丙型肝炎病毒感染者外周血单个核细胞对新型CpG ODNs反应性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丙型肝炎是由丙型肝炎病毒引起的感染性肝疾患,目前西方国家HCV的感染率为0.6-2%,在发展中国家甚至高达15%。丙型肝炎起病隐袭,有75-85%的感染者在不知情的情况下发展为慢性感染,而20-40%患者会最终进展为肝硬化或肝细胞癌。当前的治疗方案是干扰素和利巴韦林联合治疗,此疗法受HCV基因型的限制,费用昂贵且副反应较大,因此寻找新的疗法仍是丙型肝炎研究领域的重大课题。
     人工合成的含未甲基化CpG基序的寡脱氧核苷酸(CpG ODNs),可分为三种类型:A型CpG ODNs能够刺激浆细胞样树突状细胞(pDC)产生大量的IFNα,并能强效激活NK细胞;B型CpG ODNs可刺激B细胞增生;C型CpG ODNs兼有A型及B型CpG ODNs的作用。机体免疫系统对CpG ODNs的识别和反应可促进机体对感染性疾病、过敏性疾病和肿瘤的反应,有广泛的临床应用前景。
     本文研究了丙型肝炎病毒感染者外周血单个核细胞对本室自主设计的新型CpG ODNs——BW001的反应性,发现BW001可刺激HCV感染者PBMCs增生并产生IFNα、IFNγ等具有抗病毒作用的细胞因子,同时又比较了BW001对丙型肝炎病毒和乙型肝炎病毒感染者PBMCs作用的不同,为BW001应用于丙型肝炎治疗提供了体外实验研究的数据。
Hepatitis C Virus is a major public health problem which estimatedly infected 180,000,000 worldwide and 380,000 in China. Infection with HCV is usually subclinical and associated with mild symptoms. So most infection progressed into chronic liver disease, including recurring hepatitis, liver cirrhosis and hepatocellular carcinoma. The current therapy for chronic HCV infection is combination of alpha interferon (INFα) and ribavirin.
     Bacterial DNA with CpG motifs can efficiently stimulate various cells of the vertebrate immune system in a non-specific way. It has been reported that synthetic oligodeoxynucleotides that contain CpG motifs (CpG-ODNs) can stimulate B cell, dendritic cells (DCs) and activate macrophages and monocytes, and NK cells in vitro. In vivo, CpG-ODNs induce transient splenomegaly, increase antibody responses and promote T helper cell type 1 (Th1) immune responses. These observations make CpG-ODNs a interesting adjuvant for vaccines and a powerful potent drug for the treatment of cancer, allergies and infectious diseases. The experimental use of CpGODNs as natural adjuvants or cancer and allergy drugs has been extensively studied. However, the treatment of infectious diseases is a relatively new area in CpG-ODNs research. There is little information about immune responses of HCV infected individuals to CpG-ODNs. It is our intension to identify the immunostimulatory effects of CpG-ODNs to the PBMCs from HCV infectioned individuals and the potential application of CpG-ODNs in the treatment of viral hepatitis C. We selected a noval CpG-ODNs designed by our colleagues and three CpG-ODNs reported to carry on our study. We use the 3H-Thymidine incorporation assay for measurement of cell proliferation, the cell protection test for measurement of anti-virus substances producted by the PBMCs, the ELISA for measurement of cytokines IFNα、IFNγ、IL-6 and IL-12 induced by CpG-ODNs. In this research, we also compared the differential responses of PBMCs from individuals infected with HBV or HCV using the statistical methods (Cooperating with other colleagues, we obtained Data of HBV infected individuals). To our knowledge, this is the first study conducted to evaluate the immune stimulatory activities of CpG-ODNs PBMCs from patients infected with HBV or HCV.
     Materials and Meathods:
     1. CpG-ODNs: Based on their stimulatory effects on human PBMCs, CpG ODNs can be divided into 3 types: CpG-A ODNs (also known as”type D”), CpG-B ODNs (also known as“type K”) and CpG-C ODNs. 2216, a published typical CpG-A ODNs, is a potent inducer of IFNαand IFNγfrom pDC and NK cells respectively whereas stimulates weak proliferation of B cells and differentiation of plasmocytoid dendritic cells (pDC). 2006, a well-studied CpG-B ODNs, is able to induce proliferation of B cells and maturation of DC, has little or no effects on pDC. C274, CpG-C ODNs share the above effects of both type A and type B CpG ODNs. BW001 is a novel CpG-C ODNs designed by our colleagues Bao Musheng[Bao Musheng, 2006]. All CpG-ODNs used in the experiment are synthesized by Shanghai Sangon Biological Engineering Thechnolgy and Service Co. Ltd.
     2. PBMCs islation and culture: Totally 65 HBV infected and 19 HCV infected individuals and 8 healthy donors are inclued in this study. All blood samples were obtained from the first hospital of Jilin university. All the donors included in this study have not received IFN or other antiviral therapy recently or ever. PBMCs of freshly drawn heparinized blood were prepared from buffy coats by Ficoll-Hypaque (GIBCO/BRL, Invitrogen) density gradient centrifugation and cultured in 10%FBS/IMDM in an incubator with 5% CO2 at 37℃.
     3. 3H-Thymidine incorporation assay: For in vitro proliferation assays, PBMCs were cultured with 10% FBS/IMDM with CpG-ODNs of a final concentration of 6μg/ml. 5×105 cells were incubated in 200μl of medium in 96 well U-bottom plates for 48 h. 0.5μCi of 3H-thymidine was added per well 16-18h before cell harvesting. Incorporation of 3H-thymidine was determined using aγcounter. CPM (count per minute) were recoreded to calculate the stimulation index.
     4. Protection effects of antiviral substances produced by CpG-ODNs stimulated PBMCs: We collected the supernants before addition of 3H-thymidine in the 3H-thymidine incorporation assay. The supernatants were then tested for their ability to inhibit the cytopathic effect (CPE) caused by VSV on Vero E6 cells. The Vero E6 cells were seeded into 96-well flat-bottomed plates (3×104 cells/100μl/well) and were directly incubated with the collected supernatants (10μl/well) for 16h. 10TCID50 (50% tissue culture infectious doses) of VSV was added for another incubation of 48-72h. The cytopathic effects caused by VSV were examined by crystal violet staining method. Anti-virus effects were expressed as OD values at 578nm, which are correlated to the anti-virus effects of the supernatants.
     5. ELISA of cytokines induced by CpG-ODNs: Cytokines in the collected supernatants were quantified by ELISA Kits according to the protocols provided by the ELISA kits (U-Theq.)
     6. Data analyses: All data obtained were analyzed by SPSS 15.0. The value of p<0.05 is considered to be significant.
     Results and Disscussion:
     1. Antiviral activity of BW001:
     We have identified in this study that BW001 can stimulate the proliferation and antiviral-substance production of PBMCs from HCV infected individuals (p<0.001).When acts on PBMCs from HCV infected individuals, BW001 exhibits the charateristics of type-C CpG ODNs. Whatsmore, BW001 can stimulate the production of antiviral cytokines including IFNαand IFNγby PBMCs from HCV infected individuals (p<0.01).
     2. The effects of BW001 and other CpG ODNs on the PBMCs from HCV infected individuals
     Comparing to typical CpG ODNs (2216: type-A, 2006: type-B, C274: type-C), BW001 exhibits the characteristics of typical type-C CpG ODNs when acts on the PBMCs from HCV infected individuals. It can induce stronger proliferation of PBMCs than 2216 and stronger production of antiviral substances than 2006.
     3. The effects of CpG ODNs on the PBMCs from healthy, HBV infected and HCV infected individuals.
     3.1 The effects of BW001 on the PBMCs from healthy, HBV infected and HCV infected individuals.
     BW001 can significantly stimulate the proliferation and the production of antiviral substances by PBMCs from healthy donors, HBV infected individuals and HCV infected individuals. The effects of BW001 on the proliferation of PBMCs from HCV infected individuals are stronger than that of normal donors and HBV infeted individuals (p<0.01).
     The plasmal IFNαlevel of HCV infected and HBV infected individuals are higher than that of the normal donors (p<0.01). Interestingly, when cultured in absence of CpG ODNs, the PBMCs from normal donors produced more IFNαthan those from HCV or HBV infected individuals (p<0.01). Furthemore, BW001 was demonstrated capable of stimulating PBMCs from HCV infected individuals to produce less IFNαthan those produced from the PBMCs derived normal donors or HBV infeted individuals (p<0.01).
