以及matlab数值编程与分析。对大直径后注浆桩抗压、抗拔承载力性状以及后注浆残余应力进行了初步研究,取得如下的研究成果:
     (1)结合现场静载试验数据对杭州地区大直径后注浆灌注桩的抗压承载性状进行分析结果显示,桩端后注浆浆液上返高度以内土层,后注浆对桩侧泥皮的固化、压密等作用减小了尺寸效应对侧阻的影响;而浆液上返高度以外的上部土层,侧阻尺寸效应显著,用规范推荐的方法计算注浆桩侧阻尺寸效应系数偏于不安全;另一方面,实测砂、碎石类土层侧阻尺寸效应系数均比黏性土、粉土土层的要小;端阻尺寸效应则能基本消除。
     (2)在大直径后注浆桩尺寸效应试验研究的基础上,提出了考虑大直径后注浆桩侧阻、端阻尺寸效应以及端阻、侧阻增强效应的单桩抗压极限承载力计算公式。
     (3)在注浆与未注浆大直径抗拔桩静载试验的基础上,发现了软土地区抗拔桩经过桩端后注浆可显著的减少桩端位移,极限抗拔力至少提高25%;注浆抗拔桩桩身混凝土拉伸量是桩顶上拔量的主要组成部分,所占比例约为91.5%;注浆与未注浆抗拔桩的桩身轴力都随深度逐渐减少,桩端轴力始终为零。
     (4)在利用浆液上返高度公式计算注浆抗拔桩竖向增强体高度和考虑桩身自重的基础上,提出了改进的桩端后注浆抗拔桩承载力的计算公式;通过反分析计算,未注浆灌注桩抗拔折减系数的取值为0.65~0.80,注浆桩侧阻力增强系数的取值为1.33~1.83,上述计算方法与折减(增强)系数可供初步设计与实际工程使用。
     (5)基于球形空腔扩张及一维径向固结理论,对桩端后注浆桩的桩端注浆残余应力进行理论研究,在负指数衰减的初始超孔隙压力分布基础上,得到了残余应力随时间及扩散半径消散的解析解,并分析了模型的主要影响参数,结合现场试验验证了模型的可靠性。
     (6)在不考虑注浆扩散半径的前提下,对注浆残余应力扩散模型解析解进行了简化,与本文的计算方法相比较,对模型的主要影响因素进行的参数分析发现:流变指数、稠度系数、土体的压缩模量及固结时间是影响注浆残余应力的关键因素,注浆残余应力一般会随着流变指数、稠度系数、土体的压缩模量或固结时间的增大而减小。
With the increase in the construction of high-rise buildings and large-span bridges, large diameter bored cast-in-situ piles have been widely used in practice because of its technical advantages. However, due to concerns of relating to the decrease of side friction and end resistance arising from the construction, post grouting has been employed to improve the bearing capacity as well decrease the settlement of the piles.
     On the basis of works of previous researchers, comparative tests between grouted and ungrouted large diameter piles and some field tests of size effect were conducted. The compressive capacity, tensile capacity and posting grouting residual pressures were studied preliminary by tests results analysis and theoretical derivation in this paper. Research achievement as bellow:
     (1) The compressive capacity of the large diameter bored cast-in-situ piles with post-grouting was analyzed based on the results of field tests in Hangzhou. The results show that the influence of size effect on skin friction decreases due to the solidification and compaction of the shaft side mud after grouting for the layer affected by the grouting. Whereas the size effect of skin friction can be found obviously for the higher layers unaffected by the grouting. It is less conservative to calculate the size effect coefficient with the method used in the current code. It is also found that the size effect coefficient for the sand or gravel layers is smaller than that for clay or silt soil layers. In addition, the size effect of tip resistance of the post-grouting piles can be eliminated.
     (2) Based on the studies of the size effect of large diameter grouted piles, a calculation method of ultimate compressive capacity for single pile incorporate the size effect and strength effect of the side friction and end resistance is presented in this paper.
     (3) The results of the tensile load tests on grouted and ungrouted piles show that pile-end post grouting technique can significantly reduce the pile tip settlement and increase the ultimate bearing capacity of pile. The ultimate bearing capacity of the pile with post-grouted is 1.25 times that of the pile without post-grouted; the tension compression of pile shaft is about 91.5% of the displacement at the pile head; the axial force decreases with depth but increase with the applied load at the pile head, however, the measured tip resistance is near zero during the whole loading cycle.
