MgO-SiC复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着钢铁工业的迅速发展,对钢材质量的要求越来越高。而洁净钢与超纯净钢是钢铁工业发展的重要方向之一。在冶炼过程中,耐火材料不可避免要与钢水接触,对钢水的洁净度有一定的影响。为了尽量减少它对钢水的污染,就有必要突出耐火材料的另一个功能—净化钢水的功能。碱性耐火材料对钢水增氧作用小,镁质耐火材料是最常见的碱性耐火材料,但其热震稳定性差。本研究希望加入SiC以提高其热震稳定性。
     本论文所做的工作包括四个部分:第一部分是探讨MgO-SiC复合材料的氧化行为。第二部分是MgO-SiC浇注料的研究。第三部分是SiC含量对MgO-SiC复合材料热震稳定性的影响。第四部分是MgO-SiC复合材料的抗渣性能的研究。
     在第一部分工作中,研究了温度、氧化时间以及结合剂种类对MgO-SiC复合材料的氧化行为的影响。结果如下:
     1) 从1100℃开始两种结合剂结合的MgO-SiC材料开始增重,即开始氧化。但到1200℃以后,随着温度的升高质量变化率继续增大,增长速率逐渐变慢。
     2) 氧化增重率与试样的显气孔率有关。随气孔率下降,质量变化的增长速度变缓。镁橄榄石形成所引起的体积膨胀与烧结均可能降低气孔率,从而减弱SiC的氧化。
     3) MgO-SiC复合材料在氧化过程中,氧化面积及增重率随着氧化时间的增加而增加,但随着氧化时间的继续延长,试样氧化面积的增长速率和增重速率有所减缓。
     4) MgO-SiC复合材料在1500℃条件下,随着保温时间的延长,氧化面积的增长速率及增重速率低于材料在1350℃时的氧化面积的增长速率,这是由于材料中镁橄榄石生成量较多所致。而此时结合剂对MgO-SiC复合材料氧化行为影响不显著。
     在第二部分工作中,作者对分散剂及加水量对MgO-SiC浇注料流动性和物理性能的影响做了研究。结果表明:在以氧化硅微粉结合的MgO-SiC浇注料中分散剂C与G复合使用时,浇注料流动性好。同时其加水量控制在5%最为合适。分散剂种类对材料的物理性能有一定的影响。
     在第三部分工作中,作者探讨了SiC含量对MgO-SiC复合材料热震稳定性的影响。
     结果表明:随着SiC含量的增加,MgO-SiC复合材料的热震后的强度保持率也增加,即有利于提高材料的热震稳定性。当复合材料中SiC含量达到25%时,材料内部颗粒达到最紧密堆积,其物理性能最佳。
     第四部分是MgO-SiC复合材料的抗渣性能的研究。结果表明:
     1) 在多次渣蚀试验中,随着材料中的SiC含量的增加,镁橄榄石的生成量增加,CMS的生成量减少,有利于提高材料的抗渣性能。
     2) MgO-SiC复合材料中作为结合剂的SiO_2微粉、熔渣中的SiO_2及SiC氧化生成的SiO_2与MgO反应生成M_2S,所引起的体积膨胀阻塞了材料中的气孔,可抑制渣的渗透。
     3) 当硅微粉含量为5%时,材料的烧成前后的物理性能最佳,而控制SiO_2微粉加入量有
    
    武汉科技大学硕士学位论文
    第n页
    利于材料的抗渣性能。
With the rapid development of iron and steel industry, the demand for increasing the quality of products has been taken into consideration. "Clean steel" and "extra-clean steel" making is one of the important direction for iron and steel industry. However, it is inevitable that refractories contact with molten steel during iron and steel making, so the refractories has influence on the quality of molten steel. In order to reduce its pollution to molten steel, another function of refractory-purifying molten steel must be highlighted. The Base refractories has little effect on the total oxygen content of steel but has poor thermal shock property.
    The article is divided into four parts: the first part is effects of MgO-SiC composites on oxidation; the second part is the study on castable MgO-SiC; the third part is effects of different SiC content on thermal shock property of MgO-SiC composites; the forth part is the study of resistance of MgO-SiC composites to slag attack.
    In the first part, three facts, including temperature, tune and bonder on oxidation of MgO-SiC composites are discussed. The results were listed as following:
    1) From 1100 C mass change ratio of the MgO-SiC composites bonded by two kinds of bonders began to increase, which means that MgO-SiC composites began to oxidize. From 1200 C, mass change ratio of the MgO-SiC composites continued to increase. However, the speed ratio increased slowly.
    2) With the decrease of the apparent porosity of the samples, the mass gam increased slowly. The expansion and the sintering due to the formation of M2S decreased the apparent porosity, so the oxidization of the SiC weakened.
    3) During the oxidization of MgO-SiC composites, the oxidizing area and the mass gain increased as the oxidizing time increased. But with the prolongation of the oxidizing time, the oxidizing area and mass gain increased slowly.
    4) The oxidizing area and mass gain at 1500 C was less than that at 1350 C, which was attributed to the formation of M2S. The bonder had no obvious effect on the oxidization of the MgO-SiC composite.
    In the second part the author studied the effects of dispersant and water on the physical properties of MgO-SiC castable. The results show: In the MgO-SiC castable bonded by ultra-fine, the flowability of the castable was best when both C and G dispersant were used together. The optimum content of the water is 5% in the castable. The kinds of the dispersants had certain effects on the physical properties of the materials.
    In the third part the author studied the effect of the content of the SiC on the resistance of MgO-SiC composite to thermal shock. The results show that with the increase of the SiC, the property of the resistance of the MgO-SiC composites to thermal shock was increased, which
    