     The plasmal IFNγlevel of HCV infected individuals is lower than that of normal donors and HBV infected individuals (p<0.01). The production of IFNγby isolated PBMCs increased when cultured in 10%FBS/IMDM. The PBMCs from HCV infected individuals produced more IFNγthan the PBMCs from normal and HBV infected individuals (p<0.01). The effects of BW001 on the producion of IFNγby PBMCs from HCV infected individuals are stronger than that on the PBMCs from normal and HBV infected individuals (p<0.01).
     3.2 The effects of BW001 and 2216 on the PBMCs from healthy, HBV infected and HCV infected individuals.
     The effects of BW001 on the proliferation of PBMCs from HCV infected individuals are stronger than that of 2216. There are no differences between the effects of BW001 and 2216 on the producion of antiviral substances, IFNαand IFNγ.
     3.3 The effects of CpG ODNs on the production of IFNγby PBMCs from normal, HBV infected and HCV infected individuals.
     It was found that PBMCs from HCV infected individuals produced more IFNγthan those from HBV infected individuals when exposed to various CpG ODNs.
     3.4 The effects of CpG ODNs on the production of IL-6 by PBMCs from normal donors, HBV infected individuals and HCV infected individuals.
     CpG ODNs stimulate higher IL-6 producion by PBMCs from HBV infected individuals than PBMCs from HCV infected individuals.
     As we known, CpG ODNs can activate the cells of innate immune system, including dendritic cells, macrophages and natural killer (NK) cells, consequently stimulate the production of Th1 cytokines and chemokines and up-regulate the costimulatory molecules which facilitate the generation of adaptive immune responses. What’s more, a phase Ia study with health volunteers shows that CpG ODNs are safe and well tolerated with a wide dose range. To identify the potential of CpG ODNs in clinical applications of treating hepatitis B and hepatitis C, we tend to investigate the responsiveness of PBMCs from HBV/HCV infected individuals in vitro.
     Together, we conclude that CpG ODNs could be used as a potential treatment for both hepatitis B and hepatitis C, preferentially for hepatitis C.
引文
1. Afdhal N et al. Final phase I/II trial results for NM283-a new polymerase inhibitor for hepatitis C: antiviral efficacy and tolerance in patients with HCV-1 infection, including previous interferon failures. 2004; http://www.idenix.com/products/datapres_nm283/AfdhalAASLD04_10-04.pdf
    2. Afdal N et al. Enhanced antiviral efficacy for Valopicitabine (NM283) plus peg-interferon in hepatitis C patients with HCV genotype-1 infection: Results of a phase IIa multicenter trial. 2005; http://www.idenix.com/ products/datapres_nm283/AfdhalEASL2005_4-05.pdf
    3. Agrawal S, Kandimalla ER. Medicinal chemistry and therapeutic potential of CpG DNA. Trends Mol Med. 2002; 8: 114-121.
    4. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor
    3. Nature. 2001; 413(6857): 732-738.
    5. Alter HJ et al. Evaluation of branched DNA signal amplification for the detection of hepatitis C virus RNA. J. Viral Hepatol. 1995; 2: 121-132.
    6. Alter HJ, Seeff LB. Recovery, persistence, and sequelae in hepatitis C virus infection: a perspective on long-term outcome. Semin. Liver Dis. 2000; 20: 17-35.
    7. Anadys Pharmaceuticals announces selection of ANA975 as a development candidate for front-line treatment of chronic hepatitis C. 2004; http://phx.corporateir.net/phoenix.zhtml?c=148908&p=irol-news Article&ID=575761&highlight
    8. Appay V et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nature Med. 2002; 8: 379-385.
    9. Ashkar AA, Bauer S, Mitchell WJ, Vieira J, and Rosenthal KL. Local delivery of CpG oligodeoxynucleotides induces rapid changes in the genital mucosa and inhibits replication, but not entry, of herpes simplexvirus type 2. J. Virol. 2003; 77: 8948-8956.
    10. Auf G, Carpentier AF, Chen L, Le Clanche C and Delattre. Implication of macrophages in tumor rejection induced by CpG-oligonucleotides without antigen. Clin. Cancer Res. 2001; 7: 3540-3543.
    11. Auffermann-Gretzinger S, Keeffe EB, Levy S. Impaired dendritic cell maturation in patients with chronic, but not resolved, hepatitis C virus infection. Blood. 2001; 97: 3171-3176.
    12. Bain C et al. Impaired allostimulatory function of dendritic cells in chronic hepatitis C infection. Gastroenterology. 2001; 120: 512-524.
    13. Ballas ZK, Rasmussen WL, Krieg AM. Induction of NK activity in murine and human cells by CpG motifs in oligodeoxyribonucleotide and bacterial DNA. J.Immunol. 1996; 157(5): 1840-1845.
    14. Bartenschlager R, Lohmann V, Wilkinson T, Koch JO. Complex formation between the NS3 serine-type proteinase of the hepatitis C virus and NS4A and its importance for polyprotein maturation. J. Virol. 1995; 69(12): 7519-7528.
    15. Bartenschlager R, Frese M, Pietschmann T. Novel insights into hepatitis C virus replication and persistence. Adv. Virus Res. 2004; 63: 171-180.
    16. Bartosch B et al. In vitro assay for neutralizing antibody to hepatitis C virus: evidence for broadly conserved neutralization epitopes. Proc. Natl Acad. Sci. USA 2003; 100: 14199-14204.
    17. Bauer M et al. DNA activates human immune cells through a CpG sequence dependent manner. Immunology. 1999; 97: 699-705.
    18. Bauer S, Kirschning C J, Hacker H, Redecke V, Hausmann S et al.Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc. Natl. Acad. Sci. USA.2001; 98: 9237-9242.
    19. Beaulieu PL, Tsantrizos YS. Inhibitors of the HCV NS5B polymerase: new hope for the treatment of hepatitis C infections. Curr. Opin. Investig. Drugs. 2004; 5: 838-850.
    20. Becker Y. CpG ODNs Treatments of HIV-1 Infected Patients May Cause the Decline of Transmission in High Risk Populations - A Review,Hypothesis and Implications. Virus Genes. 2005; 30(2): 251-266.
    21. Behrens SE, Tomei L, De Francesco R. Identification and properties of the RNA-dependent RNA polymerase of hepatitis C virus. EMBO J. 1996; 15 (1): 12-22.
    22. Beutler, B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature. 2004; 430(6996): 257-263.
    23. Biswal BK et al. Crystal structures of the RNA dependent RNA polymerase genotype 2a of hepatitis C virus reveal two conformations and suggest mechanisms of inhibition by nonnucleoside inhibitors. J. Biol. Chem. 2005; 280: 18202-18210.
    24. Boettler T et al. T cells with a CD4+CD25+ regulatory phenotype suppress in vitro proliferation of virus-specific CD8+ T cells during chronic hepatitis C virus infection. J. Virol. 2005; 79: 7860-7867.
    25. Bohle B et al. Oligodeoxynucleotides containing CpG motifs induce IL-12, IL-18 and IFN-gamma production in cells from allergic individuals and inhibit IgE synthesis in vitro. Eur. J. Immunol. 1999; 29: 2344-2353.
    26. Bowen D, Walker C. Adaptive immune responses in acute and chronic hepatitis C virus infection. Nature. 2005; 36: 946-952.
    27. Bowen DG, Walker CM. Mutational escape from CD8+T cell immunity: HCV evolution, from chimpanzees to man. J. Exp. Med. 2005; 201(11):1709-1714.
    28. Bowie AG, Haga IR. The role of Toll-like receptors in the host response to viruses. Mol. Immunol. 2005; 42(8):859-867.
    29. Braasch DA et al. Biodistribution of phosphodiester and phosphorothioate siRNA. Bioorg. Med. Chem. Lett. 2004; 14: 1139-1143.
    30. Breiman A, Grandvaux N, Lin R, Ottone C, Akira S, Yoneyama M, Fujita T, Hiscott J, Meurs EF. Inhibition of RIG-I-dependent signaling to the interferon pathway during hepatitis C virus expression and restoration of signaling by IKKepsilon. J. Virol. 2005; 79 (7): 3969–3978.