     (4) A new simple formulation for calculation of the ultimate bearing capacity of the uplift piles is proposed by considering the dead weight of pile and the climb height of grout; and the back-analysis shows that the ratio of the unit skin friction of the uplift pile to that of the compression pile is 0.65 to 0.80, whereas the ratio of the total skin friction in the uplift case to that in the compression case is 1.33 to 1.83, these values can be used in preliminary design of the pile.
     (5) Residual pressures locked in at the pile base during pressure grouting are studied theoretically based on the solutions of expansion of spherical cavity and one-dimensional consolidation. By analysis the dissipation process of the residual pressures, the analytical solutions of residual pressures dissipation with time and spread radius are obtained for assumed initial exponential pore pressure distribution and the influence of some key parameters are analyzed. The validity of the proposed model is also tested by comparing the results from field measurements.
     (6) A simplified solution discarding the grout spread radius is compared with the present method for different relative parameters. Parametric studies show that rheological index, consistency index, compression modulus and consolidation time are the key issues affecting pile residual pressures. The residual pressures decrease with the increase of the rheological index, consistency index, compression modulus and consolidation time.
引文
Bezuijen A., Sanders M.P.M., Hamer D. den, Tol A.F. van. Laboratory tests on compensation grouting, the influence of grout bleeding [J]. Proc 33rd ITA-AITES World Tunnel Congress, Prague,2007,395-399
    Bolton M. D., Mckinley J. D.. Geotechnical properties of fresh cement grout-pressure filtration and consolidation tests [J]. Geotechnique,1997,47(2):347-352
    Bruce D. A.. Enhancing the performance of large diameter piles by grouting [J]. Grouting Engineering,1985(5):9-15
    Fellenius B. H., Determining the true distribution of load in piles [C]. Orlando: Geotechnical Special Publication,2002
    Gafar K., Soga K. Fundamental Investigation of soil grout interaction in sandy soils[R]. University of Cambridge report,2006, August
    King J. C., Bush, E. CxW.. Symposium on grouting; grouting of granular materials[J]. Journal Soil Mech. Found. Div., ASCE,1961,87 (SM2):1-31
    Kulhawy, FH, Kozera, D.W and Wilhiam,J.L. Uplift testing of Model Drilled Shaft, in Sand,J.of Geotech. Eng.,1979,105(GT1):31-47
    Logoni P.Skin friction on piles. Proc 3rd Conf on Behavior of Offshore Structures.Washington, New York:Hemishpere Publishing Corporation,1982