    
    
    means that it had benefits to increase the thermal shock of the composites. When the content of the SiC reached 25%, the grains were hi the close packing and the physical properties of the composite were best.
    The fourth part was the study of the resistance of the composite to slag attack. The results show:
    In the multiple slag tests, as the increase of SiC, the content of M2S was increased and the content of CMS was decreased. Thus the property of the slag resistance of the composite was increased.
    Microsilica used as bonder, SiO2 in the fused slag and SiO2 conducted from the oxidization of SiC reacted with MgO to form M2S. The volume expansion clogged the pore of the composites, so the penetration of the slag was inhibited.
    When the content of microsilica was 5%, the physical properties were optimum. The suitable content of microsilica had benefits to the slag resistance of the composites.
引文
1 洗爱平、张盾、王仪康:钢中残余元素对钢性能的影响。钢铁,1999,Vol.34,No.10,p64
    2 知水、王平、侯树庭编著:特殊钢炉外精炼。原子能出版社,1996
    3 薛正良.低铝硅铁与炼钢夹杂物控制.铁合金.1999,NO.5 Tot.148,p1~3
    4 将国昌编著:纯净钢及二次精炼。上海科学技术出版社,1996
    5 刘新华、蔡开科、王兰香、韩庆等:超低头连铸板坯非金属夹杂物研究。钢铁,1991,Vol.26,No.9,p25-28
    6 董履仁等编著:钢中大型非金属夹杂物。冶金工业出版社,1991
    7 D.J.Dyson, A.J.Rose, M.M.Whitwood and D.P.Wilcox: Studies in development of clean steels Part 2 Use of chemical analyses. Ironmaking and Steelmaking, 1998, Vol.25, No.4, p279-286
    8 刘以智译:炉外精炼盛钢桶耐火材料内衬形状对钢质量的影响。国外耐火材料,1991,No.1,p47-58
    9 赵日广译:钢中杂质与耐火材料.国外耐火材料,1998,No.11,p33-41
    10 Ke Changming and Li Nan: Contribution of lime based tundish working lining to clean steel making. Advances in Refractories for the Metallurgical IndustriesⅢ, P177-183
    11 朱立光、邸光明:洁净钢生产技术。河北冶金,1998,No.6,p4
    12 J,Lehmann, M.Boher and M.C.Kaerle: An experimental study of the interactions between liquid steel and a MgO-based tundish refractory. Advances in Refractories for the Metallurgical Industries Ⅱ, Proceedings of 35th Annual Conference of Metallugists of CIM, Montreal Canada, 1996, p151-165
    13 T.L.Coble.et al. in "Structure and Properties of MgO and Al_2O_3 Ceramics" Ed.by W.D.Kingery, The American Ceramic Society, Inc.Columbus.Ohio.p839-852 (1984)
    14 D.Chung and W.G.Lawrence. "Relation of Single-crystal Elastic Constants to Polyerstalline Isotropic Elastic Moduli of MgO Temperature Dependence "Journal of The American Ceramic Society.47.448-455(1964)
    15 Naohiro Soga and Orson L. Anderson. High-Temperature Elastic Properties of Polycrystalline MgO-Al_2O_3. Journal of The American Ceramic Society.49.355-359 (1966)
    16 林彬荫、吴清顺:耐火矿物原料,冶金工业出版社,1989,p354~357
    17 Orson L.Anderson and P.Andreatch. "Pressure Derivatives of Elastic Constants of Single-Crystal MgO at 23 and -195.8 Journal of The American Ceramic Society.49.404-409(1966)
    18 N.Soda and O.N.Anderson. "Simplified Method for Calculating Elastic Moduli of Ceramic Powder from Compressibility and Debye Temperature Data" Journal of The American Ceramic Society.49.318-322(1966)
    19 R.B.Day and J.Stokes. "Mechaanical Behavior of Magnesium Oxide at High Temperatures" Journal of The American Ceramic Society.47.493(1964)
    20 R.B.Day and R.J.Stokes. "Mechanical Behavior of Polycrystalline Magnesim Oxide at High Temperatures." Journal of The American Ceramic Society.49.345-354(1966)
    21 R.J.Stokes and C.H.Li. "Dislocation and the Tensile Strength of Magnesium Oxide "Journal of The
    