    31. Bressanelli S et al. Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Proc. Natl Acad. Sci. USA 1999; 96:13034-13049.
    32. Broide DH, Stachnick G, Castaneda D, Nayar J, Miller M, Cho JY, Roman M, Zubeldia J, Hayashi T, Raz E. Systemic administration of immunostimulatory DNA sequences mediates reversible inhibition of Th2 responses in a mouse model of asthma. J. Clin. Immunol. 2001; 21: 175-182.
    33. Cabrera R et al. An immunomodulatory role for CD4+CD25+ regulatory T lymphocytes in hepatitis C virus infection. Hepatology. 2004; 40: 1062-1071.
    34. Carpentier AF, Xie J, Mokhtari K and Delattre JY. Successful treatment of intracranial gliomas in rat by oligonucleotides containing CpG motifs Clin. Cancer Res. 2000; 6: 2469-2473.
    35. Carroll S et al. Susceptibility of different genotypes of hepatitis C virus to inhibition by nucleoside and nonnucleoside inhibitors. Antiviral Res. 2004; 62: A83.
    36. Chiaramonte MG, Hesse M, Cheever AW and Wynn S. CpG oligonucleotides can prophylactically immunize against Th2-mediated schistosome egg-induced pathology by and IL-12-independent mechanism. J. Immunol. 2000; 164: 937-985.
    37. Cho JY, Miller M, Baek KJ, Han JW, Nayar J, Rodriguez M, Lee SY McElwain K, McElwain S, Raz E and Broide DH. Immunostimulatory DNA inhibits transforming growth factor-beta expression and airway remodeling. Am. J. Respir. Cell. Mol. Biol. 2004; 30: 651-661.
    38. Chu RS, Targoni OS, Krieg AM, Lehmann PV, and Harding CV. CpG oligodeoxynucleotides act as adjuvants that switch on T helper 1 (Th1) immunity. J. Exp. Med. 1997; 186: 1623–1631.
    39. Chuang TH, Lee J, Kline L, et al. Toll-like receptor 9 mediates CpG DNA signaling. J Leukoc B iol. 2002; 71(3): 538-544.
    40. Coley reports results from phase I studies of ActilonTM for hepatitis C. 2005; http://www.coleypharma.com/coley/pr_1105025921.
    41. Colonna M, Krug A, Cella M. Interferon-producing cells: on the front line in immune responses against pathogens. Curr. Opin. Immunol. 2002; 14(3):373-379.
    42. Cooksley WG, Piratvisuth T, Lee SD et al. Peginterferon alpha-2a (40KDa): an advance in the treatment of hepatitis B e antigen-positive chronic hepatitis B. J Viral Hepatol. 2003; 10(6): 298-305.
    43. Cooper CL, Davis HL, Morris ML, Efler SM, Adhami MA, Krieg AM, Cameron DW, and Heathcote J, CPG 7909:an immunostimulatory TLR9 agonist oligodeoxynucleotide, as adjuvant to Engerix-B HBV vaccine in healthy adults: a double-blind phase I/II study. J. Clin. Immunol. 2004; 24: 693-701.
    44. Cooper CL, Davis HL, Morris ML, Efler SM, Krieg AM, Li Y, Laframboise C, Al Adhami MJ, Khaliq Y, Seguin I, and Cameron DW. Safety and immunogenicity of CPG 7909 injection as an adjuvant to Fluarix influenza vaccine. Vaccine. 2004; 22: 3136-3143.
    45. Cooper CL, Davis HL, Angel JB, Morris ML, Elfer SM, Seguin I, Krieg AM, and Cameron DW. CPG 7909 adjuvant improves hepatitis B virus vaccine 208 seroprotection in antiretroviral-treated HIV-infected adults. Aids. 2005; 19: 1473-1479.
    46. Cooper S et al. Analysis of a successful immune response against hepatitis C virus. Immunity. 1999; 10: 439-449.
    47. Crotta S, Stilla A, Wack A, D’Andrea A, Nuti S, D’Oro U, Mosca M, Filliponi F, Brunetto RM, Bonino F, Abrignani S, Valiante NM. Inhibition of natural killer cells through engagement of CD81 by the major hepatitis C virus envelope protein. J. Exp. Med. 2002; 195(1):35-41.
    48. Datta SK, Cho HJ, Takabayashi K, Horner AA, and Raz E. Antigen immunostimulatory oligonucleotide conjugates: mechanisms and applications. Immunol. Rev. 2004; 199: 217-226.
    49. Day CL et al. Broad specificity of virus-specific CD4+ T-helper-cell responses in resolved hepatitis C virus infection. J. Virol. 2002; 76: 12584-12595.
    50. Day CL et al. Ex vivo analysis of human memory CD4 T cells specific for hepatitis C virus using MHC class II tetramers. J. Clin. Invest. 2003; 112: 831-842.
    51. Deng JC, Moore TA, Newstead MW, Zeng X, Krieg AM, and Standiford TJ. CpG oligodeoxynucleotides stimulate protective innate immunity against pulmonary Klebsiella infection. J. Immunol. 2004; 173: 5148-5155.
    52. Diebold SS, Montoya M, Unger H, Alexopoulou L, Roy P, Haswell LE, Al-Shamkhani A, Flavell R, Borrow P, Reise Sousa C. Viral infection switches non-plasmacytoid dendritic cells into high interferon producers. Nature 2003; 424(6946): 324-328.
    53. Dong L, Mori I, Hossain MJ, Liu B, Kimura Y. An immunostimulatory oligodeoxynucleotide containing a cytidine-guanosine motif protects senescence-accelerated mice from lethal influenza virus by augmenting the T helper type 1 response. J Gen Virol. 2003; 84(Pt 6): 1623-1628.
    54. Ebert S, Gerber J, Bader S, Muhlhauser F, Brechtel K, Mitchell TJ, Nau R. Dose-dependent activation of microglial cells by Toll-like receptor agonists alone and in combination. J Neuroimmunol. 2005; 159(1-2): 87-96.
    55. Egger D, Wolk B, Gosert R, Bianchi L, Blum HE, Moradpour D, Bienz K. Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J. Virol. 2002; 76 (12): 5974-5984.
    56. Elkins KL, Rhinehart-Jones TR, Stibitz S, Conover JS, and Klinman DM. Bacterial DNA containing CpG motifs stimulates lymphocyte-dependent protection of mice against lethal infection with intracellular bacteria. J. Immunol. 1999; 162: 2291-2298.
    57. Erickson AL et al. The outcome of hepatitis C virus infection is predicted by escape mutations in epitopes targeted by cytotoxic T lymphocytes. Immunity 2001; 15: 883-895.
    58. Fanucchi MV, Schelegle ES, Baker GL, Evans MJ, McDonald RJ, Gershwin LJ, Raz E, Hyde DM, Plopper CG and Miller LA. Immunostimulatory oligonucleotides attenuate airways remodeling in allergic monkeys. Am. J. Respir. Crit. Care Med. 2004; 170: 1153-1157.
    59. Flynn B, Wang, Sacks DL, Seder RA, and Verthelyi D, Prevention andtreatment of cutaneous leishmaniasis in primates by using synthetic type D=A oligodeoxynucleotides expressing CpG motifs. Infect. Immun. 2005; 73: 4948-4954.
    60. Foster GR Past. present and future hepatitis C treatments. Semin. Liver Dis. 2004; 24 (Suppl. 2): 97-104.
    61. Freeman AJ et al. The presence of an intrahepatic cytotoxic T lymphocyte response is associated with low viral load in patients with chronic hepatitis C virus infection. J. Hepatol. 2003; 38: 349-356.
    62. Frese M, Pietschmann T, Moradpour D, Haller O, Bartenschlager R. Interferon-alpha inhibits hepatitis C virus subgenomic RNA replication by an MxA-independent pathway. J. Gen. Virol. 2001; 82 (Pt 4): 723-733.
    63. Frese M et al. Interferon-gamma inhibits replication of subgenomic and genomic hepatitis C virus RNAs. Hepatology. 2002; 35: 694-703.
    64. Foy E, Li K, Wang C, Sumpter JrR, Ikeda M, Lemon SM, Gale JrM. Regulation of interferon regulatory factor-3 by the hepatitis C virus serine protease. Science. 2003; 300(5622): 1145-1148.