    Mitchell, J.K 二 In-Place Treatment of Foundation Soils[J]. Journ. of the Soil Mechanics and Foundations Division, ASCE New York,1970, (1):73-109
    Mullins, G., Winters, D. and Steven D.. Predicting End Bearing Capacity of Post-Grouted Drilled Shaft in Cohesionless Soils [J]. Journal of Geotechnical and Geoenvironmental Engineering,2006,132(4):478-487
    Osamu Kusakabe, Masaaki Kakurai, Katsutoshi Ueno, and Yoshinao Kurachi. Structural capacity of precast piles with grouted base [J]. International Journal of Geotechnical Engineering,1994,120(8):1289-1306
    Vesic A S. Expansion of cavities in infinite soil mass[J]. Soil Mechanics and Foundations Division, Proceedings of ASCE,1972, (98):265-290
    JGJ 94-2008 建筑桩基技术规范[S].2008
    JGJ 106-2003 建筑基桩检测技术规范[S].2003
    JTJ D63-2007公路桥涵地基与基础设计规范[S].2007
    Q/JY 14-1994灌注桩后注浆技术规程[S].1994
    TB10002.5-99铁路桥涵地基和基础设计规范[S].1999
    布克明,殷坤龙,龚维明.钻孔后压浆技术在苏通大桥基础工程中的应用[J].岩土力学,2008,29(6):1697-1700
    曹汉志.桩的轴向荷载传递及荷载—沉降曲线的数值计算方法[J].岩土工程学报,1986,8(6):37-4.8
    陈志坚,韩学伟,白炳东.大直径超长钻孔灌注桩桩端后压浆机制探讨[J].河海大学学报,2007,35(4):409-412
    陈龙珠,梁国钱,朱金颖等.桩轴向荷载一沉降曲线的一种解析算法[J].岩土工程学报,1994,16(6):30-38
    程哗,龚维明,戴国亮等.超长大直径钻孔灌注桩桩端承载力研究[J].南京航空航天大学学报[[J].2007,39(3):407-411
    程哗.超长大直径钻孔灌注桩承载性能研究[D].南京:东南大学博士学位论文,2005
    戴国亮,龚维明,童小东,桩端后压浆桩压浆效果检测技术[J].施工技术,2005,34(1):74-77
    高文生.后压浆灌注桩单群桩承载性状的研究[D].博士研究生论文,1997
    葛家良,陆士良.注浆模拟试验及其应用研究[J].岩土工程学报,1997,19(3):28-33
    龚晓南.土塑性力学[M].杭州:浙江大学出版社,1997
    胡庆立,张克绪.大直径桩的竖向承载性状研究[J].岩土工程学报,2002,24(4):491-495
    胡春林,李向东,吴朝辉.后压浆钻孔灌注桩单桩竖向承载力特性研究[J].岩石力学与工程学报,2001,20(4):546-550
    胡士兵,朱向荣.三折线线性软化土体中球孔扩张问题解答[J].科技通报,2007,23(6):848-852
    胡士兵,王金昌,朱向荣.线性软化土体中球孔扩张问题的解析解[J].浙江大学学报(工学版),2007,41(9):1503-1507
    黄生根,龚维明.苏通大桥一期超长大直径试桩承载特性分析[J].岩石力学与工程学报,2004,23(19):3370-3375
    黄生根,刘萍.桩底后压浆技术研究[J].地质科技情报,1999,1 8(增):72-74
    黄锋.单桩在压与拔荷载下桩侧摩阻力发展机理研究[D].北京:清华大学,1998
    蒋明镜,沈珠江.考虑剪胀的弹脆塑性软化柱形孔扩张问题[J].河海大学学报,1996,24(4):65-72
    孔祥言,陈峰磊,陈国权.非牛顿流体渗流的特性参数及数学模型[J].中国科学技术大学学报,1999,29(2):141-147
    刘福天,赵春风,吴杰,等.常州地区大直径钻孔灌注桩承载性状及尺寸效应试验研究[J].岩石力学与工程学报,2010,29(4):858-864
    刘金砺,祝经成.泥浆护壁钻孔灌注桩后注浆技术及其应用[J].建筑科学,1996,(2):13-18
    刘利民,李增选.残余应力及其对桩承载性状的影响[J].特种结构,2000,17(4):16-18
    齐添,谢康和,胡安峰,等.萧山粘土非达西渗流性状的试验研究[J].浙江大学学报(工学版),2007,41(6):1023-1028
    潘志强,张彬.均匀砂层渗透注浆计算方法的研究[J].岩土工程界,2004,7(5):34-37
    阙云,刘强华,李丹,等.渗透注浆扩散理论探讨[J].重庆交通学院学报,2006,25(5):105-108
    舒士霖.钢筋混凝土结构[M].杭州:浙江大学出版社,2003
    沈崇棠,刘鹤年.非牛顿流体力学及其应用[M].北京:高等教育出版社,1989
    沈晓梅,高飞.软土地区大直径超长后注浆钻孔灌注桩竖向承载力的试验研究[J].建筑结构,2006,36(4):34-36
    孙晓立,莫海鸿.扩底抗拔桩变形的解析计算方法[J].岩石力学与工程学报,2009,28(增1):3008-3014