    American Ceramic Society.46.423-434(1963)
    22 沈继耀.复相改性提高耐火材料的抗热震性.耐火材料技术与发展.北京:冶金工业出版社,1995:249~250
    23 李楠,张文杰等著,碳复合耐火材料,1998,174-179
    24 李君,杨彬等.MgO-ZrO_2材料的烧结、显微结构和性能.耐火材料.1996,30(2):69~73
    25 Ernest M.Levin. Carl R.Robbins and Howard F.McMurdie "Phase Diagrams for Ceramists".. second Edition(1969)
    26 王诚训等,炉外精炼耐火材料,冶金工业出版社,1996
    27 匡加才,超纯净钢用镁-钙浇注料的研究:[硕士论文],武汉科技大学,2000
    28 Z.Li and R.C.Bradt. "Thermal Expansion of the Cubic (3C) Polytype of SiC"J.Mater.Sci..21.4366-4368(1986)
    29 Z.Li and R.C.Bradt. "The Single-Crystal Elastic Constants of Cubic (3C) SiC to 1000" J.Mater.Sci..22.2557-2559(1987)
    30 C.N.Tome, M.A.Bertinetti and S.R.MacEwen, "Correlation Between Neutron Diffraction Measurements and Thermal Stresses in a Silicon Carbide/Alumina Composite" Journal of The American Ceramic Society. 73.34283432(1990)
    31 K.J.Magley, K.A.Winholta and K.T.Faber, Residual Stresses in a Two-Phase Microcracking Ceramic" Journal of The American Ceramic Society.73.1641-1644(1990)
    32 李君,MgO-SiC-C复合材料导电性能及高温力学性能研究:[博士论文]。北京:北京科技大学,1997
    33 潘牧,南策文,碳化硅(SiC)基材料的高温氧化和腐蚀 腐蚀科学与防护技术 vol.12 No.2 Mar.2000:109~120
    34 李君等.MgO-SiC-C复合材料力学性能和抗热震性能研究.耐火材料.2000,34(2):86-89
    35 Carney, MEF; Readey, DW. Oxidation Kinetics of Pure and Doped MgO-SiC Composites. Ceram. Eng. Sci. Proc.Vol.16, No. 5, 1995, P. 863-875
    36 Tamari, N; Komdo, I; Matsuura, H; Kinoshita, M. Sintering of MgO-SiC Composite Ceramic and Their Properties. J. Ceram. Soc. Jpn.97, No. 1, 79~84,1989
    37 Luo, J. Stevens, R. Interracial Structure and Precipitate Formation in MgO/SiC Composites. Advances in Ceramic-Matrix Composites Ⅱ. Indianapolis, 25-27 April 1994, p.827-838. Ceram.Trans. Vol.46
    38 梁英教、车荫昌:无机物热力学数据手册。东北大学出版社,1993
    39 王维邦主编,耐火材料工艺学。北京,冶金工业出版社
    40 李跃进等,6H-SiC材料的氧化特性.西安电子科技大学学报,2000,27(4):460~466
    41 张利华译.无振式浇注料.国外耐火材枓,1995,20(10):12-18
    42 王玺堂等,Al_2O_3-SiC-C质高炉出铁沟自流浇注枓的开发及其应用.钢铁研究,1999.3.Sum107.No.2:3-4
    43 梁治齐等编.功能性表面活性活性剂.北京:中国轻工出版社,2002,4:106-113
    44 丁庆军等.混合材对超细灌浆水泥流变性能的影响.长江科学院院报.2002,4.vol19.No.2:23-26
    45 熊星云 崔昆,碱性耐火材料热稳定性与应力设计的关系,钢铁研究,No.6(Sum105)1998.p:6~10
    
    
    46 赵世柯等,ZrO_2-莫来石复合耐火材料的反应烧结制备和抗热震性研究,耐火材料,2002,36(2)63~65,73
    47 张海萍等,提高镁质浇注料抗热震性的研究,耐火材料,2002,1 p:53~54
    48 李友胜 李楠等,MgO含量对铝镁质浇注为性能的影响,耐火材料,2001,35(6):326~328
    49 蒋明学,李勇主编,陈肇友耐火材料论文选,冶金工业出版社,北京,1998
    50 S, Zhang and W. E. Lee, N. Li. Penetration and Corrosion of Magnesia Castables by Silicate Slags. Unitecr'01,Mexico, P.65-79, 2001
    51 魏耀武等.SiO_2微粉结合镁质浇注料的基质组成与抗渣性能.耐火材料,2001,35(2):69-71
    52 郁国城编著:碱性耐火材料理论基础。上海科学技术出版社,1982
    53 李晓明编著:耐火材料应用热力学计算。武汉工业大学出版社,1991
    54 Li Nan, Wei Yaowu, et al. Properties of MgO-SiO_2 castable and effect of reactions in microsilica-MgO bond system, Proceedings of UNITECR'99, Berlin, Germany, 1999:97~101

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700