    65. Gale JrM, Foy EM. Evasion of intracellular host defence by hepatitis C virus. Nature. 2005; 436(7053): 939-945.
    66. Gerlach JT et al. Recurrence of hepatitis C virus after loss of virus-specific CD4+ T-cell response in acute hepatitis C. Gastroenterology. 1999; 117: 933-941.
    67. Gish RG. Treating HCV with ribavirin analogues and ribavirin-like molecules. J. Antimicrob. Chemother. 2006; 57: 8-13.
    68. Gomis S, Babiuk L, Godson DL, Allan B, Thrush T, Townsend H, Willson P, Waters E, Hecker R, and Potter A. Protection of chickens against Escherichia coli infections by DNA containing CpG motifs. Infect. Immun. 2003, 71: 857-863.
    69. Gosert R, Egger D, Lohmann V, Bartenschlager R, Blum HE, Bienz K, Moradpour D. Identification of the hepatitis C virus RNA replication complex in Huh-7 cells harboring subgenomic replicons. J. Virol. 2003; 77(9): 5487-5492.
    70. Grakoui A, McCourt DW, Wychowski C, Feinstone SM, Rice CM.Characterization of the hepatitis C virus-encoded serine proteinase: determination of proteinase-dependent polyprotein cleavage sites. J. Virol. 1993; 67(5): 2832-2843.
    71. Grakoui A et al. HCV persistence and immune evasion in the absence of memory T cell help. Science. 2003; 302: 659-662.
    72. Gramzinski RA, Doolan DL, Sedegah M, Davis HL, Krieg AM, and Hoffman SL. Interleukin-12 and gamma interferon-dependent protection against malaria conferred by CpG oligodeoxynucleotide in mice. Infect. Immun. 2001; 69: 1643-1649.
    73. Griffin SD, Beales LP, Clarke DS, Worsfold O, Evans SD, Jaeger J, Harris MP, Rowlands DJ. The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug, Amantadine. FEBS Lett. 2003; 535(1–3): 34-38.
    74. Guo JT, Bichko VV, Seeger C. Effect of alpha interferon on the hepatitis C virus replicon. J. Virol. 2001; 75(18): 8516-8523.
    75. Guo JT, Sohn JA, Zhu Q, Seeger C. Mechanism of the interferon alpha response against hepatitis C virus replicons. Virology. 2004; 325(1): 71-81.
    76. Gurney KB, Colantonio AD, Blom B, Spits H, Uittenbogaart CH. Endogenous IFN-alpha production by plasmacytoid dendritic cells exerts an antiviral effect on thymic HIV-1 infection. J Immunol. 2004; 173(12): 7269-7276.
    77. Hacker H, Mischak H, Miethke T, Liptay S, Schmid R, Sparwasser T, Heeg K, Lipford GB, Wagner H. CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J. 1998 Nov 2; 17(21): 6230-6240.
    78. Hadziyannis SJ, Sette JrH, Morgan TR, Balan V. Diago M, Marcellin P, Ramadori G, Bodenheimer JrH, Bernstein D, Rizzetto M, Zeuzem S, Pockros PJ, Lin A, Ackrill AM. Peginterferon-alpha2a and ribavirin combination therapy in chronic hepatitis C: a randomized study of treatment duration and ribavirin dose. Ann. Int. Med. 2004; 140:346-355.
    79. Hahn YS. Subversion of immune responses by hepatitis C virus: immunomodulatory strategies beyond evasion? Curr. Opin. Immunol. 2003; 15: 443-449.
    80. Han J et al. Inhibition of HCV replication in vivo by nuclease-resistant siRNAs that are targeted to the liver. Presented at 11th International Symp. Hepatitis C Virus and Related Viruses. Heidelberg, Germany. 2004.
    81. Harte MT, Haga IR, Maloney G, Gray P, Reading PC, Bartlett NW, Smith GL, Bowie A, and O’Neill LA. The poxvirus protein A52R targets Toll like receptor signaling complexes to suppress host defense. J. Exp. Med. 2003; 197: 343-351.
    82. Hartmann G, Krug A, Waller-Fontaine K, Endres S. Oligodeoxy- nucleotides enhance lipopolysaccharide-stimulated synthesis of tumor necrosis factor: dependenceon phosphorothioate modificationand reversal by heparin. Mol. Med. 1996; 2(4): 429-438.
    83. Hartmann G et al. CpG DNA: a potential signal for growth, activation and maturation of human dendritic cells. Proc. Natl. Acad. Sci. USA. 1999; 96: 9305-9310.
    84. Hartmann G,Weeratna RD,Ballas ZK et al. Dealineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo.J.Immunol.2000; 164(3): 1617-1624.
    85. Hartmann G et al. Rational design of new CpG oligonucleotides that combine B cell activation with high IFN-α induction in plasmacytoid dendritic cells. Eur. J. Immunol. 2003; 33:1633-1641.
    86. Hayashi F, Means TK, Luster AD. Toll-like receptors stimulate human neutrophil function. Blood. 2003; 102(7): 2660-2669.
    87. Hayashi T, Beck L, Rossetto C, Gong X, Takikawa O, Takabayashi K, Broide DH, Carson DA and Raz E. Inhibition of experimental asthma by indoleamine 2, 3-deoxygenase. J. Clin. Invest. 2004; 114:270-279.
    88. He H, Lowry VK, Swaggerty CL, Ferro PJ, and Kogut MH. In vitro activation of chicken leukocytes and in vivo protection againstSalmonella enteritidis organ invasion and peritoneal S. enteritidis infection-induced mortality in neonatal chickens by immunostimulatory CpG oligodeoxynucleotide. FEMS Immunol. Med. Microbiol. 2005; 43: 81-89.
    89. He XS et al. Quantitative analysis of hepatitis C virus-specific CD8+ T cells in peripheral blood and liver using peptide-MHC tetramers. Proc. Natl Acad. Sci. USA. 1999; 96: 5692-5697.
    90. Heathcote EJ, Shiffman ML, Cooksley WG, Dusheiko GM, Lee SS, Balart L, Reindollar R, Reddy RK, Wright TL, Lin A, Hoffman J, De Pamphilis J. Peginterferon alfa-2a in patients with chronic hepatitis C and cirrhosis. N. Engl. J. Med. 2000; 343: 1673-1680.
    91. Heikenwalder M, Polymenidou M, Junt T, Sigurdson C, Wagner H, Akira S, Zinkernagel R, Aguzzi A. Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. Nat Med. 2004; 10(2): 187-192.
    92. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H et al. A Toll-like receptor recognizesbacterial DNA.Nature. 2000; 408: 740-745.
    93. Hessel EM, Chu M, Lizcano JO, Chang B, Herman N, Kell SA, Wills-Karp M and Coffman RL. Immunostimulatory oligonucleotides block allergic airway inflammation by inhibiting Th2 cell activation and IgE-mediated cytokine induction. J. Exp. Med. 2005; 202: 1563-1573.
    94. Hijikata M, Mizushima H, Akagi T, Mori S, Kakiuchi N, Kato N, Tanaka T, Kimura K, Shimotohno K. Two distinct proteinase activities required for the processing of a putative nonstructural precursor protein of hepatitis C virus. J. Virol. 1993; 67(8): 4665-4675.
    95. Hinrichsen H et al. Short-term antiviral efficacy of BILN 2061, a hepatitis C virus serine protease inhibitor, in hepatitis C genotype 1 patients. Gastroenterology. 2004; 127: 1347-1355.
    96. Horner AA, Van Uden JH, Zubeldia JM, Broide D and Raz E. DNA-based immunotherapeutics for the treatment of allergic disease. Immunol. Rev. 2001; 179: 102-118.
    97. Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T,Endres S, Hartmann G. Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol. 2002; 168(9): 4531-4537.
    98. Ikeda RK, Maya J, Cho JY, Miller M, Rodriguez M, Raz E and Broide DH. Resolution of airway inflammation following ovalbumin inhalation: comparison of ISS DNA and corticosteroids. Am. J. Respir. Cell. Mol. Biol. 2003; 28: 655-663.
    99. Ioannou XP, Gomis SM, Karvonen B, Hecker R, Babiuk LA, and van Drunen Littel-van den Hurk S. CpG-containing oligodeoxynucleotides, in combination with conventional adjuvants, enhance the magnitude and change the bias of the immune responses to a herpesvirus glycoprotein. Vaccine. 2002; 21: 127-137.