    唐智伟,赵成刚.注浆抬升地层的机制、解析解及数值模拟分析[J].岩土力学,2008,29(6):1512-1516
    王广国,杜明芳.压密注浆机理研究及效果检验[J].岩石力学与工程学报,2000,19(6):670-673
    汪鹏程.软化剪胀土中孔扩张理论及沉桩挤土性状研究[D].博士学位论文,2005
    汪鹏程,朱向荣,方鹏飞.考虑土应变软化及剪胀特性的大应变球孔扩张的问题[J].水利学报,2004(9):78-82
    王旭.桩底灌浆钻孔灌注桩竖向承载特性研究及工程应用[D].博士研究生论文,1999
    王之军.等截面竖向单桩抗拔承载力试验研究及变形非线性分析[D].北京:中国地质大学,2006
    魏建华,徐枫,吴超.桩侧后注浆与扩底抗拔桩承载特性研究[J].地下空间与工程学报, 2009,5(增刊):1727-1730
    吴江斌,王卫东,黄绍铭.等截面桩与扩底桩抗拔承载特性数值分析研究[J].岩土力学,2008,29(9):2583-2588
    谢耀峰,王云球.提高钻孔灌注桩后压浆效果的研究[J].水运工程,2002,340(5):47-51
    徐秀香.大直径桩承载力不需经土类、深度和尺寸效应修正[J].岩土工程界,2007,10(2):33-34
    徐润.粘土水泥浆结石体研究[J].煤炭科学技术,2004,32(4):55-57
    杨米加,陈明雄,贺永年.注浆理论的研究现状及发展方向[J].岩石力学与工程学报,2001,20(6):839-841
    杨米加,贺永年,陈明雄.裂隙岩体网络注浆渗流规律[J].水利学报,2001(7):41-46
    杨坪.砂卵(砾)石层模拟注浆试验及渗透注浆机理研究[D].博士学位论文,2005
    杨坪,唐益群,彭振斌,等.砂卵(砾)石层中注浆模拟试验研究[J],岩土工程学报,2006,28(2):2134-2138
    杨秀竹.静动力作用下浆液扩散理论与试验研究[M].博士学位论文,2005
    杨秀竹,王星华,雷金山.宾汉体浆液扩散半径的研究及应用[J].水利学报,2004,(6):75-79
    杨秀竹,雷金山,夏力农,等.幂律型浆液扩散半径研究[J].岩土力学,2005,26(11):1803-1806
    印长俊,王星华,马石城.灌注桩残余应变的产生机理分析[J].工程力学,2009,26(7):125-133
    游庆仲,王年香,章为民.大直径超长单桩竖向承载性能离心模型试验研究[J].桥梁建设,2006,(1):1-4
    阮文军.注浆扩散与浆液若干基本性能研究[J].岩土工程学报,2005,27(1):69-73
    阮文军.基于浆液粘度时变性的岩体裂隙注浆扩散模型[J].岩石力学与工程学报,2005,24(15):2709-2714
    袁加贝,孙进忠,李丛昀.抗拔桩实验的桩身受力分析[J].土工基础,2007,21(2):25-30
    曾国熙,叶政青,冯国栋.桩基工程手册[M].北京:中国建筑工业出版社,1997:139-222
    张帆,龚维明,戴国亮.大直径超长灌注桩荷载传递机理的自平衡试验研究[J].岩土工程学报,2006,28(4):464-469
    张寒.后压浆钻孔灌注桩承载性状分析[D].杭州:浙江大学硕士学位论文,2006
    张建新,吴东云,张淑朝.嵌岩桩尺寸效应的有限元分析[J].岩土力学,2007,28(6):1221-1224
    张尚根,孟少平,吴涛等.桩底压浆桩桩端承载力极限分析[J].解放军理工大学学报(自然科学版),2003,4(2):45-47
    张尚根,温小清,钮雪明等.桩底压浆桩荷载传递机理有限元数值模拟[J].建筑技术开发,2004,31(6):30-32
    张武,高文生.抗拔桩后注浆技术及其应用[J].岩土工程技术,2008,22(1):31-35
    张雁,刘金波主编.桩基手册[M].北京:中国建筑工业出版社,2009
    朱小林,唐世栋.利用孔隙水压力-静力触探探头估算软粘土固结系数的理论分析[J].工程勘察,1986,6(1):8-12
    张忠苗.桩基工程[M].中国建筑工业出版社,2007
    张忠苗.工程地质[M].中国建筑工业出版社,2007
    张忠苗.灌注桩后注浆技术及工程应用[M].北京:中国建筑工业出版社,2009
    邹健,张忠苗,林存刚.桩端后注浆桩残余应力研究[J].岩石力学与工程学报,2011,30(增1):3276-3280
    张忠苗,包风,陈云敏.考虑材料应变软化的球(柱)扩张理论在桩底注浆中的研究[J].岩土工程学报,2000,22(5):243-247
    张忠苗,吴世明,包风.钻孔灌注桩桩底后注浆机理与应用研究[J].岩土工程学报,1999,21(6):681-687
    张忠苗,吴世明,包凤.钻孔灌注桩桩底后注浆机理与应用研究[J].岩土工程学报,1999,21(6):681-686
    张忠苗,张乾青.后注浆抗压桩受力性状的试验研宄[J].岩石力学与工程学报,2009,28(3):475-482
    张忠苗,辛公锋,夏唐代,等.软土地基灌注桩、挤扩支盘桩和注浆桩应用效果分析[J].岩石力学与工程学报,2004,26(5):709-711
    张忠苗,唐朝文.关于钻孔桩桩底后注浆的技术要点[J].岩石力学与工程学报,2002,11:1740-1743
    张忠苗,张广兴,吴庆勇,等.钻孔桩泥皮土与桩间土性状试验研究[J].岩上工程学报,2006(6):695-699
    张忠苗,邹健.桩底劈裂注浆扩散半径和注浆压力研究[J].岩土工程学报,2008,30(2): 181-184
    张忠苗,邹健.桩端后注浆上返高度及桩顶冒浆处理[J].土木建筑与环境工程,2010,32(5):1-8
    张忠苗,邹健,贺静漪,等.粘土中压密注浆及劈裂注浆室内模拟试验分析[J].岩土工程学报,2009,31(12):1818-1824

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700