    100. Ioannou XP, Griebel P, Hecker R, Babiuk LA, and van Drunen Littel-van den Hurk S. The immunogenicity and protective efficacy of bovine herpesvirus 1 glycoprotein D plus Emulsigen are increased by formulation with CpG oligodeoxynucleotides. J. Virol. 2002; 76: 9002-9010.
    101. Ito S, Ishii KJ, Ihata A, and Klinman DM. Contribution of nitric oxide to CpGmediated protection against Listeria monocytogenes. Infect. Immun. 2005; 73: 3803-3805.
    102. Ito S, Pedras-Vasconcelos J, and Klinman DM. CpG oligodeoxynucleotides increase the susceptibility of normal mice to infection by Candida albicans. Infect. Immun. 2005; 73: 6154-6156.
    103. Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 2004; 5 (10): 987-995.
    104. Jozsef L, Khreiss T, Filep JG. CpG motifs in bacterial DNA delay apoptosis of neutrophil granulocytes. FASEB J. 2004; 18(14): 1776-1778.
    105. Juffermans NP, Leemans JC, Florquin S, Verbon A, Kolk AH, Speelman P, van Deventer SJ and van der Poll T. CpG oligodeoxynucleotides enhance host defense during murine tuberculosis. Infect. Immun. 2002; 70: 147–152.
    106. Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA, Bazan F, Liu YJ. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med. 2001; 194(6): 863-869.
    107. Kim DW, Gwack Y, Han JH, Choe J. C-terminal domain of the hepatitis C virus NS3 protein contains an RNA helicase activity. Biochem. Biophys. Res. Commun. 1995; 215(1):160-166.
    108. Kline JN, Krieg AM, Waldschmidt TJ, Ballas ZK, Jain V and Businga TR. CpG oligonucleotides do not require Th1 cytokines to prevent eosinophilic airway inflammation in a murine model of asthma. J. Allergy Clin. Immunol. 1999; 104: 1258-1264.
    109. Klinman DM, Takeno M, Ichino M, Gu M, Yamshchikov G, Mor G, and Conover J. DNA vaccines: safety and efficacy issues. Springer Semin. Immunopathol. 1997; 19: 245-256.
    110. Klinman DM, Conover J and Coban C. Repeated administration of synthetic oligodeoxynucleotides expressing CpG motifs provides long-term protection against bacterial infection. Infect. Immun. 1999; 67: 5658-5663.
    111. Klinman DM. CpG DNA as a vaccine adjuvant. Expert Rev. Vacc. 2003; 2: 305-315.
    112. Kranzer K, Bauer M, Lipfo rd GB, Heeg K, Wagner H, Lang R. CpG oligodeoxynucleotides enhance T-cell receptor-triggered interferon-gamma production and up-regulation of CD69 via induction of antigen-presenting cell-derived interferon type I and interleukin-12. Immunology. 2000; 99(2): 170-178.
    113. Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature.1995; 374: 546-549.
    114. Krieg AM, Love-Homan L, Yi AK, Harty JT. CpG DNA induces sustained IL-12 expression in vivo and resistance to Listeria monocytogenes challenge.J Immunol. 1998 Sep 1; 161(5): 2428-2434.
    115. Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu. Rev.Immunol. 2002; 20: 709-760.
    116. Krieg AM, Efler SM, Wittpoth M, Adhami MJ Al, andDavis HL. Induction of systemic TH1-like innate immunity in normal volunteers following subcutaneous but not intravenous administration of CPG 7909, a synthetic B-class CpG oligodeoxynucleotide TLR9 agonist. J. Immunother. 2004; 27: 460-471.
    117. Krieger N, Lohmann V, Bartenschlager R. Enhancement of hepatitis C virus RNA replication by cell culture-adaptive mutations. J. Virol. 2001; 75(10): 4614-4624.
    118. Kronke J et al. Alternative approaches for efficient inhibition of hepatitis C virus RNA replication by small interfering RNAs. J. Virol. 2004; 78: 3436-3446.
    119. Krug A et al. Identification of CpG oligonucleotide equences with high induction of IFNα/β in plasmacytoid dendritic cells. Eur. J. Immunol. 2001; 31: 2154-2163.
    120. Kurokohchi K et al. CD28-negative CD8-positive cytotoxic T lymphocytes mediate hepatocellular damage in hepatitis C virus infection. J. Clin. Immunol. 2003; 23: 518-527.
    121. Lamarre D et al. An NS3 protease inhibitor with antiviral effects in humans infected with hepatitis C virus. Nature. 2003; 426: 186-189.
    122. Lanford RE et al. Antiviral effect and virus-host interactions in response to alpha interferon, gamma interferon, poly(i)-poly(c), tumor necrosis factor alpha, and ribavirin in hepatitis C virus subgenomic replicons. J. Virol. 2003; 77: 1092-1104.
    123. LaPlante SR et al. Binding mode determination of benzimidazole inhibitors of the hepatitis C virus RNA polymerase by a structure and dynamics strategy. Angew Chem. Int. Ed. Engl. 2004; 43: 4306-4311.
    124. Larsson M et al. Lack of phenotypic and functional impairment in dendritic cells from chimpanzees chronically infected with hepatitis C virus. J. Virol. 2004; 78: 6151-6161.
    125. Lechner F et al. CD8+ T lymphocyte responses are induced during acutehepatitis C virus infection but are not sustained. Eur. J. Immunol. 2000; 30: 2479-2487.
    126. Leifer CA et al. Heterogeneity in the human response to immunostimulatory CpG oligodeoxynucleotides. J. Immunother. 2003; 26: 313-319.
    127. Lesburg CA et al. Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. Nature Struct. Biol. 1999; 6: 937-943.
    128. Lewis EJ, Agrawal S, Bishop J, Chadwick J, Cristensen ND,Cuthill S, Dunford P, Field AK, Francis J, Gibson V et al. Non-specific antiviral activity of antisense molecules targetedto the E1 region of human papillomavirus. Antiviral Res. 2000; 48:187-196.
    129. Liaw YF, Leung NWY, Chang TT et al. Effects of extended lamivudine therapy in Asian patients with chronic hepatitis. Gastroenterology. 2000; 119(7): 172-176.
    130. Lin C, Thomson JA, Rice CM. A central region in the hepatitis C virus NS4A protein allows formation of an active NS3-NS4A serine proteinase complex in vivo and in vitro. J. Virol. 1995; 69 (7):4373-4380.
    131. Lin C et al. In vitro resistance studies of hepatitis C virus serine protease inhibitors, VX-950 and BILN 2061: structural analysis indicates different resistance mechanisms. J. Biol. Chem. 2004; 279: 17508-17514.
    132. Lin CC, Philips L, Xu C, Yeh LT. Pharmacokinetics and safety of viramidine, a prodrug of ribavirin, in healthy volunteers. J. Clin. Pharmacol. 2004; 44: 265-275.
    133. Lindenbach BD, Evans MJ, Syder AJ, Wolk B, Tellinghuisen TL, Liu CC, Maruyama T, Hynes RO, Burton DR, McKeating JA, Rice CM. Complete replication of hepatitis C virus in cell culture. Science. 2005; 309 (5734): 623-626.
    134. Lindenbach BD, Rice CM. Unravelling hepatitis C virus replication from genome to function. Nature. 2005; 436(7053): 933-938.
    135. Lipford GB, Sparwasser T, Zimmermann S, Heeg K, Wagner H. CpG-DNA mediated transient lymphadenopathy is associated with astate of Th1 predisposition to antigen-driven responses. J. Immunol. 2000; 165(3): 1228-1235.
    136. Llinas-Brunet M et al. Peptide-based inhibitors of the hepatitis C virus serine protease. Bioorg. Med. Chem. Lett. 1998; 8: 1713-1718.
    137. Logvinoff C et al. Neutralizing antibody response during acute and chronic hepatitis C virus infection. Proc. Natl Acad. Sci. USA. 2004; 101: 10149-10154.
    138. Lohmann V, Korner F, Herian U, Bartenschlager R. Biochemical properties of hepatitis C virus NS5B RNA-dependent RNA polymerase and identification of amino acid sequence motifs essential for enzymatic activity. J. Virol. 1997; 71(11): 8416-8428.
    139. Lohmann V, Korner F, Koch J, Herian U, Theilmann L, Bartenschlager R. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science. 1999; 285(5424): 110-113.
    140. Lohmann V, Hoffmann S, Herian U, Penin F, Bartenschlager R. Viral and cellular determinants of hepatitis C virus RNA replication in cell culture. J. Virol. 2003; 77(5): 3007-3019.
    141. Lu H in WO 2005/000308 Rigel Pharmaceuticals, USA. Published International Patent Application. 2005.
    142. Lu L et al. Mutations conferring resistance to a potent hepatitis C virus serine protease inhibitor in vitro. Antimicrob. Agents Chemother. 2004; 48: 2260-2266.
    143. Ludmerer SW et al. Replication fitness and NS5B drug sensitivity of diverse hepatitis C virus isolates characterized by using a transient replication assay. Antimicrob. Agents Chemother. 2005; 49: 2059-2069.
    144. MacDonald AJ et al. CD4 T helper type 1 and regulatory T cells induced against the same epitopes on the core protein in hepatitis C virus-infected persons. J. Infect. Dis. 2002; 185: 720-727.
    145. Manzel L, Macfarlane DE. Lack of immune stimulation by immobilized CpG-oligodeoxynucleotide. Antisense Nucleic Acid Drug Dev. 1999 Oct; 9(5):459-464.
    146. Marie I, Durbin JE, Levy DE. Differential viral induction of distinctinterferon-alpha genes by positive feedback through interferon regulatory factor-7. EMBO J. 1998; 17(22): 6660-6669.
    147. Marshall JD et al. Identification of a novel CpG DNA class and motif that optimally stimulate B cell and plasmacytoid dendritic cell functions. J. Leukoc. Biol. 2003; 73: 781-792.
    148. McGuinness PH, Painter D, Davies S, McCaughan GW. Increases in intrahepatic CD68 positive cells, MAC387 positive cells, and proinflammatory cytokines (particularly interleukin 18) in chronic hepatitis C infection. Gut. 2000; 46: 260-269.
    149. Meier UC, Owen RE, Taylor E, Worth A, Naoumov N, Willberg C, Tang K, Newton P, Pellegrino P, Williams I, Klenerman P, Borrow P. Shared alterations in NK cell frequency, phenotype, and function in chronic human immunodeficiency virus and hepatitis C virus infections. J. Virol. 2005; 79(19): 12365-12374.
    150. Melen K, Fagerlund R, Nyqvist M, Keskinen P, Julkunen I. Expression of hepatitis C virus core protein inhibits interferon-induced nuclear import of STATs. J. Med. Virol. 2004; 73(4): 536-547.
    151. Melian EB, Plosker GL. Interferon alfacon-1: a review of its pharmacology and therapeutic efficacy in the treatment of chronic hepatitis C. Drugs. 2001; 61: 1661-1691.
    152. Meunier JC et al. Evidence for cross-genotype neutralization of hepatitis C virus pseudoparticles and enhancement of infectivity by apolipoprotein C1. Proc. Natl Acad. Sci. USA. 2005; 102: 4560-4565.
    153. Meyer-Olson D et al. Limited T cell receptor diversity of HCV-specific T cell responses is associated with CTL escape. J. Exp. Med. 2004; 200: 307-319.
    154. Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R, Tschopp J. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature. 2005; 437: 1167-1172.
    155. Michael JM, Janna LM, Amy JP, Dusan S,Risini DW,Kenneth LR, Jeather LD. Treatment of intravaginal HSV-2 infection in mice: A comparison of CpG oligodeoxynucleotides and resiquimod(R-848).Antiviral Res. 2006; 69: 77-85.
    156. Migliaccio G et al. Characterization of resistance to non-obligate chain-terminating ribonucleoside analogs that inhibit hepatitis C virus replication in vitro. J. Biol. Chem. 2003; 278: 49164-49170.
    157. Napolitani G, Rinaldi A, Bertoni F, Sallusto F and Lanzavecchia A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat. Immunol. 2005; 6: 769-776.
    158. Nelson DR, Rustgi VK, Balan V, Lambiase L, Davis G, Sulkowski MS, Muir A, Dickson R, Wiesner R, McHutchison JG. A phase 2 study of Albuferon in combination with ribavirin in nonresponders to prior interferon therapy for chronic hepatitis C. In: Proceedings of the 56th Annual Meeting AASLD, Abst. 2005; 204.
    159. Olbrich AR, Schimmer S, Heeg K, Schepers K, Schumacher TN, Dittmer U. Effective postexposure treatment of retrovirus-induced disease with immunostimulatory DNA containing CpG motifs. J Virol. 2002; 76(22): 11397-11404.
    160. Olbrich AR, Schimmer S, Dittmer U. Preinfection treatment of resistant mice with CpG oligodeoxynucleotides renders them susceptible to friend retrovirus-induced leukemia. J Virol. 2003; 77(19): 10658-10662
    161. Otsuka M, Kato N, Moriyama M, Taniguchi H, Wang Y, Dharel N, Kawabe T, Omata M. Interaction between the HCV NS3 protein and the host TBK1 protein leads to inhibition of cellular antiviral responses. Hepatology. 2005; 41(5): 1004-1012.
    162. Park Y, Lee SW, Sung YC. Cutting Edge: CpG DNA inhibits dendritic cell apoptosis by up-regulating cellular inhibitor of apoptosis proteins through the phosphatidylinositide-3'-OH kinase pathway. J Immunol. 2002; 168(1): 5-8.
    163. Pavlovic D, Neville DC, Argaud O, Blumberg B, Dwek RA, Fischer WB, Zitzmann N. The hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar derivatives. Proc. Natl. Acad. Sci. USA.2003; 100(10): 6104-6108.
    164. Pawlotsky JM. Diagnostic tests for hepatitis C. J. Hepatol.1999; 31(Suppl 1): 71-79.
    165. Pflugheber J, Fredericksen B, Sumpter JrR, Wang C, Ware F, Sodora DL, Gale JrM. Regulation of PKR and IRF-1 during hepatitis C virus RNA replication. Proc. Natl. Acad. Sci. USA. 2002; 99(7): 4650-4655.
    166. Pisetsky DS, Reich CF. The influence of base sequence on the immunological properties of defined oligonucleotides. Immunopharmacology. 1998; 40(3): 199-208.
    167. Polyak SJ, Khabar KS, Paschal DM, Ezelle HJ, Duverlie G, Barber GN, Levy DE, Mukaida N, Gretch DR. Hepatitis C virus nonstructural 5A protein induces interleukin-8, leading to partial inhibition of the interferon-induced antiviral response. J. Virol. 2001a; 75(13): 6095-6106.
    168. Polyak SJ, Khabar KS, Rezeiq M, Gretch DR. Elevated levels of interleukin-8 in serum are associated with hepatitis C virus infection and resistance to interferon therapy. J. Virol. 2001b; 75(13): 6209-6211.
    169. Pontarollo RA, Rankin R, Babiuk LA, Godson DL, Griebel PJ, Hecker R, Krieg AM, and van Drunen Littel-van den Hurk S. Monocytes are required for optimum in vitro stimulation of bovine peripheral blood mononuclear cells by non-methylated CpG motifs. Vet Immunol. Immunopathol. 2002; 84: 43-59.
    170. Poynard T, Ratziu V, Benhamou Y, Opolon P, Cacoub P, Bedossa P. Natural history of HCV infection. Best Pract. Rec. Clin. Gastroenterol. 2000; 14: 211-228.
    171. Pyles RB, Higgins D, Chalk C, Zalar A, Eiden J, Brown C, Van Nest G, Stanberry LR: Use of immunostimulatory sequence-containing oligonucleotides as topical therapy for genital herpes simplex virus type 2 infection. J Virol 2002, 76:11387-11396.
    172. Randall G, Grakoui A, Rice CM. Clearance of replicating hepatitis C virus replicon RNAs in cell culture by small interfering RNAs. Proc. Natl Acad. Sci. USA. 2003; 100: 235-240.
    173. Rankin R, Pontarollo R, Gomis S, Karvonen B, Willson P, Loehr BI,GodsonDL, Babiuk LA, HeckerR, and van Drunen Littel-van denHurk S. CpG-containing oligodeoxynucleotides augment and switch the immune responses of cattle to bovine herpesvirus-1 glycoprotein D. Vaccine. 2002; 20: 3014-3022.
    174. Raquel S, Pilar E, Maria DJ, Jose AI, Emilio C. The impaired response of NK cells from HIV-infected progressor patients to A-class CpG oligodeoxynucleotides is largely dependent of a decreased production of IL-12. Immunology letters. 2007; 109:83-90.
    175. Rebecca J. Hepatitis C: Progress and Challenges. Clinical Microbiology Newsletter. 2006; 28: 113-118.
    176. Reed KE, Rice CM. Overview of hepatitis C virus genome structure, polyprotein processing, and protein properties. Curr. Top. Microbiol. Immunol. 2000; 242: 55-84.
    177. Reiser M et al. Antiviral efficacy of NS3-serine protease inhibitor BILN-2061 in patients with chronic genotype 2 and 3 hepatitis C. Hepatology. 2005; 41: 832-835.
    178. Rice L, Orlow D, Ceonzo K, Stahl GL, Tzianabos AO, Wada H, Aird WC, and Buras JA. CpG oligodeoxynucleotide protection in polymicrobial sepsis is dependent on Interleukin-17. J. Infect. Dis. 2005; 191: 1368-1376.
    179. Roberts RM, Ezashi T, Rosenfeld CS, Ealy AD, Kubisch HM. Evolution of the interferon tau genes and their promoters, and maternaltrophoblast interactions in control of their expression. Reprod. Suppl. 2003; 61: 239-251.
    180. Rosen HR et al. Frequencies of HCV-specific effector CD4+ T cells by flow cytometry: correlation with clinical disease stages. Hepatology. 2002; 35: 190-198.
    181. Rothenfusser S, Hornung V, Krug A, Towarowski A, Krieg AM, Endres S, Hartmann G. Distinct CpG oligonucleotide sequences activate human gamma delta T cells via interferon-alpha/-beta. Eur J Immunol. 2001; 31(12): 3525-3534.
    182. Rushbrook SM et al. Regulatory T cells suppress in vitro proliferation ofvirus-specific CD8+ T cells during persistent hepatitis C virus infection. J. Virol. 2005; 79: 7852-7859.
    183. Samuel CE. Antiviral actions of interferons. Clin. Microbiol. Rev. 2001; 14(4): 778-809.
    184. Schattenberg D, Schott M, Reindl G, Krueger T, Tschoepe D, Feldkamp J, Scherbaum WA, Seissler J. Response of human monocyte-derived dendritic cells to immunostimulatory DNA. Eur J Immunol. 2000; 30(10): 2824-2831.
    185. Semmo N et al. Preferential loss of IL-2-secreting CD4+ T helper cells in chronic HCV infection. Hepatology. 2005; 41: 1019-1028.
    186. Serebrisky D, Teper AA, Huang CK, Lee SY, Zhang TF, Schofield BH, Kattan M, Sampson HA and Li XM. CpG oligodeoxynucleotides can reverse Th2-associated allergic airway responses and alter the B7.1/B7.2 expression on a murine model of asthma. J. Immumol. 2000; 165: 5910-5912.
    187. Sester DP, Beasley SJ, Sweet MJ, Fowles LF, Cronau SL, Stacey KJ, Hume DA. Bacterial/CpG DNA down-modulates colony stimulating factor-1 receptor surface expression on murine bone marrow-derived macrophages with concomitant growth arrest and factor-independent survival. J Immunol. 1999 Dec 15;163(12): 6541-6550.
    188. Simmonds P, Bukh J, Combet C, Deleage G, Enomoto N, Feinstone S, Halfon P, Inchauspe G, Kuiken C, Maertens G, Mizokami M, Murphy DG, Okamoto H, Pawlotsky JM, Penin F, Sablon E, Shin IT, Stuyver LJ, Thiel HJ, Viazov S, Weiner AJ, Widell A. Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. Hepatology. 2005; 42(4): 962-973.
    189. Simons FE, Shikishima Y, Van Nest G, Eiden JJ and Hayglass T. Selective immune redirection in humans with ragweed allergy by injecting Amb a1 linked to immunostimulatory DNA. J. Allergy Clin. Immunol. 2004; 113: 1144-1151.
    190. Sha Q, Truong-Tran AQ, Plitt JR, Beck LA, Schleimer RP. Activation of airway epithelial cells by toll-like receptor agonists. Am J Respir Cell MolBiol. 2004; 31(3): 358-364.
    191. Shoukry NH et al. Memory CD8+ T cells are required for protection from persistent hepatitis C virus infection. J. Exp. Med. 2003; 197: 1645-1655.
    192. Shoukry NH, Cawthon AG, Walker CM. Cell-mediated immunity and the outcome of hepatitis C virus infection. Annu. Rev. Microbiol. 2004; 58: 391-424.
    193. Shoukry NH, Sidney J, Sette A, Walker CM. Conserved hierarchy of helper T cell responses in a chimpanzee during primary and secondary hepatitis C virus infections. J. Immunol. 2004; 172: 483-492.
    194. Singh M, Carlson JR, Briones M, Ugozzoli M, Kazzaz J, Barackman J, Ott G, and O’Hagan D. A comparison of biodegradable microparticles and MF59 as systemic adjuvants for recombinant gD from HSV-2, Vaccine. 1998; 16: 1822-1827.
    195. Smith JB and Wickstrom E. Antisense c-myc and immunostimulatory oligonucleotide inhibition of tumorigenesis in a murine B-cell lymphoma transplant model.Clin. J. Natl. Cancer Inst. 1998; 90: 1146-1154.
    196. Sparwasser T, Koch ES, Vabulas RM, Heeg K, Lipford GB, Ellwart JW, Wagner H. Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. Eur J Immunol. 1998; 28(6): 2045-2054.
    197. Speiser DE, Lienard D, Rufer N, Rubio-Godoy V, Rimoldi D, Lejeune F, Krieg AM, Cerottini JC and Romero P. Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligonucleotide 7909. J. Clin. Inves. 2005; 115: 739-746.
    198. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. How cells respond to interferons. Annu. Rev. Biochem. 1998; 67: 227-264
    199. Steinkuhler C et al. Product inhibition of the hepatitis C virus NS3 protease. Biochemistry. 1998; 37: 8899-8905.
    200. Sun S, Zhang X, Tough D, Sprent J. Multiple effects of immunostimulatory DNA on T cells and the role of type I interferons. Springer Semin Immunopathol. 2000; 22(1-2): 77-84.
    201. Takaki A et al. Cellular immune responses persist and humoral responses decrease two decades after recovery from a single-source outbreak of hepatitis C. Nature Med. 2000; 6: 578-582.
    202. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu. Rev. Immunol. 2003; 21: 335-376.
    203. Takeshita A, Imai K, Hanazawa S. CpG motifs in Porphyromonas gingivalis DNA stimulate interleukin-6 expression in human gingival fibroblasts. Infect Immun. 1999; 67(9): 4340-4345.
    204. Takeshita F, Leifer CA, Gursel I,Ishii KJ,Takeshita S,Gursel M, Klinman DM. Cutting edge: role of Toll-like receptor 9 in CpG DNA-induced activation of human cells. J. Immunol. 2001; 167: 3555-3558.
    205. Taylor DR, Puig M, Darnell ME, Mihalik K, Feinstone SM. New antiviral pathway that mediates hepatitis C virus replicon interferon sensitivity through ADAR1. J. Virol. 2005; 79(10): 6291-6298.
    206. Thimme R et al. Determinants of viral clearance and persistence during acute hepatitis C virus infection. J. Exp. Med. 2001; 194: 1395-1406.
    207. Thimme R et al. Viral and immunological determinants of hepatitis C virus clearance, persistence, and disease. Proc. Natl Acad. Sci. USA 2002; 99: 15661-15668.
    208. Tighe H, Takabayashi K, Schwartz D, Van Nest G, Tuck S, Eiden JJ, Kagey-Sobotka A, Creticos PS, Lichtenstein LM, Spiegelberg HL, and Raz E, Conjugation of immunostimulatory DNA to the short ragweed allergen amb a 1 enhances its immunogenicity and reduces its allergenicity. J. Allergy Clin. Immunol. 2000; 106: 124-134.
    209. Tomei L et al. Mechanism of action and antiviral activity of benzimidazole-based allosteric inhibitors of the hepatitis C virus RNA-dependent RNA polymerase. J. Virol. 2003; 77: 13225-13231.
    210. Tomei L, Altamura S, Paonessa G, De Francesco R, Migliaccio G. HCV antiviral resistance: the impact of in vitro studies on the development of antiviral agents targeting the viral NS5B polymerase. Antiviral Chem. Chemother. 2005; 16: 225-245.
    211. Tosi MF. Innate immune responses to infection. J. Allergy Clin. Immunol.2005; 116 (2): 241-249: quiz 250.
    212. Trevani AS, Chorny A, Salamone G, Vermeulen M, Gamberale R, Schettini J, Raiden S, Geffner J. Bacterial DNA activates human neutrophils by a CpG-independent pathway. Eur J Immunol. 2003; 33(11): 3164-3174.
    213. Trozzi C et al. In vitro selection and characterization of hepatitis C virus serine protease variants resistant to an active-site peptide inhibitor. J. Virol. 2003; 77: 3669-3679.
    214. Tseng CT, Klimpel GR. Binding of the hepatitis C virus envelope protein E2 to CD81 inhibits natural killer cell functions. J. Exp. Med. 2002; 195(1): 43-49.
    215. Tulic MK, Fiset PO, Christodoulopoulos P, Vaillancourt P, Desrosiers M, Lavigne F, Eiden J and Hamid Q. Amb a1-immunostimulatory oligodeoxynucleotide conjugate immunotherapy decreases the nasal inflammatory response. J. Allergy Clin. Immunol. 2004; 113: 235-241.
    216. Tsukiyama-Kohara K, Iizuka N, Kohara M, Nomoto A. Internal ribosome entry site within hepatitis C virus RNA. J. Virol. 1992; 66(3): 1476-1483.
    217. Ulsenheimer A et al. Detection of functionally altered hepatitis C virus-specific CD4 T cells in acute and chronic hepatitis C. Hepatology. 2003; 37: 1189-1198.
    218. Urbani A et al. Substrate specificity of the hepatitis C virus serine protease NS3. J. Biol. Chem. 1997; 272: 9204-9209.
    219. Urbani S et al. Virus-specific CD8+ lymphocytes share the same effector-memory phenotype but exhibit functional differences in acute hepatitis B and C. J. Virol. 2002; 76: 12423-12434.
    220. Valensi JP, Carlson JR, and Van Nest GA. Systemic cytokine profiles in BALB/c mice immunized with trivalent influenza vaccine containing MF59 oil emulsion and other advanced adjuvants. J. Immunol. 1994; 153: 4029-4039.
    221. Van Pesch V, Lanaya H, Renauld JC, Michiels T. Characterization of the murine alpha interferon gene family. J. Virol. 2004; 78(15): 8219-8228.
    222. Verthelyi D et al. Human peripheral blood cells differentially recognizeand respond to two distinct CpG motifs. J. Immunol. 2001; 166: 2372-2377.
    223. Verthelyi D, Gursel M, Kenney RT, Lifson JD, Liu S, Mican J, and Klinman DM. CpG oligodeoxynucleotides protect normal and SIV-infected macaques from Leishmania infection. J. Immunol. 2003; 170: 4717-4723.
    224. Verthelyi D, Klinman DM. Immunoregulatory activity of CpG oligonucleotides in humans and nonhuman primates. Clin Immunol. 2003; 109(1): 64-71.
    225. Vollmer J, Weeratna R, Payette P, Jurk M, Schetter C, Laucht M, Wader T, Tluk S, Liu M, Davis HL, Krieg AM. Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. Eur. J. Immunol. 2004; 34: 251-262.
    226. Wagner M, Poeck H, Jahrsdoerfer B, Rothenfusser S, Prell D, Bohle B, Tuma E, Giese T, Ellwart JW, Endres S, Hartmann G. IL-12p70-dependent Th1 induction by human B cells requires combined activation with CD40 ligand and CpG DNA. J Immunol. 2004; 172(2): 954-963.
    227. Wakita T, Pietschmann T, Kato T, Date T, Miyamoto M, Zhao Z, Murthy K, Habermann A, Krausslich HG, Mizokami M, Bartenschlager R, Liang TJ. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat. Med. 2005; 11(7):791-796.
    228. Walewski JL, Keller TR., Stump DD, Branch AD. Evidence for a new hepatitis C virus antigen encoded in an overlapping reading frame. RNA. 2001; 7(5): 710-721.
    229. Walker PS, Scharton-Kersten T, Krieg AM, Love-Homan L, Rowton ED, Udey MC, and Vogel JC. Immunostimulatory oligodeoxynucleotides promote protective immunity and provide systemic therapy for leishmaniasis via IL-12- and IFN-gamma- dependent mechanisms. Proc. Natl. Acad. Sci. USA. 1999; 96: 6970-6975.
    230. Wang C, Pflugheber J, Sumpter JrR., Sodora DL, Hui D, Sen GC, Gale JrM. Alpha interferon induces distinct translational control programs tosuppress hepatitis C virus RNA replication. J. Virol. 2003; 77(7): 3898-3912.
    231. Weber F, Kochs G, Haller O. Inverse interference: how viruses fight the interferon system. Viral Immunol. 2004; 17 (4):498-515.
    232. Wedemeyer H et al. Impaired effector function of hepatitis C virus-specific CD8+ T cells in chronic hepatitis C virus infection. J. Immunol. 2002; 169: 3447-3458.
    233. Weeratna RD, McCluskie MJ, Xu Y, Davis HL. CpG DNA induces stronger immune responses with less toxicity than other adjuvants.Vaccine. 2000 Mar 6; 18(17):1755-1762.
    234. Weighardt H, Feterowski C, Veit M, Rump M, Wagner H, Holzmann B. Increased resistance against acute polymicrobial sepsis in mice challenged with immunostimulatory CpG oligodeoxynucleotides is related to an enhanced innate effector cell response. J Immunol. 2000; 165(8): 4537-4543.
    235. Wild JS, Sur S. CpG oligonucleotide modulation of allergic inflammation. Allergy. 2001; 56: 365-376.
    236. Wilson JA et al. RNA interference blocks gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells. Proc. Natl Acad. Sci. USA. 2003; 100: 2783-2788.
    237. Witherell GW, Beineke P. Statistical analysis of combined substitutions in nonstructural 5A region of hepatitis C virus and interferon response. J. Med. Virol. 2001; 63(1): 8-16.
    238. Wright TL. Clinical trial results and treatment resistance with lamivudine in hepatitis B. Semin Liver Dis. 2004; 24(11): 31-36.
    239. Xu Z, Choi J, Yen TS, Lu W, Strohecker A, Govindarajan S, Chien D, Selby MJ, Ou J. Synthesis of a novel hepatitis C virus protein by ribosomal frameshift. EMBO J. 2001; 20(14): 3840-3848.
    240. Yi AK, Klinman DM, Martin TL et al. Rapid immune activation by CpG motifs in bacterial DNA. Systemic induction of IL-6 transcription through an antioxidant-sensitive pathway. J. Immunol. 1996; 157(12): 5394-5402.
    241. Yi AK, Yoon JG, Krieg AM. Convergence of CpG DNA- and BCR-mediated signals at the c-Jun N-terminal kinase and NF-kappaB activation pathways: regulation by mitogen-activated protein kinases. Int Immunol. 2003; 15(5): 577-591.
    242. Yi M, Lemon SM, Nontranslated RNA signals required for replication of hepatitis C virus RNA. J. Virol. 2003a; 77(6): 3557–3568.
    243. Yi M, Lemon SM. Structure-function analysis of the 3' stem-loop of hepatitis C virus genomic RNA and its role in viral RNA replication. RNA. 2003b; 9(3): 331-345.
    244. Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 2004; 5(7): 730-737.
    245. Yukui Li, Ekambar R. Kandimalla, Dong Yu and Sudhir Agrawal. Oligodeoxynucleotides containing synthetic immunostimulatory motifs augment potent Th1 immune responses to HBsAg in mice. International Immunopharmacology. 2005; 5(6): 981-991.
    246. Zhong J, Gasaminza P, Cheng G, Kapadia S, Kato T, Burton DR, Wieland SF, Uprichard SL, Wakita T, Chisari FV. Robust hepatitis C virus infection in vitro. Proc. Natl. Acad. Sci. USA. 2005; 102(26): 9294-9299.
    247. Zimmermann S, Egeter O, Hausmann S, Lipford GB, Rocken M, Wagner H, and Heeg K. CpG oligodeoxynucleotides trigger protective and curative Th1 responses in lethal murine leishmaniasis. J. Immunol. 1998; 160: 3627-3630.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700